## Informational Content of Factor Structures in Simultaneous Binary Response Models<sup>\*</sup>

Shakeeb Khan Boston College Arnaud Maurel Duke University, NBER and IZA Yichong Zhang Singapore Management University

December 2020

#### Abstract

We study the informational content of factor structures in discrete triangular systems. Factor structures have been employed in a variety of settings in cross sectional and panel data models, and in this paper we formally quantify their identifying power in a bivariate system often employed in the treatment effects literature. Our main findings are that imposing a factor structure yields point identification of parameters of interest, such as the coefficient associated with the endogenous regressor in the outcome equation, under weaker assumptions than usually required in these models. In particular, we show that a "non-standard" exclusion restriction that requires an explanatory variable in the outcome equation to be excluded from the treatment equation is no longer necessary for identification, even in cases where all of the regressors from the outcome equation are discrete. We also establish identification of the coefficient of the endogenous regressor in models with more general factor structures, in situations where one has access to at least two continuous measurements of the common factor.

Keywords: Factor Structures, Discrete Choice, Causal Effects.

**JEL:** C14, C31, C35.

## 1 Introduction

Factor models see widespread and increasing use in various areas of econometrics. This type of structure has been employed in a variety of settings in cross sectional, panel and time series models, and have proven to be a flexible way to model the behavior of and relationship between unobserved components of econometric models. The basic idea behind factor models is to assume that the dependence across the unobservables is generated by a low-dimensional set of mutually independent

<sup>\*</sup>First version: October 2019. We thank the Editor, Serena Ng, two anonymous referees, Arthur Lewbel, and seminar participants at Arizona State University, Emory, Michigan State, Shanghai University of Finance and Economics, University of Arizona, as well as conference participants at the 2015 SEA meetings for helpful comments. We also thank Zhangchi Ma and Qingsong Yao for excellent research assistance. Zhang acknowledges the financial support from Singapore Ministry of Education Tier 2 grant under grant MOE2018-T2-2-169 and the Lee Kong Chian fellowship.

random factors. The applied and theoretical research employing factor structures in econometrics is extensive. In particular, these models are often used in the treatment effect literature as a way to identify the joint distribution of potential outcomes from the marginal distributions, and then recover the distribution of treatment effects from this joint distribution.<sup>1</sup> Factor models have been used in a number of different contexts in applied microeconomics. These include, among others, earnings dynamics (Abowd and Card, 1989; Bonhomme and Robin, 2010), estimation of returns to schooling and work experiences (Ashworth, Hotz, Maurel, and Ransom, 2020), as well as cognitive and non-cognitive skill production technology (Cunha, Heckman, and Schennach, 2010). Heckman and Vytlacil (2007a,b) provide various additional references. All of these papers, with the notable exception of Cunha, Heckman, and Schennach (2010), rely on linear factor models where the unobservables are assumed to be written as the sum of a linear combination of mutually independent factors and an idiosyncratic shock.

In this paper we bring together the literature on factor models with the literature on the identification and estimation of triangular binary choice models (Chesher (2005); Vytlacil and Yildiz (2007); Shaikh and Vytlacil (2011); Han and Vytlacil (2017)) by exploring the *informational content* of factor structures in this class of models.<sup>2</sup> Focusing on this class can be well motivated from both an empirical and theoretical perspective. From the former, many treatment effect models fit into this framework as treatment is typically a binary and endogenous variable in the system, whose effect on outcomes is often a parameter the econometrician wishes to conduct inference on. From a theoretical perspective, inference on this type of system can be complicated, if not impossible without strong parametric assumptions, which may not be reflected in the observed data. Imposing no restriction on the structure of endogeneity often fails to achieve identification of parameter, or at best only do so in sparse regions of the data, thus making inference impractical in practice. In this context, modeling the endogeneity between the selection and the outcome by a factor structure may be a useful "in-between" setting, which, at the very least, can be used to gauge the sensitivity of the parametric approach to their stringent assumptions.

