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Abstract

In this paper, we build a new test of rational expectations based on the

marginal distributions of realizations and subjective beliefs. This test is widely

applicable, including in the common situation where realizations and beliefs

are observed in two different datasets that cannot be matched. We show that

whether one can rationalize rational expectations is equivalent to the distribu-

tion of realizations being a mean-preserving spread of the distribution of beliefs.

The null hypothesis can then be rewritten as a system of many moment inequal-

ity and equality constraints, for which tests have been recently developed in the

literature. The test is robust to measurement errors under some restrictions

and can be extended to account for aggregate shocks. Finally, we apply our

methodology to test for rational expectations about future earnings. While

individuals tend to be right on average about their future earnings, our test

strongly rejects rational expectations.
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1 Introduction

How individuals form their beliefs about uncertain future outcomes is critical to

understanding decision making. Despite longstanding critiques (see, among many

others, Pesaran, 1987; Manski, 2004), rational expectations remain by far the most

popular framework to describe belief formation (Muth, 1961). This theory states that

agents have expectations that do not systematically differ from the realized outcomes,

and efficiently process all private information to form these expectations. Rational

expectations (RE) are a key building block in many macro- and micro-economic

models, and in particular in most of the dynamic microeconomic models that have

been estimated over the last two decades (see, e.g., Aguirregabiria and Mira, 2010;

Blundell, 2017, for recent surveys).

In this paper, we build a new test of RE. Our test only requires having access to

the marginal distributions of subjective beliefs and realizations, and, as such, can be

applied quite broadly. In particular, this test can be used in a data combination con-

text, where individual realizations and subjective beliefs are observed in two different

datasets that cannot be matched. Such situations are common in practice (see, e.g.,

Delavande, 2008; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and

Romano, 2014; Stinebrickner and Stinebrickner, 2014a; Gennaioli, Ma and Shleifer,

2016; Kuchler and Zafar, 2019; Boneva and Rauh, 2018; Biroli, Boneva, Raja and

Rauh, 2020). Besides, even in surveys for which an explicit aim is to measure sub-

jective expectations, such as the Michigan Survey of Consumers or the Survey of

Consumer Expectations of the New York Fed, expectations and realizations can typ-

ically only be matched for a subset of the respondents. And of course, regardless of

attrition, whenever one seeks to measure long or medium-term outcomes, matching

beliefs with realizations does require waiting for a long period of time before the data

can be made available to researchers.1

The tests of RE implemented so far in this context only use specific implications of the

RE hypothesis. In contrast, we develop a test that exploits all possible implications

of RE. Using the key insight that we can rationalize RE if and only if the distribution

1Situations where realizations can be perfectly predicted beforehand, such as in school choice

settings where assignments are a known function of observed inputs, are notable exceptions.

2



of realizations is a mean-preserving spread of the distribution of beliefs, we show that

rationalizing RE is equivalent to satisfying one moment equality and (infinitely) many

moment inequalities.2 As a consequence, if these moment conditions hold, RE cannot

be refuted, given the data at our disposal. By exhausting all relevant implications

of RE, our test is able to detect much more violations of rational expectations than

existing tests.

To develop a statistical test of RE rationalization, we build on the recent literature on

inference based on moment inequalities, and more specifically, on Andrews and Shi

(2017). By applying their results to our context, we show that our test controls size

asymptotically and is consistent over fixed alternatives. We also provide conditions

under which the test is not conservative.

We then consider several extensions to our baseline test. First, we show that by using

a set of covariates that are common to both datasets, we can increase our ability to

detect violations of RE. Another important issue is that of unanticipated aggregate

shocks. Even if individuals have rational expectations, the mean of observed outcomes

may differ from the mean of individual beliefs simply because of aggregate shocks.

We show that our test can be easily adapted to account for such shocks.

Finally, we prove that our test is robust to measurement errors in the following sense.

If individuals have rational expectations but both beliefs and outcomes are measured

with (classical) errors, then we can still rationalize RE with such data provided that

the amount of measurement errors on beliefs does not exceed the amount of interven-

ing transitory shocks plus the measurement errors on the realized outcomes. In that

specific sense, imperfect data quality does not jeopardize the validity of our test. In

particular, this allows for elicited beliefs to be noisier than realized outcomes. This

provides a rationale for our test even in cases where realizations and beliefs are ob-

served in the same dataset, since a direct test based on a regression of the outcome

on the beliefs (see, e.g., Lovell, 1986) is, at least at the population level, not robust

to any amount of measurement errors on the subjective beliefs.

We apply our framework to test for rational expectations about future earnings. To

2Interestingly, the equivalence on which we rely, which is based on Strassen’s theorem (Strassen,

1965), is also used in the microeconomic risk theory literature, see in particular Rothschild and

Stiglitz (1970).
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do so, we combine elicited beliefs about future earnings with realized earnings, using

data from the Labor Market module of the Survey of Consumer Expectations (SCE,

New York Fed), and test whether household heads form rational expectations on

their annual labor earnings. While a naive test of equality of means between earnings

beliefs and realizations shows that earnings expectations are realistic in the sense of

not being significantly biased, thus not rejecting the rational expectations hypothesis,

our test does reject rational expectations at the 1% level. Taken together, our find-

ings illustrate the practical importance of incorporating the additional restrictions

of rational expectations that are embedded in our test. The results of our test also

indicate that the RE hypothesis is more credible for certain subpopulations than oth-

ers. For instance, we reject RE for individuals without a college degree, who exhibit

substantial deviations from RE. On the other hand, we fail to reject the hypothesis

that college-educated workers have rational expectations on their future earnings.

By developing a test of rational expectations in a setting where realizations and sub-

jective beliefs are observed in two different datasets, we bring together the literature

on data combination (see, e.g., Cross and Manski, 2002, Molinari and Peski, 2006,

Fan, Sherman and Shum, 2014, Buchinsky, Li and Liao, 2019, and Ridder and Moffitt,

2007 for a survey), and the literature on testing for rational expectations in a micro

environment (see, e.g., Lovell, 1986; Gourieroux and Pradel, 1986; Ivaldi, 1992, for

seminal contributions).

On the empirical side, we contribute to a rapidly growing literature on the use of

subjective expectations data in economics (see, e.g., Manski, 2004; Delavande, 2008;

Van der Klaauw and Wolpin, 2008; Van der Klaauw, 2012; Arcidiacono, Hotz, Maurel

and Romano, 2014; de Paula, Shapira and Todd, 2014; Stinebrickner and Stinebrick-

ner, 2014b; Wiswall and Zafar, 2015). In this paper, we show how to incorporate all

of the relevant information from subjective beliefs combined with realized data to test

for rational expectations.

The remainder of the paper is organized as follows. In Section 2, we present the

general set-up and the main theoretical equivalences underlying our RE test. In Sec-

tion 3, we introduce the corresponding statistical tests and study their asymptotic

properties. Section 4 illustrates the finite sample properties of our tests through

Monte Carlo simulations. Section 5 applies our framework to expectations about
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future earnings. Finally, Section 6 concludes. The appendix gathers the proofs of

the equivalence results. We consider in the Web Appendix various theoretical exten-

sions, additional simulation results, additional material on the application, and all

the remaining proofs. Finally, the companion R package RationalExp, described in

the user guide (D’Haultfœuille, Gaillac and Maurel, 2018a), performs the test of RE.

2 Set-up and characterizations

2.1 Set-up

We assume that the researcher has access to a first dataset containing the individual

outcome variable of interest, which we denote by Y . She also observes, through a

second dataset drawn from the same population, the elicited individual expectation

on Y , denoted by ψ. The two datasets, however, cannot be matched. We focus on

situations where the researcher has access to elicited beliefs about mean outcomes,

as opposed to probabilistic expectations about the full distribution of outcomes. The

type of subjective expectations data we consider in the paper has been collected in

various contexts, and used in a number of prior studies (see, among others, Delavande,

2008; Zafar, 2011b; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and

Romano, 2014; Hoffman and Burks, 2020).