We start our analysis by imposing a particular factor structure to the two unobservables in this system and explore the informational content of this assumption. We assume that the unobservables from the treatment equation (V) and the outcome equation (U) are related through the following factor model:

$$U = \gamma_0 V + \Pi \tag{1.1}$$

where  $\Pi$  is an unobserved random variable assumed to be distributed independently of V and  $\gamma_0$  is a scalar parameter. This structure generalizes the canonical case where the unobservables (U, V) are jointly normally distributed, for which this relationship always holds. Our main finding is that there

<sup>&</sup>lt;sup>1</sup>See also Abbring and Heckman (2007) for an extensive discussion of factor structures and prior studies using these models in the context of treatment effect estimation.

 $<sup>^{2}</sup>$ See also recent work by Lewbel, Schennach, and Zhang (2020), who study the identification of a triangular linear model assuming that the disturbances are related through a factor model.

is indeed informational content of factor structures in the sense that, in contrast to prior literature notably Vytlacil and Yildiz (2007) - one no longer requires an additional "non-standard" exclusion restriction, nor the strong support conditions on the covariates entering the outcome equation that are generally needed for identification in these models. Our identification results are constructive and translate directly into a rank based estimator of the coefficient associated with the binary endogenous variable, which we provide and study in a supplement to this paper.

While an appealing feature of the structure considered in Equation (1.1) is that it is a natural extension of the bivariate Probit specification that has often been considered in the literature, this model does impose significant restrictions on the nature of the dependence between the unobservables U and V. In the paper we extend this baseline specification by considering a linear factor structure of the form:

$$U = \gamma_0 W + \eta_1 \tag{1.2}$$

$$V = W + \eta_2 \tag{1.3}$$

where  $(W, \eta_1, \eta_2)$  are mutually independent unobserved random variables. We study the informational content of this extended factor structure in the context of triangular binary choice models and establish identification, assuming access to at least two continuous noisy measurements of the unobserved factor W. This setup has been used in a number of applications, in particular in labor economics. In these applications, the unobserved factor is typically interpreted as latent individual ability, about which several continuous noisy measurements are available from the data. This is the case of, for instance, Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and Schennach (2010), Heckman, Humphries, and Veramendi (2018) and Ashworth, Hotz, Maurel, and Ransom (2020), who use components of the Armed Services Vocational Aptitude Battery test as measurements of cognitive ability. At a high level, it is interesting to note that these results complement Bai and Ng (2010), who show that, in the context of a linear regression model with endogenous regressors, factor models have identifying power, in that they can be used to create instrumental variables even when none of the observed variables are valid instruments.

The rest of the paper is organized as follows. In Section 2 we formally describe the triangular system with our factor structure, and discuss our main identification results for the parameters of interest in this model. Section 3 explores identification in more general factor structure models which involve multiple idiosyncratic errors, in a context where one has access to two continuous noisy measurements of the common unobserved factor. Finally, Section 4 concludes. The Supplementary Material collects the proofs of our results, derives and studies the asymptotic properties of a rank-based estimator for  $\alpha_0$ , explores its finite sample properties through some Monte Carlo simulation exercises, and shows the non-identification of the two-factor model with a compactsupported common factor and no continuous repeated measurements. Finally, we also establish the sharp identified set of  $\alpha_0$  when the support condition for point-identification is violated. Notation: throughout the paper we write  $\mathbf{1}\{A\}$  to denote the usual indicator function that takes value 1 if event A happens, and 0 otherwise. We also denote by d(U) and d(U|V) the lengths of the support of random variable U, and the conditional support of U given V, respectively.

## 2 Triangular Binary Model with Factor Structure

## 2.1 Set-up and Main Identification Result

In this section we consider the identification of the following triangular binary model:

$$Y_1 = \mathbf{1} \{ Z'_1 \lambda_0 + Z'_3 \beta_0 + \alpha_0 Y_2 - U > 0 \}$$
(2.4)

$$Y_2 = \mathbf{1}\{Z'\delta_0 - V > 0\}$$
(2.5)

where  $Z \equiv (Z_1, Z_2)$  and (U, V) is a pair of random shocks.  $Z_2$  and  $Z_3$  provide the exclusion restrictions in the model, and the distribution of  $(Z_2, Z_3)$  is required to be nondegenerate conditional on  $Z'_1\lambda_0 + Z'_3\beta_0$ . We further assume that the error terms U and V are jointly independent of  $(Z_1, Z_2, Z_3)$ . The endogeneity of  $Y_2$  in (2.4) arises when U and V are not independent.