Formally, ψ = E [Y |I], where I denotes the σ-algebra corresponding to the agent’s

information set and E [·|I] is the subjective expectation operator (i.e. for any U ,

E [U |I] is a I-measurable random variable). We are interested in testing the rational

expectations (RE) hypothesis ψ = E[Y |I], where E [·|I] is the conditional expecta-

tion operator generated by the true data generating process. Importantly, we remain

agnostic throughout most of our analysis on the information set I. Our setting is also

compatible with heterogeneity in the information different agents use to form their

expectations. To see this, let (U1, ..., Um) denote m variables that agents may or may

not observe when they form their expectations, and let Dk = 1 if Uk is observed, 0

otherwise. Then, if I is the information set generated by (D1U1, ..., DmUm), agents

will use different subsets of the (Uk)k=1...m (i.e., different pieces of information) de-

pending on the values of the (Dk)k=1...m. Our setup encompasses a wide variety of
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situations, where individuals have private information and form their beliefs based on

their information set. This includes various contexts where individuals form their ex-

pectations about future outcomes, including education, labor market as well as health

outcomes. By remaining agnostic on the information set, our analysis complements

several studies which primarily focus on testing for different information sets, while

maintaining the rational expectations assumption (see Cunha and Heckman, 2007,

for a survey).

It is easy to see that the RE hypothesis imposes restrictions on the joint distribution of

realizations Y and beliefs ψ. In this data combination context, the relevant question

of interest is then whether one can rationalize RE, in the sense that there exists a

triplet (Y ′, ψ′, I ′) such that (i) the pair of random variables (Y ′, ψ′) are compatible

with the marginal distributions of Y and ψ; and (ii) ψ′ correspond to the rational

expectations of Y ′, given the information set I ′, i.e., E(Y ′|I ′) = ψ′. Hence, we

consider the test of the following hypothesis:

H0 : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E [Y ′|I ′] = ψ′,

where ∼ denotes equality in distribution. Rationalizing RE does not mean that

the true realizations Y , beliefs ψ and information set I are such that E [Y |I] = ψ.

Instead, it means that there exists a triplet (Y ′, ψ′, I ′) consistent with the data and

such that E [Y ′|I ′] = ψ′. In other words, a violation of H0 implies that RE does not

hold, in the sense that the true realizations, beliefs, and information set do not satisfy

RE (E [Y |I] 6= ψ). The converse, however, is not true.

2.2 Equivalences

2.2.1 Main equivalence

Let Fψ and FY denote the cumulative distribution functions (cdf) of ψ and Y , x+ =

max(0, x), and define

∆(y) =

∫ y

−∞
FY (t)− Fψ(t)dt.

Throughout most of our analysis, we impose the following regularity conditions on

the distributions of realized outcomes (Y ) and subjective beliefs (ψ):
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Assumption 1 E (|Y |) <∞ and E (|ψ|) <∞.

The following preliminary result will be useful subsequently.

Lemma 1 Suppose that Assumption 1 holds. Then H0 holds if and only if there exists

a pair of random variables (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E [Y ′|ψ′] = ψ′.

Lemma 1 states that in order to test for H0, we can focus on the constraints on

the joint distribution of Y and ψ, and ignore those related to the information set.

This is intuitive given that we impose no restrictions on this set. Our main result

is Theorem 1 below. It states that rationalizing RE (i.e., H0) is equivalent to a

continuum of moment inequalities, and one moment equality.

Theorem 1 Suppose that Assumption 1 holds. The following statements are equiva-

lent:

(i) H0 holds;

(ii) (FY mean-preserving spread of Fψ) ∆(y) ≥ 0 for all y ∈ R and E [Y ] = E [ψ];

(iii) E
[
(y − Y )+ − (y − ψ)+

]
≥ 0 for all y ∈ R and E [Y ] = E [ψ].

The implication (i) ⇒ (iii) and the equivalence between (ii) and (iii) are simple to

establish. The key part of the result is to prove that (iii) implies (i). To show this,

we first use Lemma 1, which states that H0 is equivalent to the existence of (Y ′, ψ′)

such that Y ′ ∼ Y , ψ′ ∼ ψ and E [Y ′|ψ′] = ψ′. Then the result essentially follows from

Strassen’s theorem (Strassen, 1965, Theorem 8).

It is interesting to note that Theorem 1 is related to the theory of risk in microeco-

nomic theory. In particular, using the terminology of Rothschild and Stiglitz (1970),

(ii) states that realizations (Y ) are more risky than beliefs (ψ). The main value of

Theorem 1, from a statistical point of view, is to transform H0 into the set of moment

inequality (and equality) restrictions given by (iii). We show in Section 3 how to

build a statistical test of these conditions.
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Comparison with alternative approaches We now compare our approach with

alternative ones that have been proposed in the literature. In the following discussion,

as in this whole section, we reason at the population level and thus ignore statistical

uncertainty. Accordingly, the “tests” we consider here are formally deterministic, and

we compare them in terms of data generating processes violating the null hypothesis

associated with each of them.

Our approach can clearly detect many more violations of rational expectations than

the “naive” approach based solely on the equality E(Y ) = E(ψ). It also detects more

violations than the approach based on the restrictions E(Y ) = E(ψ) and V(Y ) ≥
V(ψ) (approach based on the variance), which has been considered in particular in

the macroeconomic literature on the accuracy and rationality of forecasts (see, e.g.

Patton and Timmermann, 2012). On the other hand, and as expected since it relies

on the joint distribution of (Y, ψ), the “direct” approach for testing RE, based on

E(Y |ψ) = ψ, can detect more violations of rational expectations than ours.

To better understand the differences between these four different approaches (“naive”,

variance, “direct”, and ours), it is helpful to consider important particular cases. Of

course, if ψ = E [Y |I], individuals are rational and none of the four approaches

leads to reject RE. Next, consider departures from rational expectations of the form

ψ = E [Y |I] + η, with η independent of E [Y |I]. If E(η) 6= 0, subjective beliefs are

biased, and individuals are on average either over-pessimistic or over-optimistic. It

follows that E(Y ) 6= E(ψ), implying that all four approaches lead to reject RE.

More interestingly, if E(η) = 0, individuals’ expectations are right on average, and

the naive approach does not lead to reject RE. However, it is easy to show that,

as long as deviations from RE are heterogeneous in the population (V(η) > 0), the

direct approach always leads to a rejection. In this setting, our approach constitutes

a middle ground, in which rejection of RE depends on the degree of dispersion of

the deviations from RE (η) relative to the uncertainty shocks (ε = Y − E(Y |I)). In

other words and intuitively, we reject RE whenever departures from RE dominate the

uncertainty shocks affecting the outcome. Formally, and using similar arguments as in

Proposition 4 in Subsection 2.2.4, one can show that if ε is independent of E [Y |I], we

reject H0 as long as the distribution of the uncertainty shocks stochastically dominates

at the second-order the distribution of the deviations from RE.
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Specifically, if ε ∼ N (0, σ2
ε) and η ∼ N (0, σ2

η), we reject RE if and only if σ2
η > σ2

ε .

In such a case, our approach boils down to the variance approach mentioned above:

we reject whenever V(ψ) > V(Y ). But interestingly, if the discrepancy (η) between

beliefs and RE is not normally distributed, we can reject H0 even if V(ψ) ≤ V(Y ).

Suppose for instance that ε ∼ N (0, 1) and

η = a (−1{U ≤ 0.1}+ 1{U ≥ 0.9}) , U ∼ U [0, 1] and a > 0.

In other words, 80% of individuals are rational, 10% are over-pessimistic and form ex-

pectations equal to E [Y |I]−a, whereas 10% are over-optimistic and expect E [Y |I]+a.