The above model, or minor variations of it, have often been considered in the recent literature. See for example, Vytlacil and Yildiz (2007), Abrevaya, Hausman, and Khan (2010), Klein, Shan, and Vella (2015), Vuong and Xu (2017), Khan and Nekipelov (2018) and references therein. A key parameter of interest in our paper and in the rest of the literature is  $\alpha_0$ . In this paper we provide conditions under which the parameters of interest are point-identified. As such, our analysis complements alternative partial-identification approaches that have been proposed in the context of triangular binary models. See, in particular, Chiburis (2010), Shaikh and Vytlacil (2011), and Mourifié (2015).<sup>3</sup> As discussed in the aforementioned papers, the parameter  $\alpha_0$  is difficult, if not impossible to identify and estimate without imposing parametric restrictions on the unobserved variables in the model, (U, V).

The difficulty of identifying  $\alpha_0$  in semi-parametric "distribution-free" models, and the sensitivity of its identification to misspecification in parametric models is what motivates the factor structure we add in this paper to the above model. Specifically, to allow for endogeneity in the form of possible non-zero correlation between U and V, we augment the model with the following equation:

$$U = \gamma_0 V + \Pi \tag{2.6}$$

<sup>&</sup>lt;sup>3</sup>In Section A in the supplement, we establish the sharp identified set of  $\alpha_0$  when the support condition for point-identification is violated. This result highlights that, except for the fact that the sign of  $\alpha_0$  is identified, we generally cannot say much about the value of  $|\alpha_0|$ . Related work by Shaikh and Vytlacil (2011) also provides partial identification results for a triangular binary model. That the bounds for  $\alpha_0$  are generally tighter in their analysis reflects the identifying power of the additional support restrictions that they impose.

where  $\Pi$  is an unobserved random variable, assumed to be distributed independently of  $(V, Z_1, Z_2, Z_3)$ , and  $\gamma_0$  is an additional unknown scalar parameter. Importantly, this type of factor structure always holds when the residuals of both equations are jointly normally distributed. Furthermore, this specification corresponds to the type of structure used in Independent Component Analysis (ICA), where V and  $\Pi$  are two mutually independent factors. This method has found many applications in various fields, including signal processing and image extraction; applications in economics include e.g., Hyvärinen and Oja (2000), Moneta, Hoyer, and Coad (2013) and Gourieroux, Monfort, and Renne (2017). While, in contrast to the ICA literature, the factors and the factor loadings are not the main objects of interest in our analysis, this dimension-reducing structure plays a key role in our identification results.

Our aim is to first explore identification of the parameters  $(\alpha_0, \delta_0, \gamma_0, \beta_0, \lambda_0)$  under standard nonparametric regularity conditions on  $(V, \Pi)$ . Note that the parameter  $\delta_0$  in the selection equation can be identified up to scale in various ways. See, for example, Klein and Spady (1993) and Han (1987), among others. We then impose the usual condition that one of  $\delta_0$ 's coordinates is equal to one to fix the scale. For simplicity, for the rest of the paper, we denote  $X \equiv Z' \delta_0$  and assume X is observed. We further define  $X_1 \equiv Z'_1 \lambda_0 + Z'_3 \beta_0$ . However, we cannot identify  $\lambda_0$  and  $\beta_0$  beforehand. We propose instead to identify them along with  $\alpha_0$ .

Our main identification result is based on the Assumptions A1-A4 we state below:

- A1 The first coefficient of  $\lambda_0$  is normalized to one so that  $\lambda_0 = (1, \lambda_{0,-1}^T)^T$ . The parameter  $\theta_0 \equiv (\alpha_0, \gamma_0, \lambda_{0,-1}, \beta_0)$  is an element of a compact subset of  $\Re^{d_1+d_3+1}$ , where  $d_1$  and  $d_3$  are the dimensions of  $Z_1$  and  $Z_3$ , respectively.
- A2 The vector of unobserved variables,  $(U, V, \Pi)$  is continuously distributed with support on a subset of  $\Re^3$  and independently distributed of the vector  $(Z_1, Z_2, Z_3)$ . Furthermore, we assume that the unobserved random variables  $\Pi, V$  are distributed independently of each other.
- A3 X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure. Its density is bounded and bounded away from zero on any compact subset of its support.
- A4 Let  $Z_{1,-1}$  be all the coordinates of  $Z_1$  except the first one, and  $d = d_1 + d_3 + 1$ . There exist 2d vectors  $\{z_1^{(l)}, z_3^{(l)}, x^{(l)}\}_{l=1}^d$  and  $\{\tilde{z}_1^{(l)}, \tilde{z}_3^{(l)}, \tilde{x}^{(l)}\}_{l=1}^d$  in the joint support of  $(Z_1, Z_3, X)$  such that

$$\alpha_0 + (z_{1,-1}^{(l)} - \tilde{z}_{1,-1}^{(l)})'\lambda_{0,-1} + (z_3^{(l)} - \tilde{z}_3^{(l)})'\beta_0 - \gamma_0(x^{(l)} - \tilde{x}^{(l)}) = \tilde{z}_{1,1}^{(l)} - z_{1,1}^{(l)}, \ l = 1, \cdots, d$$

and  $\operatorname{rank}(\mathcal{M}) = d$ , where

$$\mathcal{M} = \begin{pmatrix} 1 & \cdots & 1 \\ z_{1,-1}^{(1)} - \tilde{z}_{1,-1}^{(1)} & \cdots & z_{1,-1}^{(d)} - \tilde{z}_{1,-1}^{(d)} \\ z_{3}^{(1)} - \tilde{z}_{3}^{(1)} & \cdots & z_{3}^{(d)} - \tilde{z}_{3}^{(d)} \\ x^{(1)} - \tilde{x}^{(1)} & \cdots & x^{(d)} - \tilde{x}^{(d)} \end{pmatrix}.$$

Before turning to our main identification result, a couple of remarks are in order.

**Remark 2.1.** The first part of Assumption A1 is a standard scale normalization. Assumption A2 is also standard in this literature. The assumption that the instruments are independent of the unobservables can also be found in, among others, Abrevaya, Hausman, and Khan (2010), Vytlacil and Yildiz (2007), Klein, Shan, and Vella (2015), and Khan and Nekipelov (2018). The assumption of independence between  $\Pi$  and V is also made in Bai and Ng (2002) and Carneiro, Hansen, and Heckman (2003).

**Remark 2.2.** Assumptions A3 and A4 impose some restrictions on the distributions of the covariates entering the selection and outcome equations, respectively. Specifically, Assumption A3 requires one component of the covariates Z entering the selection equation to be continuously distributed, which is often required in models with discrete outcomes. In contrast, Assumption A4 only requires some variation of  $(Z_1, Z_3)$ . In particular, the distribution of  $(Z_1, Z_3)$  cannot be degenerate but is allowed to be discrete. This assumption can be interpreted as a full rank condition, which ensures that the system of linear equations that delivers point identification has a unique solution.

We now turn to our main identification result, Theorem 2.1, which concludes that under our stated conditions and our factor structure we can attain point identification of the vector of parameters  $\theta_0$ .

#### **Theorem 2.1.** Under Assumptions A1-A4, $\theta_0$ is point identified.

\$

An important takeaway from this result, which we discuss further in Subsection 2.2 below, is that imposing the factor structure (2.6) yields point-identification under weaker support conditions when compared to the existing literature, and does not require a second exclusion restriction either. In particular, our model delivers point-identification of the parameters of interest even in situations where all of the regressors from the outcome equation are discrete. This indicates that, from the selection equation combined with the factor structure that we impose here, we can overturn the non-identification result of Bierens and Hartog (1988) which would apply to the outcome equation alone.