Then one can show that our approach leads to reject RE when a ≥ 1.755, while for

a = 1.755, V(η) ' 0.616 < V(ε) = 1.

Binary outcome Our equivalence result does not require the outcome Y to be

continuously distributed. In the particular case where Y is binary, our test re-

duces to the naive test of E(Y ) = E(ψ). Indeed, when Y is a binary outcome

and ψ ∈ [0, 1], one can easily show that as long as E(Y ) = E(ψ), the inequalities

E
[
(y − Y )+ − (y − ψ)+

]
≥ 0 automatically hold for all y ∈ R. This applies to expec-

tations about binary events, such as, e.g., being employed or not at a given date.

Interpretation of the boundary condition To shed further light on our test and

on the interpretation of H0, it is instructive to derive the distributions of Y |ψ that

correspond to the boundary condition (∆(y) = 0). The proposition below shows that,

in the presence of rational expectations, agents whose beliefs ψ lies at the boundary

of H0 have perfect foresight, i.e. ψ = E[Y |I] = Y .3

Proposition 1 Suppose that (Y, ψ) satisfies RE, u 7→ F−1Y |ψ(τ |u) is continuous for all

τ ∈ (0, 1), and ∆(y0) = 0 for some y0 in the interior of the support of ψ. Then the

distribution of Y conditional on ψ = y0 is degenerate: P (Y = y0|ψ = y0) = 1.

3For any cdf F , we let F−1 denote its quantile function, namely F−1(τ) = inf{x : F (x) ≥ τ}.
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2.2.2 Equivalence with covariates

In practice we may observe additional variables X ∈ RdX in both datasets. Assuming

that X is in the agent’s information set, we modify H0 as follows:4

H0X : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′, X) ⊂ I ′, Y ′|X ∼ Y |X, ψ′|X ∼ ψ|X and E [Y ′|I ′] = ψ′.

Adding covariates increases the number of restrictions that are implied by the rational

expectation hypothesis, thus improving our ability to detect violations of rational

expectations. Proposition 2 below formalizes this idea and shows that H0X can be

expressed as a continuum of conditional moment inequalities, and one conditional

moment equality.

Proposition 2 Suppose that Assumption 1 holds. The following two statements are

equivalent:

(i) H0X holds;

(ii) Almost surely, E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 for all y ∈ R and E [Y − ψ|X] =

0.

Moreover, if H0X holds, H0 holds as well.

2.2.3 Equivalence with unpredictable aggregate shocks

Oftentimes, the outcome variable is affected not only by individual-specific shocks,

but also by aggregate shocks. We denote by C the random variable corresponding to

the aggregate shocks. The issue, in this case, is that we observe a single realization

of C (c, say), along with the outcome variable conditional on that realization C =

c. In other words, we only identify FY |C=c rather than FY , as the latter would

require to integrate over the distribution of all possible aggregate shocks. Moreover,

the restriction E [Y |C = c, ψ] = ψ is generally violated, even though the rational

expectations hypothesis holds. It follows that one cannot directly apply our previous

4See complementary work by Gutknecht et al. (2018), who use subjective expectations data to

relax the rational expectations assumption, and propose a method allowing to test whether specific

covariates are included in the agents’ information sets.
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results by simply replacing FY by FY |C=c. In such a case, one has to make additional

assumptions on how the aggregate shocks affect the outcome.

To illustrate our approach, let us consider the example of individual income. Suppose

that the logarithm of income of individual i at period t, denoted by Yit, satisfies a

Restricted Income Profile model:

Yit = αi + βt + εit,

where βt capture aggregate (macroeconomic) shocks, εit follows a zero-mean ran-

dom walk, and αi, (βt)t and (εit)t are assumed to be mutually independent. Let

Iit−1 denote individual i’s information set at time t − 1, and suppose that Iit−1 =

σ (αi, (βt−k)k≥1, (εit−k)k≥1). If individuals form rational expectations on their future

outcomes, their beliefs in period t − 1 about their future log-income in period t are

given by

ψit = E [Yit|Iit−1] = αi + E [βt|(βt−k)k≥1] + εit−1.

Thus, Yit = ψit + Ct + εit − εit−1, with Ct = βt − E [βt|(βt−k)k≥1]. The corresponding

conditional expectation is given by:

E [Yit|Iit−1, Ct = ct] = ψit + ct 6= ψit.

To get closer to our initial set-up, we now drop indexes i and t and maintain the

conditioning on the aggregate shocks C = c implicit. Under these conventions, ra-

tionalizing RE does not correspond to E [Y |I] = ψ, but instead to E [Y |I] = c0 + ψ

for some c0 ∈ R. A similar reasoning applies to multiplicative instead of additive

aggregate shocks. In such a case, the null takes the form E [Y |I] = c0ψ, for some

c0 > 0. In these two examples, c0 is identifiable: by c0 = E(Y )−E(ψ) in the additive

case, by c0 = E(Y )/E(ψ) in the multiplicative case. Moreover, there exists in both

cases a known function q(y, c) such that E(q(Y, c0)) = E(ψ), namely q(y, c) = y − c
and q(y, c) = y/c for additive and multiplicative shocks, respectively.

More generally, we consider the following null hypothesis for testing RE in the pres-

ence of aggregate shocks:

H0S : there exist random variables (Y ′, ψ′) , a sigma-algebra I ′ and c0 ∈ R such that

σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E [q (Y ′, c0)|I ′] = ψ′.

11



where q(., .) is a known function supposed to satisfy the following restrictions.

Assumption 2 E (|ψ|) <∞ and for all c, E (|q (Y, c) |) <∞. Moreover, E [q(Y, c)] =

E[ψ] admits a unique solution, c0.

By applying our main equivalence result (Theorem 1) to q(Y, c0) and ψ, we obtain

the following result.

Proposition 3 Suppose that Assumption 2 holds. Then the following statements are

equivalent:

(i) H0S holds;

(ii) E
[
(y − q (Y, c0))

+ − (y − ψ)+
]
≥ 0 for all y ∈ R.

A few remarks on this proposition are in order. First, this result can be extended

in a straightforward way to a setting with covariates. This is important not only

to increase the ability of our test to detect violations of RE, but also because this

allows for aggregate shocks that differ across observable groups. We discuss further

this extension, and the corresponding statistical test, in Appendix 1.1. Second, in

the presence of aggregate shocks, the null hypothesis does not involve a moment

equality restriction anymore; the corresponding moment is used instead to identify

c0. Related, a clear limitation of the naive test (E(Y ) = E(ψ)) is that, unlike our test,

it is not robust to aggregate shocks. In this case, rejecting the null could either stem

from violations of the rational expectation hypothesis, or simply from the presence

of aggregate shocks. Third, in Appendix 1.2, we examine whether one can extend

the results above to test for RE when aggregate shocks affect the outcomes in a

more general way. Proposition S2 establishes a negative result in this respect: as

long as one allows for a sufficiently flexible dependence between the outcome and

the aggregate shocks, any given distribution of subjective expectations is arbitrarily

close to a distribution for which RE can be rationalized. This implies that, within

this more general class of outcome models, there does not exist any almost-surely

continuous RE test that has non-trivial power.
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2.2.4 Robustness to measurement errors

We have assumed so far that Y and ψ were perfectly observed; yet measurement

errors in survey data are pervasive (see, e.g. Bound, Brown and Mathiowetz, 2001).

We explore in the following the extent to which our test is robust to measurement

errors. By robust, we mean that we still rationalize RE, when they in fact hold.

Specifically, assume that the true variables (ψ and Y ) are unobserved. Instead, we

only observe ψ̂ and Ŷ , which are affected by classical measurement errors.5 Namely:

ψ̂ = ψ + ξψ with ξψ ⊥⊥ ψ, E[ξψ] = 0

Ŷ = Y + ξY with ξY ⊥⊥ Y, E[ξY ] = 0.
(1)

The following proposition shows that our test is robust to a certain degree of mea-

surement errors on the beliefs.

Proposition 4 Suppose that Y and ψ satisfy H0, and let ε = Y − ψ and
(
ψ̂, Ŷ

)
be

defined as in (1). Suppose also that ε + ξY ⊥⊥ ψ and Fξψ dominates at the second

order FξY +ε. Then Ŷ and ψ̂ satisfy H0.

The key condition is that Fξψ dominates at the second order FξY +ε, or, equivalently

here, that FξY +ε is a mean-preserving spread of Fξψ . Recall that in the case of normal

variables, ξψ ∼ N (0, σ2
1) and ξY + ε ∼ N (0, σ2

2), this is in turn equivalent to imposing

σ2
1 ≤ σ2

2. Thus, even if there is no measurement error on Y , so that ξY = 0, this

condition may hold provided that the variance of measurement errors on ψ is smaller

than the variance of the uncertainty shocks on Y . More generally, this allows elicited

beliefs to be - potentially much - noisier than realized outcomes, a setting which is

likely to be relevant in practice. One should not infer, however, that measurement

errors are innocuous in our set-up. Indeed, the converse of Proposition 4 does not

hold: Ŷ and ψ̂ may satisfy H0, though Y and ψ do not. As a simple example, suppose

that Y ∼ N (0, σ2
Y ), ψ ∼ N (0, σ2

ψ), ξY ∼ N (0, σ2
3), ξψ = 0 and σ2

ψ ∈ (σ2
Y , σ

2
Y + σ2

3].

Then, Ŷ and ψ̂ satisfy H0, since σ2
ψ ≤ σ2

Y + σ2
3, whereas Y and ψ do not, since

5See Zafar (2011a) who does not find evidence of non-classical measurement errors on subjective

beliefs elicited from a sample of Northwestern undergraduate students. We conjecture that our test

is robust to some forms of non-classical measurement errors. However, it seems difficult in this case

to obtain a general result similar to the one in Proposition 4.
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σ2
ψ > σ2

Y . Importantly though, Proposition 4 does show that our test is conservative

in the sense that measurement errors cannot result in incorrectly concluding that the

RE hypothesis does not hold.

In situations where (Ŷ , ψ̂) are jointly observed, one could in principle alternatively

implement the direct test. However, in contrast to our test, the direct test is not robust

to any measurement errors on the subjective beliefs ψ. Indeed, if RE holds, so that

E [Y |ψ] = ψ, it is nevertheless the case that E
[
Ŷ
∣∣∣ψ̂] 6= ψ̂, as long as Cov(ξY , ψ̂) =

Cov(ξψ, Y ) = 0 and V(ξψ) > 0. In other words, even if individuals have rational

expectations, the direct test will reject the null hypothesis in the presence of even an

arbitrarily small degree of measurement errors on the elicited beliefs.

Also, it is unclear whether, in the presence of measurement errors on the elicited beliefs

and beyond the restrictions on the marginal distributions, there are restrictions on

the copula of (Ŷ , ψ̂) that are implied by RE. For instance, we show in Proposition S3

in Appendix 2 that under RE, and without imposing restrictions on the dependence

between ξY + ε and ξψ, the coefficient of the (theoretical) linear regression of Ŷ on ψ̂

remains unrestricted.6 On the other hand, if one assumes that Cov(ξY + ε, ξψ) ≥ 0

and V(ψ)/V(ξψ) ≥ λ for some λ ≥ 0, Proposition S3 also shows that the coefficient of

the linear regression of Ŷ on ψ̂ is bounded from below under RE. Such a restriction,

which does require to take a stand on the signal-to-noise ratio V(ψ)/V(ξψ), can be

easily added to the moment inequalities of our test if (Ŷ , ψ̂) is observed.

2.2.5 Other extensions

We now briefly discuss other relevant directions in which Theorem 1 can be extended.

First, another potential source of uncertainty on ψ is rounding. Rounding practices

by interviewees are common in the case of subjective beliefs. Under additional restric-

tions, it is possible in such a case to construct bounds on the true beliefs ψ (see, e.g.,

Manski and Molinari, 2010). We show in Appendix 3 that our test can be generalized

to accommodate this rounding practice.

Second, we have implicitly maintained the assumption so far that subjective beliefs

and realized outcomes are drawn from the same population. In Appendix 4, we

6There might of course possibly be additional relevant information in the higher-order moments,

although we have not been able to find any.
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relax this assumption and show that our test can be easily extended to allow for

sample selection under unconfoundedness, through an appropriate reweighting of the

observations.

Third, our equivalence result and our test can be extended to accommodate situations

with multiple outcomes (Yk)k=1,..,K and multiple subjective beliefs (ψk)k=1,..,K associ-

ated with each of these outcomes. Specifically, whether one can rationalize rational

expectations in this environment can be written as:

E(Yk|ψ1, ..., ψK) = ψk, for all k ∈ {1, ..., K}

which, in turn, is equivalent to the distribution of the outcomes Yk being a mean-

preserving spread of the distribution of the beliefs ψk. This situation arises in various

contexts, including cases where respondents declare their subjective probabilities of

making particular choices among K + 1 possible alternatives. This also arises in

situations where expectations about the distribution of a continuous outcome Y are

elicited through questions of the form “what do you think is the percent chance

that [Y] will be greater than [y]?”, for different values (yk)k=1,..,K . In such cases, it

is natural to build a RE test based on the multiple outcomes (1{Y > yk})k=1,..,K

and subjective beliefs (ψk)k=1,..,K , where ψk is the subjective survival function of Y

evaluated at yk.

3 Statistical tests

We now propose a testing procedure for H0X , which can be easily adapted to the case

where no covariate common to both datasets is available to the analyst. To simplify

notation, we use a potential outcome framework to describe our data combination

problem. Specifically, instead of observing (Y, ψ), we suppose to observe only, in

addition to the covariates X, Ỹ = DY +(1−D)ψ and D, where D = 1 (resp. D = 0)

if the unit belongs to the dataset of Y (resp. ψ). As in Subsection 2.1, we assume that

the two samples are drawn from the same population, which amounts to supposing

that D ⊥⊥ (X, Y, ψ) (see Assumption 3-(i) below). In order to build our test, we use

the characterization (ii) of Proposition 2:

E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 ∀y ∈ R and E [Y − ψ|X] = 0.
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Equivalently but written more compactly with Ỹ only,

E
[
W
(
y − Ỹ

)+∣∣∣∣X] ≥ 0 ∀y ∈ R and E
[
WỸ

∣∣∣X] = 0,

whereW = D/E(D)−(1−D)/E(1−D). This formulation of the null hypothesis allows

us to apply the instrumental functions approach of Andrews and Shi (2017, AS), who

consider the issue of testing many conditional moment inequalities and equalities. We

then build on their results to establish that our test controls size asymptotically and

is consistent over fixed alternatives.7 The initial step is to transform the conditional

moments into the following unconditional moments conditions:

E
[
W
(
y − Ỹ

)+
g(X)

]
≥ 0, E [(Y − ψ) g(X)] = 0,

for all y ∈ R and g belonging to a suitable class of non-negative functions.

We suppose to observe a sample (Di, Xi, Ỹi)i=1...n of n i.i.d. copies of (D,X, Ỹ ).

We consider instrumental functions g that are indicators of belonging to specific

hypercubes within [0, 1]dX , hence we tranform the variables Xi to lie in [0, 1]dX . For

notational convenience, we let X̃i denote the nontransformed vector of covariates, and

redefine Xi as:

Xi = Φ0

(
Σ̂
−1/2
X̃,n

(
X̃i − X̃ i

))
,

where, for any x = (x1, . . . , xdX ), we let Φ0(x) = (Φ(x1), . . . ,Φ (xdX ))>. Here Φ

denotes the standard normal cdf, Σ̂X̃,n is the sample covariance matrix of
(
X̃i

)
i=1...n

and X̃n its sample mean.