The proof of Theorem 2.1, which is reported in Section D in the Supplementary Appendix, relies on the fact that, for two observations  $(Z_1, Z_3, X)$  and  $(\tilde{Z}_1, \tilde{Z}_3, \tilde{X})$ ,

$$\partial_x P^{11}(Z_1, Z_3, X) / f_V(X) + \partial_x P^{10}(\tilde{Z}_1, \tilde{Z}_3, \tilde{X}) / f_V(\tilde{X}) = 0$$
  
$$\implies \alpha_0 + (Z_1 - \tilde{Z}_1)' \lambda_0 + (Z_3 - \tilde{Z}_3)' \beta_0 - \gamma_0 (X - \tilde{X}) = 0, \qquad (2.7)$$

where  $f_V(\cdot)$  is the pdf. of V, which is identified over the support of X, and  $P^{ij}(z_1, z_3, x) \equiv Prob(Y_1 = i, Y_2 = j | Z_1 = z_1, Z_3 = z_3, X = x)$   $(\partial_x P^{ij}(z_1, z_3, x))$  denote the choice probability (partial derivative of the *ij*-choice probability with respect to the third argument), which are both identified from the data.

**Remark 1.** This identification result can be extended to the case of a separable nonparametric factor model. Namely, consider the following relationship between unobserved components:

$$U = g_0(V) + \tilde{\Pi} \tag{2.8}$$

where  $\Pi$  is an unobserved random variable assumed to be distributed independently of V and all instruments.  $g_0(\cdot)$  is an unknown function assumed to satisfy standard smoothness conditions. The parameter of interest is  $(\alpha_0, \lambda_0, \beta_0)$ , but now the unknown nuisance parameter in the factor equation is infinite dimensional. By replacing  $\gamma_0 X$  by  $g_0(X)$  in (2.7), we have

$$\partial_x P^{11}(Z_1, Z_3, X) / f_V(X) + \partial_x P^{10}(\tilde{Z}_1, \tilde{Z}_3, \tilde{X}) / f_V(\tilde{X}) = 0$$
  
$$\iff \alpha_0 + (Z_1 - \tilde{Z}_1)' \lambda_0 + (Z_3 - \tilde{Z}_3)' \beta_0 - (g_0(X) - g_0(\tilde{X})) = 0.$$
(2.9)

One can then establish identification after modifying the rank condition A4 by replacing  $\gamma_0(x^{(l)} - \tilde{x}^{(l)})$ by  $g_0(x^{(l)}) - g_0(\tilde{x}^{(l)})$ .

### 2.2 Connection with Prior Literature

We now discuss in detail how our setup and main identification result relates to the existing literature.

In a related work, Han and Vytlacil (2017) consider the identification of a generalized bivariate Probit model.<sup>4</sup> Our linear factor structure and the one-parameter copula model considered in Han and Vytlacil (2017) are not nested by each other. First, note that based on the factor structure, we can recover  $F_{\Pi}$ , the distribution of  $\Pi$ , as a function of  $(F_U, F_V, \gamma_0)$  by deconvolution. We can then write the copula of (U, V) as

$$F_{U,V}(F_U^{-1}(u), F_V^{-1}(v)) = \int_{-\infty}^{F_V^{-1}(v)} F_{\Pi}(F_U^{-1}(u) - \gamma_0 w; F_U, F_V, \gamma_0) f_V(w) dw = C(u, v; F_U, F_V, \gamma_0).$$

The copula depends not only on  $\gamma_0$  but also on two infinite dimensional parameters  $(F_U, F_V)$ . Thus, unlike Han and Vytlacil (2017), our factor structure cannot be characterized by a one-parameter copula. In addition, in order to achieve identification, Han and Vytlacil (2017) first nonparametrically identify the two marginals by assuming the existence of a full support regressor that is common to both equations.<sup>5</sup> In contrast, our approach does not rely on the existence of such a regressor. Under the factor structure assumed in our analysis, we bypass the nonparametric identification of the marginals as a whole and directly consider the identification of the structural parameters. It

<sup>&</sup>lt;sup>4</sup>See also recent work by Han and Lee (2019) who study semiparametric estimation and inference in the framework considered by Han and Vytlacil (2017).