Specifically, we consider instrumental functions g belonging to the class of functions

Gr = {ga,r, a ∈ Ar}, with Ar = {1, 2, . . . , 2r}dX (r ≥ 1), ga,r(x) = 1l {x ∈ Ca,r} and,

for any a = (a1, ..., adX )> ∈ Ar,

Ca,r =

dX∏
u=1

(
au − 1

2r
,
au
2r

]
.

7Other testing procedures could be used to implement our test, such as that proposed by Linton

et al. (2010).
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Finally, to define the test statistic T , we need to introduce additional notations. First,

let wi = nDi/
∑n

j=1Dj − n(1−Di)/
∑n

j=1(1−Dj) and define, for any y ∈ R,

m
(
Di, Ỹi, Xi, g, y

)
=

 m1

(
Di, Ỹi, Xi, g, y

)
m2

(
Di, Ỹi, Xi, g, y

)  =

 wi

(
y − Ỹi

)+
g (Xi)

wiỸig (Xi)

 . (2)

Let mn(g, y) =
∑n

i=1m
(
Di, Ỹi, Xi, g, y

)
/n and define similarly mn,j for j = 1, 2. For

any function g and any y ∈ R, we also define, for some ε > 0,

Σn(g, y) = Σ̂n(g, y) + εDiag
(
V̂
(
Ỹ
)
, V̂
(
Ỹ
))

,

where Σ̂n(g, y) is the sample covariance matrix of
√
nmn (g, y) and V̂

(
Ỹ
)

is the

empirical variance of Ỹ . We then denote by Σn,jj(g, y) (j = 1, 2) the j-th diagonal

term of Σn(g, y).

Then the (Cramér-von-Mises) test statistic T is defined by

T =sup
y∈Ŷ

rn∑
r=1

(2r)−dX

(r2 + 100)

∑
a∈Ar

[
(1− p)

(
−
√
nmn,1 (ga,r, y)

Σn,11(ga,r, y)1/2

)+2

+ p

(√
nmn,2 (ga,r, y)

Σn,22(ga,r, y)1/2

)2 ]
,

where Ŷ =

[
min

i=1,...,n
Ỹi, max

i=1,...,n
Ỹi

]
, p ∈ (0, 1) is a parameter weighting the moments in-

equalities versus equalities and (rn)n∈N is a deterministic sequence tending to infinity.

To test for rational expectations in the absence of covariates, we set the instrumental

function equal to the constant function g(X) = 1, and the test statistic is simply

written as:

T = sup
y∈Ŷ

[
(1− p)

(
−
√
nmn,1(y)

Σn,11(y)1/2

)+2

+ p

(√
nmn,2(y)

Σn,22(y)1/2

)2 ]
,

where, using the notations introduced above, mn,j(y) = mn,j(1, y) and Σn,jj(y) =

Σn,jj(1, y) (j = 1, 2).

Whether or not covariates are included, the resulting test is of the form ϕn,α =

1l
{
T > c∗n,α

}
where the estimated critical value c∗n,α is obtained by bootstrap using as

in AS the Generalized Moment Selection method. Specifically, we follow three steps:
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1. Compute the function ϕn (y, g) =
(
ϕn,1 (y, g) , 0

)>
for (y, g) in Ŷ ×∪rnr=1Gr, with

ϕn,1 (y, g) = Σ
1/2

n,11Bn1l

{
n1/2

κn
Σ
−1/2
n,11 mn,1(y, g) > 1

}
,

and where Bn = (b0 ln(n)/ ln(ln(n)))1/2, b0 > 0, κn = (κ ln(n))1/2, and κ > 0.

To compute Σn,11, we fix ε to 0.05, as in AS.

2. Let
(
D∗i , Ỹ

∗
i , X

∗
i

)
i=1,...,n

denote a bootstrap sample, i.e., an i.i.d. sample from

the empirical cdf of
(
D, Ỹ ,X

)
, and compute from this sample the bootstrap

counterparts of mn and Σn, m∗n and Σ
∗
n. Then compute the bootstrap coun-

terpart of T , T ∗, replacing Σn (y, ga,r) and
√
nmn (y, ga,r) by Σ

∗
n (y, ga,r) and

√
n (m∗n −mn) (y, ga,r) + ϕn (y, ga,r), respectively.

3. The threshold c∗n,α is the quantile (conditional on the data) of order 1− α + η

of T ∗ + η for some η > 0. Following AS, we set η to 10−6.

Note that, despite the multiple steps involved, the testing procedure remains com-

putationally easily tractable. In particular, for the baseline sample we use in our

application (see Section 5.1), the RE test only takes 2 minutes.8

We now turn to the asymptotic properties of the test. For that purpose, it is conve-

nient to introduce additional notations. Let Y and X denote the support of Y and

X respectively, and

LF =

{
(y, ga,r) : y ∈ Y , (a, r) ∈ Ar × N : EF

[
W
(
y − Ỹ

)+
ga,r(X)

]
= 0

}
,

where, to make the dependence on the underlying probability measure explicit, EF
denotes the expectation with respect to the distribution F of

(
D, Ỹ ,X

)
. Finally, let

F denote a subset of all possible cumulative distribution functions of
(
D, Ỹ ,X

)
and

F0 be the subset of F such that H0X holds. We impose the following conditions on

F and F0.

Assumption 3

8This CPU time is obtained using our companion R package, on an Intel Xeon CPU E5-2643,

3.30GHz with 256Gb of RAM.
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(i) For all F ∈ F , D ⊥⊥ (X, Y, ψ);

(ii) There exists M > 0 such that Ỹ ∈ [−M,M ] for all F ∈ F . Also, infF∈F VF

(
Ỹ
)
>

0 and 0 < infF∈F EF [D] ≤ supF∈F EF [D] < 1;

(iii) For all F ∈ F0, KF , the asymptotic covariance kernel of n−1/2Diag
(
VF

(
Ỹ
))−1/2

mn

is in a compact set K2 of the set of all 2 × 2 matrix valued covariance kernels

on Y × ∪r≥1Gr with uniform metric d defined by

d(K,K ′) = sup
(y,g,y′,g′)∈(Y×∪r≥1Hr)

2

‖K(y, g, y′, g′)−K ′(y, g, y′, g′)‖ .

The main result of this section is Theorem 2. It shows that, under Assumption 3, the

test ϕn,α controls the asymptotic size and is consistent over fixed alternatives.

Theorem 2 Suppose that rn →∞ and Assumption 3 holds. Then:

(i) lim supn→∞ supF∈F0
EF [ϕn,α] ≤ α;

(ii) If there exists F0 ∈ F0 such that LF0 is nonempty and there exists (j, y0, g0) in

{1, 2} × LF0 such that KF0,jj(y0, g0, y0, g0) > 0, then, for any α ∈ [0, 1/2),

lim
η→0

lim sup
n→∞

sup
F∈F0

EF [ϕn,α] = α.

(iii) If F ∈ F\F0, then limn→∞ EF (ϕn,α) = 1.

Theorem 2 (i) is closely related to Theorem 5.1 and Lemma 2 in AS. It shows that

the test ϕn,α controls the asymptotic size, in the sense that the supremum over F0

of its level is asymptotically lower or equal to α. To prove this result, the key is to

establish that, under Assumption 3, the class of transformed unconditional moment

restrictions that characterize the null hypothesis satisfies a manageability condition

(see Pollard, 1990). Using arguments from Hsu (2016), we then exhibit cases of

equality in Theorem 2 (ii), showing that, under mild additional regularity conditions,

the test has asymptotically exact size (when letting η tend to zero). Finally, Theorem

2 (iii), which is based on Theorem 6.1 in AS, shows that the test is consistent over

fixed alternatives.
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Extension to account for aggregate shocks This testing procedure can be easily

modified to accommodate unanticipated aggregate shocks. Specifically, using the

notation defined in Section 2.2.3, we consider the same test as above after replacing

Ỹ by Ỹĉ = Dq(Y, ĉ) + (1 − D)ψ, where ĉ denotes a consistent estimator of c0. The

resulting test is given by ϕn,α,ĉ = 1l
{
T (ĉ) > c∗n,α

}
(where T (ĉ) is obtained by replacing

Ỹ by Ỹĉ in the original test statistic). Such tests have the same properties as those

above under some mild regularity conditions on q(·, ·), which hold in particular for the

leading examples of additive and multiplicative shocks (q(y, c) = y − c and q(y, c) =

y/c). We refer the reader to Appendix 1.1 for a detailed discussion of this extension.

4 Monte Carlo simulations

In the following we study the finite sample performances of the test without covariates

through Monte Carlo simulations. The finite sample performances of the version of

our test that accounts for covariates are reported and discussed in Appendix 5.

We suppose that the outcome Y is given by

Y = ρψ + ε,

with ρ ∈ [0, 1], ψ ∼ N (0, 1) and

ε = ζ (−1l{U ≤ 0.1}+ 1l{U ≥ 0.9}) ,

where ζ, U and ψ are mutually independent, ζ ∼ N (2, 0.1) and U ∼ U [0, 1]. In this

setup, E(Y |ψ) = ρψ and expectations are rational if and only if ρ = 1. But since we

observe Y and ψ in two different datasets, there are values of ρ 6= 1 for which our

test is not consistent. More precisely, we can show that the test is consistent if and

only if ρ ≤ ρ∗ ' 0.616. Besides, given this data generating process, the naive test

E(Y ) = E(ψ) is not consistent for any ρ, while the RE test based on variances is only

able to detect a subset of violations of RE that correspond to ρ < 0.445.

To compute our test, we need to choose the tuning parameters b0, κ, ε and η (see

Section 3 for definitions). As mentioned in Section 3, we set ε = 0.05 and η =

10−6, following Andrews and Shi (2017). Andrews and Shi (2013) show that there

exists in practice a large range of admissible values for the other tuning parameters
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parameters. Regarding b0 and κ, we follow Beare and Shi (2019, Section 4.2) and

compute, for a grid of candidate parameters, the rejection rate under the null and

under one alternative (namely, ρ = 0.5), through Monte Carlo simulations. Then, we

set (b0, κ) so as to maximize the power subject to the constraint that the rejection

rate under the null is below the nominal size 0.05. That way, we obtain b0 = 0.3

and κ = 0.001. The parameter p has a distinct effect, in that its choice does not

affect size, at least asymptotically. Rather, this parameter selects to what extent

the test aims power at the equality constraint E(Y − ψ) = 0 versus the inequalities

E[(y−Y )+−(y−ψ)+] ≥ 0 (y ∈ R). Setting p to 0.05 leads to slightly higher power in

our DGP, but values ofp in [0, 0.31] provide similar finite sample performances, with

power always greater than 90% of the maximal power.

Results reported in Figure 1 show the power curves of the test ϕα for five differ-

ent sample sizes (nY = nψ = n ∈ {400; 800; 1, 200; 1, 600; 3, 200}) as a function of

the parameter ρ, using 800 simulations for each value of ρ. We use 500 bootstrap

simulations to compute the critical values of the test.

Several remarks are in order. First, as expected, under the alternative (i.e. for

values of ρ ≤ ρ∗ = 0.616), rejection frequencies increase with the sample size n. In

particular, for the largest sample size n = 3, 200, our test always results in rejection

of the RE hypothesis for values of ρ as large as .45. Second, in this setting, our

test is conservative in the sense that rejection frequencies under the null are smaller

than α = 0.05, for all sample sizes. This should not necessarily come as a surprise

since the test proposed by AS has been shown to be conservative in alternative finite-

sample settings (see, e.g. Table 1 p.22 in AS for the case of first-order stochastic

dominance tests). However, for the version of our test that accounts for covariates

and for the data generating process considered in Section 5 of the Web Appendix,

rejection frequencies under the null are very close to the nominal level.

21



Notes: The vertical line at ρ ' 0.616 corresponds to the theoretical limit for the rejection

of the null hypothesis using our test. The dotted horizontal line corresponds to the 5%

level.

Figure 1: Power curves.

5 Application to earnings expectations

5.1 Data

Using the tests developed in Section 3, we now investigate whether household heads

form rational expectations on their future earnings. We use for this purpose data from

the Survey of Consumer Expectations (SCE), a monthly household survey that has

been conducted by the Federal Reserve Bank of New York since 2012 (see Armantier,

Topa, Van der Klaauw and Zafar, 2017, for a detailed description of the survey,

and Kuchler and Zafar, 2019; Conlon, Philossoph, Wiswall and Zafar, 2018; Fuster,

Kaplan and Zafar, 2020 for recent articles using the SCE). The SCE is conducted

with the primary goal of eliciting consumer expectations about inflation, household

finance, labor market, as well as housing market. It is a rotating internet-based panel

of about 1,200 household heads, in which respondents participate for up to twelve

months.9 Each month, the panel consists of about 180 entrants, and 1,100 repeated

respondents. While entrants are overall fairly similar to the repeated respondents,

9Each survey takes on average about fifteen minutes to complete, and respondents are paid $15

per survey completed.
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they are slightly older and also have slightly lower incomes (see Table 1 in Armantier

et al., 2017).

Of particular interest for this paper is the supplementary module on labor market

expectations. This module is repeated every four months since March 2014. Since

March 2015, respondents are asked the following question about labor market earnings

expectations (ψ) over the next four months: “What do you believe your annual

earnings will be in four months?”. Implicit throughout the rest of our analysis is the

assumption that these elicited beliefs correspond to the mean of the subjective beliefs

distribution.10 In this module, respondents are also asked about current job outcomes,

including their current annual earnings (Y ), through the following question: “How

much do you make before taxes and other deductions at your [main/current] job, on

an annual basis?”.

Specifically, we use for our baseline test the elicited earnings expectations (ψ), which

are available for two cross-sectional samples of household heads who were working

either full-time or part-time at the time of the survey, and responded to the labor

market module in March 2015 and July 2015 respectively. We combine this data with

current earnings (Y ) declared in July 2015 and November 2015 by the respondents

who are working full-time or part-time at the time of the survey.11 This leaves us

with a final sample of 2,993 observations, which is composed of 1,565 earnings expec-

tation observations, and 1,428 realized earnings observations. 51% (1,536) of these

observations correspond to the sub-sample of respondents who are reinterviewed at

least once. We refer to Table 1 for additional details on our sample.

10This assumption, while often made in the subjective expectations literature, is a priori restric-

tive. In this application, for the vast majority of the sub-groups of the population, the mean of ψ

cannot be statistically distinguished from the one of Y (see Table 2 below). This provides empirical

support for this assumption.
11Throughout our analysis (with the exception of the number of observations reported in Table 2)

we use the monthly survey weights of the SCE in order to obtain an estimation sample that is

representative of the population of U.S. household heads. See Armantier et al. (2017) for more details

on the construction of these weights. We also Winsorize the top 5 percentile of the distributions of

realized earnings and earnings beliefs.
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Table 1: Descriptive statistics of the SCE sample

Mean Std. dev.