<sup>&</sup>lt;sup>5</sup>Han and Vytlacil (2017) establish their identification of the coefficient on the endogeneous regressor (Theorems 4.2 and 5.1) under the assumption that the marginal distributions  $F_{\varepsilon}$  and  $F_{\nu}$  are known. Then, they verify this condition by showing the identification of these two marginal distributions using large support common regressors.

follows that our model cannot be nested by the one-parameter copula model considered by Han and Vytlacil (2017). On the other hand, there exist one-parameter copula models that cannot be decomposed into linear factor structures.<sup>6</sup> This implies that our model does not nest Han and Vytlacil (2017) either.

Our analysis also relates to Vytlacil and Yildiz (2007) and Vuong and Xu (2017), who consider the identification of  $\alpha_0$  in a triangular binary model. Our identification result, however, differs from theirs in important ways. Namely, denote  $X = Z'\delta_0 = Z'_1\delta_{1,0} + Z'_2\delta_{2,0}$ . Then, Assumption A4 implies that we can find a pair of observations  $(z_1, z_2, z_3)$  and  $(\tilde{z}_1, \tilde{z}_2, \tilde{z}_3)$  such that

$$z_1'\lambda_0 + z_3'\beta_0 + \alpha_0 - \gamma_0(z_1'\delta_{1,0} + z_2'\delta_{2,0}) = \tilde{z}_1'\lambda_0 + \tilde{z}_3'\beta_0 - \gamma_0(\tilde{z}_1'\delta_{1,0} + \tilde{z}_2'\delta_{2,0}).$$
(2.10)

In contrast, using our notation, Vytlacil and Yildiz (2007) require that one can find a pair of observations  $(z_1, z_2, z_3)$  and  $(\tilde{z}_1, \tilde{z}_2, \tilde{z}_3)$  such that  $z'\delta_0 = \tilde{z}'\delta_0$  and

$$z_1'\lambda_0 + z_3'\beta_0 + \alpha_0 = \tilde{z}_1'\lambda_0 + \tilde{z}_3'\beta_0.$$
(2.11)

Vuong and Xu (2017) do not assume the existence of  $Z_3$ . In our binary outcome setup, the functions  $h(0, x, \tau)$  and  $h(1, x, \tau)$  defined in Vuong and Xu (2017) are equal to  $1\{x + F_{-U}^{-1}(\tau) \ge 0\}$  and  $1\{x + \alpha + F_{-U}^{-1}(\tau) \ge 0\}$ , respectively, where  $x = z'_1\lambda_0$  and  $F_{-U}$  is the CDF of -U. Then, Vuong and Xu (2017, Assumption C'(ii)) requires that we can find  $z_1$  and  $\tilde{z}_1$  in the support of  $Z_1$  so that for any  $\tau_1, \tau_2$ , if  $1\{\tilde{z}'_1\lambda_0 + F_{-U}^{-1}(\tau_1) \ge 0\} = 1\{\tilde{z}_1\lambda_0 + F_{-U}^{-1}(\tau_2) \ge 0\}$ , then  $1\{z'_1\lambda_0 + \alpha_0 + F_{-U}^{-1}(\tau_1) \ge 0\} = 1\{z_1\lambda_0 + \alpha_0 + F_{-U}^{-1}(\tau_2) \ge 0\}$ . Provided that the support of U nests the supports of  $Z'_1\lambda_0$  and  $Z'_1\lambda_0 + \alpha_0$ , Vuong and Xu (2017, Assumption C'(ii)) is then equivalent to:<sup>7</sup>