Male 0.53 0.50

White 0.74 0.43

College degree 0.49 0.46

Low numeracy 0.33 0.47

Tenure ≤ 6 months 0.17 0.38

Age 45.8 13.0

ψ (Earnings beliefs) $50,592 $40,889

Y (Realized earnings) $52,354 $38,634

5.2 Implementation of the test

We summarize how we implemented the test in practice, either on the overall sample

or on each subsample corresponding to the binary covariates in Table 1. For each

case, we start by winsorizing the distribution of realized earnings (Y ) and earnings

beliefs (ψ) at the 95% level.12 Then, we perform the test without covariates, where

we allow for multiplicative aggregate shock and thus test H0S, with q(y; c) = y/c.13

Then, we use the function test of our companion R package RationalExp.14 We

choose the same values for the tuning parameters b0 = 0.3 and κ = 0.001 as in the

Monte-Carlo simulations in Section 4. We also set p = 0.05, ε = 0.05, and η = 10−6.

Following Andrews and Shi (2017), the interval Ŷ is approximated by a grid of length

100 from min
i=1,...,n

Ỹi to max
i=1,...,n

Ỹi. Finally, we use 5,000 bootstrap simulations to compute

the critical values of the test.

5.3 Are earnings expectations rational?

In Table 2 below, we report the results from the naive test of RE (E(Y ) = E(ψ)), and

our preferred test (“Full RE”), where we allow for multiplicative aggregate shocks.

12We show in Table S1 of the Web Appendix that our results are robust to other levels of Win-

sorization.
13In our application, the parameter c is estimated using survey weights from the SCE.
14See Section 3 in our user’s guide (D’Haultfœuille et al., 2018a) for details on this function.
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We implement the tests both on the overall population and on separate subgroups.

The latter approach allows us not only to identify which groups fail to rationalize

RE, but also, and importantly, to account for the possibility that aggregate shocks

may in fact differ across subgroups.

Several remarks are in order. First, using our test, we reject for the whole population,

at any standard level, the hypothesis that agents form rational expectations over their

future earnings. Second, we also reject RE (at the 5% level) when we apply our test

separately for whites (non-Hispanics) and minorities, as well as low vs. high numeracy

test scores.15

Third, the results from our test point to beliefs formation being heterogeneous across

schooling (college degree vs. no college degree) and tenure (more or less than 6

months spent in current job) levels. In particular, we cannot rule out that the beliefs

about future earnings of individuals with more schooling experience correspond to

rational expectations with respect to some information set. Similarly, while we reject

RE at any standard level for the subgroup of workers who have accumulated less

than 6 months of experience in their current job, we can only marginally reject at

the 10% level RE for those who have been in their current job for a longer period

of time. As such, these findings complement some of the recent evidence from the

economics of education and labor economics literatures that individuals have more

accurate beliefs about their ability as they progress through their schooling and work

careers (see, e.g., Stinebrickner and Stinebrickner, 2012; Arcidiacono, Aucejo, Maurel

and Ransom, 2016).

15Respondents’ numeracy is evaluated in the SCE through five questions involving computation

of sales, interests on savings, chance of winning lottery, of getting a disease and being affected by

a viral infection. Respondents are then partitioned into two categories: “High numeracy” (4 or 5

correct answers), and “low numeracy” (3 or fewer correct answers).
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Table 2: Tests of RE on annual earnings

E(Y − ψ)/E(Y ) Naive RE Variance RE Full RE Number of obs.

(p-val) (p-val) (p-val) ψ Y

All 0.034 0.23 0.71 < 0.001 1,565 1,428

Women 0.059 0.13 0.62 < 0.001 730 649

Men 0.025 0.48 0.58 0.210 835 779

White 0.032 0.31 0.67 0.021 1,200 1,097

Minorities 0.046 0.43 0.60 < 0.006 365 331

College degree -0.001 0.96 0.50 0.130 1,106 1,053

No college degree 0.093 0.04 0.57 0.013 459 375

High numeracy 0.033 0.28 0.62 0.012 1,158 1,070

Low numeracy 0.055 0.27 0.58 0.022 407 358

Tenure ≤ 6 months 0.105 0.24 0.63 < 0.001 271 180

Tenure > 6 months 0.007 0.81 0.65 0.091 1,294 1,248

Notes: “Naive RE” denotes the naive RE test of equality of means between Y and ψ.

“Variance RE” denotes the variance RE test where the null hypothesis is the variance of Y

being greater or equal than the variance of ψ, once we account for aggregate, multiplicative

shocks. “Full RE” denotes the test without covariates, where we test H0S with q(y, c) =

y/c. We use 5,000 bootstrap simulations to compute the critical values of the Full RE

test. Distributions of realized earnings (Y ) and earnings beliefs (ψ) are both Winsorized

at the 95% quantile.

Fourth, using the naive test of equality of means between earnings beliefs and realiza-

tions, one would instead generally not reject the null at any standard levels. The one

exception is the subgroup of workers without a college degree, for whom the naive

test yields rejection of RE at the 5% level. But, as discussed before, one cannot rule

out that such a rejection is due to aggregate shocks.

Even though individuals in the overall sample form expectations over their earnings

in the near future that are realistic, in the sense of not being significantly biased, the

result from our preferred test shows that earnings expectations are nonetheless not

rational. Taken together, these findings highlight the importance of incorporating

the additional restrictions of rational expectations that are embedded in our test,

using the distributions of subjective beliefs and realized outcomes to detect violations

of rational expectations. That the variance test of RE never rejects the null at
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any standard levels indicates that it is important in practice to go beyond the first

moments, and exploit instead the full distributions of beliefs and outcomes to detect

departures from rational expectations. These results also suggest that, in order to

rationalize the realized and expected earnings data, one should consider alternative

models of expectation formation that primarily differ from RE in their third, or

higher-order moments.

The results of the direct test of RE on the subsample of individuals who are followed

over four months are reported in Table 3 below. While these results generally paint a

similar picture to the results of our test, there are some differences. In particular, the

direct test rejects RE at the 5% level for men and at 1% for individuals with tenure

greater than 6 months, whereas we do not reject RE for the former group and only

marginally so, at the 10% level, for the latter. The direct test also rejects with less

power than our test for certain groups (low numeracy, tenure lower than 6 months,

and minorities). This lower power may seem surprising given that the direct test can

exploit the joint distribution of (Y, ψ), but is simply due to the important reduction

in sample size when focusing on the subsample of individuals who are followed over

four months results.

There are also important issues associated with the direct test, which generally war-

rant caution when interpreting the results from this test. Most importantly, as already

discussed in Section 2.2.4, the direct test is not robust to measurement errors on the

subjective beliefs ψ. As shown in Proposition SS3 in the Web Appendix, it is how-

ever possible to derive a restriction on β under RE. Specifically, if ξψ is positively

correlated with ε+ ξY , we have, under RE,

β ≥ 1− 1

1 + λ
, (3)

where λ is a lower bound on the signal-to-noise ratio V(ψ)/V(ξψ). Table 3 also reports

the results of tests combining (3) with the restrictions on the marginal distributions

used in our full RE test. Adding the restriction (3) does not change the results

for values of signal-to-noise ratio between 5 and 20 (i.e., for noise-to-signal ratios

between 5% and 20%). Overall, using the subsample of linked data (Y, ψ) through

this additional restriction does not add much to our test, at least once we account for

possible measurement errors on the elicited beliefs. Another significant concern with
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the direct test, and, more generally, the use of linked data on (Y, ψ), is that attrition

may be endogenous. We discuss this issue in more details in Appendix 6.2.

Table 3: Direct test, our test, and combined test of RE on annual earnings

β Direct test Full RE Combined test Number of obs.