$$z_1'\lambda_0 + \alpha_0 = \tilde{z}_1'\lambda_0. \tag{2.12}$$

Several remarks are in order. First, note that sufficient support conditions for the restrictions (2.10)-(2.12) are  $d(Z'_1\lambda_0 + Z'_3\beta_0 - Z'\delta_0\gamma_0) \ge |\alpha_0|$ ,  $d(Z'_1\lambda_0 + Z'_3\beta_0|Z'\delta_0) \ge |\alpha_0|$ , and  $d(Z'_1\lambda_0|Z'\delta_0) \ge |\alpha_0|$  with a positive probability, respectively. These three support conditions are such that

$$d(Z_1'\lambda_0 + Z_3'\beta_0 - Z'\delta_0\gamma_0) \ge d(Z_1'\lambda_0 + Z_3'\beta_0|Z'\delta_0) \ge d(Z_1'\lambda_0|Z'\delta_0),$$

where the first and second inequalities are strict if  $Z_2$  and  $Z_3$  have at least one continuous component, respectively. Importantly, we show in Section A of the Supplement that for a version of

<sup>&</sup>lt;sup>6</sup>For instance, suppose that (U, V) has a Gaussian copula with correlation  $\rho$ , and that the marginal distributions of U and V are uniform [0,1]. It then follows that, denoting by  $\Phi(.)$  the standard normal cdf.,  $(\Phi^{-1}(U), \Phi^{-1}(V))$ is bivariate normal with correlation  $\rho$ , which in turn yields the following non-linear relationship between U and V:  $U = \Phi(\rho \Phi^{-1}(V) + W)$ , where W is normally distributed and independent from V.

<sup>&</sup>lt;sup>7</sup>To see this, note that if, say,  $z'_1\lambda_0 + \alpha_0 > \tilde{z}'_1\lambda_0$ , then we can find  $\tau_1, \tau_2$  such that  $-z'_1\lambda_0 - \alpha_0 \leq F_{-U}^{-1}(\tau_1) < -\tilde{z}'_1\lambda_0$ and  $F_{-U}^{-1}(\tau_2) < -z'_1\lambda - \alpha_0 < -\tilde{z}'_1\lambda_0$ . This violates the above requirement, and thus, shows that Vuong and Xu (2017, Assumption C'(ii)) implies (2.12). On the other hand, if  $z'_1\lambda_0 + \alpha_0 = \tilde{z}'_1\lambda_0$ , then Vuong and Xu (2017, Assumption C'(ii)) holds trivially.

the triangular binary model with univariate  $Z_2$  and  $Z_3$  and no common regressor  $Z_1$ , the support condition  $d(Z'_1\lambda_0 + Z'_3\beta_0|Z'\delta_0) \ge |\alpha_0|$  is actually also necessary to the identification of the model without factor structure. This implies that by imposing our factor structure, one can identify values of  $\alpha_0$  in a region that cannot be identified in the model considered by Vytlacil and Yildiz (2007). Such region is characterized in Section A of the Supplement.

Second, it directly follows from these support conditions that, in the presence of a factor model and in contrast to both Vytlacil and Yildiz (2007) and Vuong and Xu (2017), variation in  $Z_2$ helps in the identification of  $\alpha_0$ . In that sense, the factor model allows to restore the intuition from standard IV approaches in linear models that variation in the instrument  $Z_2$  is critical to the identification of the parameters of the outcome equation. Related to this, the support of  $Z_2$  plays an important role in our identification analysis. In particular, if  $Z_2$  is discrete, our identification strategy requires sufficient variation in the variables in the outcome equation, namely  $Z_1$  and  $Z_3$ . In this case, our support requirement is equivalent to that assumed by Vytlacil and Yildiz (2007).

Third, another important aspect of Assumption A4 is that it does not impose any constraint on the variables from the outcome equation. Specifically, consider a case where the outcome equation does not contain a variable that is excluded from the selection equation (i.e.,  $\beta_0 = 0$ ), the regressor that is common to both equations,  $Z_1$ , is scalar and binary, and where  $\lambda_0 = 1$ . In this case, one can show that the identifying support conditions associated with Vytlacil and Yildiz (2007) (2.11) and Vuong and Xu (2017) (2.12) generally fail to hold, except for a finite set of values  $\alpha_0 \in \{-1, 0, 1\}$ . In contrast, our support restriction (2.10) holds under more general conditions: without any restriction on  $\alpha_0$  if one element of  $Z_2$  is continuous with large support, and on a continuum of possible values for  $\alpha_0$  if one element of  $Z_2$  is continuous with bounded support. In that sense, the factor structure replaces the need for a continuous component in  $(Z_1, Z_3)$  in the outcome equation.