Bound on signal/noise λ 5 20

Implied bound on β 0.833 0.952

(p-val) (p-val) (p-value) (p-value) ψ Y (ψ, Y )

All 0.954 0.001 < 0.001 < 0.001 < 0.001 1,565 1,428 768

Women 0.956 0.002 < 0.001 < 0.001 < 0.001 730 649 356

Men 0.960 0.021 0.210 0.276 0.276 835 779 412

White 0.963 0.004 0.021 0.019 0.010 1,200 1,097 596

Minorities 0.928 0.010 0.006 0.007 0.005 365 331 172

College degree 0.974 0.060 0.130 0.182 0.182 1,106 1,053 560

No college degree 0.954 0.044 0.013 0.017 0.017 459 375 208

High numeracy 0.959 0.001 0.012 0.016 0.016 1,158 1,070 573

Low numeracy 0.954 0.094 0.022 0.030 0.030 407 358 195

Tenure ≤ 6 months 0.942 0.015 0.001 0.002 0.001 271 180 98

Tenure > 6 months 0.956 0.001 0.091 0.094 0.094 1,294 1,248 670

Notes: “Direct test” denotes the direct test of RE when (ψ, Y ) is observed. β is the coefficient of the

regression of Y on ψ in that case. “Full RE” denotes the test without covariates, where we test H0S

with q(y, c) = y/c. We use 5,000 bootstrap simulations to compute the critical values of the Full RE

test. “Combined RE test” denotes the test without covariates, where we test H0S with q(y, c) = y/c,

which is the “Full RE” test, combined with the additional restriction β ≥ 1− 1/(1 + λ), where λ is an

a priori bound on the signal-to-noise ratio. Distributions of realized earnings (Y ) and earnings beliefs

(ψ) are both Winsorized at the 95% quantile.

Coming back to our test, the rejection of RE for the overall population but also for

most of the subpopulations are, in view of Proposition 4, unlikely to be due to data

quality issues. In that sense, these results may be seen as robust evidence against the

RE hypothesis for individual earnings, at least in this context. As a result, conclusions

of behavioral models based on the assumption that agents form rational expectations

about their future earnings may be misleading. Exploring this important question

requires one to go beyond testing though, by quantifying the extent to which model

predictions are actually sensitive to the violations from rational expectations that

have been detected with our test. We investigate this issue in D’Haultfœuille et al.

(2018b) in the context of a life-cycle consumption model.
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6 Conclusion

In this paper, we develop a new test of rational expectations that can be used in

a broad range of empirical settings. In particular, our test only requires having

access to the marginal distributions of realizations and subjective beliefs. As such,

it can be applied in frequent cases where realizations and beliefs are observed in

two separate datasets, or only observed for a selected sub-population. By bypassing

the need to link beliefs to future realizations, our approach also enables to test for

rational expectations without having to wait until the outcomes of interest are realized

and made available to researchers. We establish that whether one can rationalize

rational expectations is equivalent to the distribution of realizations being a mean-

preserving spread of the distribution of beliefs, a condition which can be tested using

recent tools from the moment inequalities literature. We show that our test can

easily accommodate covariates and aggregate shocks, and, importantly for practical

purpose, is robust to some degree of measurement errors on the elicited beliefs. We

apply our method to test for rational expectations about future earnings, using data

from the Survey of Consumer Expectations. While individuals tend to be right on

average about their future earnings, our test strongly rejects rational expectations.

Beyond testing, in this application as in any other situations where rational expec-

tations are violated, a natural next step is to evaluate the deviations from rational

expectations that one can rationalize from the available data. In the context of struc-

tural analysis, a central question then becomes to which extent the main predictions

of the model are sensitive to those departures from rational expectations. We ex-

plore this important issue and propose in D’Haultfœuille et al. (2018b) a tractable

sensitivity analysis framework on the assumed form of expectations.
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A Proofs of the equivalence results

A.1 Proof of Lemma 1

Under H0, there exist Y ′, ψ′ and I ′ such that Y ′ ∼ Y , ψ′ ∼ ψ, σ(ψ′) ⊂ I ′ and

E(Y ′|I ′) = ψ′. Then, by the law of iterated expectations,

E[Y ′|ψ′] = E [E [Y ′|I ′]|ψ′] = E [ψ′|ψ′] = ψ′.

Conversely, if there exists (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E[Y ′|ψ′] = ψ′, let

I ′ = σ (ψ′). Then ψ′ = E [Y ′|ψ′] = E [Y ′|I ′] and H0 holds.

A.2 Proof of Theorem 1

(i) ⇔ (iii). By Strassen’s theorem (Strassen, 1965, Theorem 8), the existence of

(Y, ψ) with margins equal to FY and Fψ and such that E [Y |ψ] = ψ is equivalent to∫
fdFψ ≤

∫
fdFY for every convex function f . By, e.g., Proposition 2.3 in Gozlan

et al. (2018), this is, in turn, equivalent to (iii).

(ii) ⇔ (iii). By Fubini-Tonelli’s theorem,
∫ y
−∞ FY (t)dt = E

[∫ y
−∞ 1l{t ≥ Y }dt

]
=

E [(y − Y )+] . The same holds for ψ. Hence, ∆(y) ≥ 0 for all y ∈ R is equivalent

to E
[
(y − Y )+

]
≥ E

[
(y − ψ)+

]
for all y ∈ R. The result follows.

A.3 Proof of Proposition 1

First, by Jensen’s inequality, we obtain

E[(y0 − Y )+|ψ] ≥ (y0 − E(Y |ψ))+ = (y0 − ψ)+.

Moreover, ∆(y0) = 0 implies that E((y0−Y )+) = E((y0−ψ)+). Hence, almost surely,

we have

E[(y0 − Y )+|ψ] = (y0 − ψ)+.

Equality in the Jensen’s inequality implies that the function is affine on the support

of the random variable. Therefore, for almost all u, we either have Supp(Y |ψ = u) ⊂
[y0,∞) or Supp(Y |ψ = u) ⊂ (−∞, y0]. Because E [Y |ψ] = ψ, Supp(Y |ψ = u) ⊂
[y0,∞) for almost all u > y0 and Supp(Y |ψ = u) ⊂ (−∞, y0] for almost all u < y0.
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Then, for all τ ∈ (0, 1), F−1Y |ψ(τ |u) ≥ y0 for almost all u ≥ y0 and F−1Y |ψ(τ |u) ≤ y0 for

almost all u ≤ y0. Thus, for all τ ∈ (0, 1), by continuity of F−1Y |ψ(τ |·), F−1Y |ψ(τ |y0) = y0.

This implies that Y |ψ = y0 is degenerate.

A.4 Proof of Proposition 2

We first prove that H0X is equivalent to the existence of (Y ′, ψ′) such that DY ′ +

(1 − D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X and E((Y ′|ψ′, X) = ψ′. First, under H0X , there

exists (Y ′, ψ′, I ′) such that DY ′+ (1−D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X, σ(ψ′, X) ⊂ I ′ and

E(Y ′|I ′) = ψ′. Then

E[Y ′|ψ′, X] = E [E [Y ′|I ′]|ψ′, X] = E [ψ′|ψ′, X] = ψ′.

Conversely, if there exists (Y ′, ψ′) such that DY ′ + (1 −D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X
and E(Y ′|ψ′, X) = ψ′, let I ′ = σ (X ′, ψ′). Then ψ′ = E(Y ′|ψ′, X) = E(Y ′|I ′) and

H0X holds. The proposition then follows as Theorem 1.

A.5 Proof of Proposition 4

For all y, ξ 7→ E[(y−ψ−ξ)+] is decreasing and convex. Then, because Fξψ dominates

at the second order FξY +ε, we have∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ) ≥

∫
E
[
(y − ψ − ξ)+

]
dFξψ(ξ).

As a result, for all y, we obtain

E
[(
y − Ŷ

)+]
=

∫
E
[
(y − ψ − ε− ξY )+ |ε+ ξY = ξ

]
dFε+ξY (ξ)

=

∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ)

≥
∫

E
[
(y − ψ − ξ)+

]
dFξψ(ξ)

=E
[
(y − ψ̂)+

]
.

Moreover, E
(
Ŷ
)

= E
(
ψ̂
)

. By Theorem 1, Ŷ and ψ̂ satisfy H0.
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