Finally, at a high level, our identification strategy shares similarities with the Local Instrumental Variable (LIV) approach that has been proposed by Heckman and Vytlacil (2005) and further discussed by Carneiro and Lee (2009). In particular, our identifying restriction (2.7) can be alternatively derived from a local IV strategy applied to a potential outcomes model characterized by  $Y_1(y_2) = \mathbf{1}\{Z'_1\lambda_0 + Z'_3\beta_0 + \alpha_0y_2 - U > 0\}$ , with treatment given by  $Y_2 = \mathbf{1}\{Z'\delta_0 - V > 0\}$ . In contrast to the LIV literature though, we focus in our analysis on the structural parameter  $\alpha_0$ rather than on the marginal treatment effects. Our identification result shows that, by leveraging the identifying power of the factor structure, one can identify  $\alpha_0$  under weaker support restrictions than in the prior literature. In particular, our strategy makes it possible to use variation in  $X = Z'\delta_0$  to identify  $\alpha_0$ , even when all the components of  $Z_1$  and  $Z_3$  are discrete.<sup>8</sup>

<sup>&</sup>lt;sup>8</sup>An alternative approach to identifying this parameter can be found in Lewbel (2000). In his approach a second equation to model the endogenous variable is not needed, nor is the factor structure we impose. However, he imposes a strong support condition on a variable like  $Z_3$  requiring that it exceeds the length of the unobservable U.

# 3 Extended Factor Structure in the presence of Continuous Measurements

Up until now we have proposed identification and estimation results for a triangular system with a particular factor structure. A disadvantage of this structure is that it only includes one idiosyncratic shock ( $\Pi$ ). We consider below an extension that addresses this limitation.

Namely, we consider the following model:

$$Y_1 = \mathbf{1} \{ X_1 + \alpha_0 Y_2 - U \ge 0 \}$$
  

$$Y_2 = \mathbf{1} \{ X - V \ge 0 \},$$
(3.1)

where  $X_1 = Z'_1 \lambda_0 + Z'_3 \beta_0$ ,  $X = Z' \delta_0$ ,  $U = \gamma_0 W + \eta_1$ ,  $V = W + \eta_2$ , and  $(W, \eta_1, \eta_2)$  are mutually independent. Recall that, following the arguments in Section 2.1 above, we assume that X is observed. In addition, we assume two auxiliary continuous measurements

$$Y_3 = \nu_0 W + \eta_3 \tag{3.2}$$

$$Y_4 = \sigma_0 W + \eta_4, \tag{3.3}$$

where  $(W, \eta_1, \eta_2, \eta_3, \eta_4)$  are mutually independent, and  $\nu_0 \neq 0$ .

Our identification result is based on the following assumptions:

- **B0** The first coefficient of  $\lambda_0$  is normalized to one so that  $\lambda_0 = (1, \lambda_{0,-1}^T)^T$ . The parameter  $\theta_0 \equiv (\alpha_0, \gamma_0, \lambda_{0,-1}, \beta_0, \nu_0, \sigma_0)$  is an element of a compact subset of  $\Re^{d_1+d_3+3}$ , where  $d_1$  and  $d_3$  are the dimensions of  $Z_1$  and  $Z_3$ , respectively. The vector of unobservables in the outcome and selection equations  $(W, \eta_1, \eta_2, \eta_3)$  are independently distributed of the vector  $(Z_1, Z_2, Z_3)$ . Both  $\eta_1$  and  $\eta_2$  are continuously distributed.
- **B1**  $\gamma_0 \neq 0$ . X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure over the whole real line, conditionally on  $Z_1$  and  $Z_3$ . The unconditional density of X is bounded and bounded away from zero on any compact subset of its support.
- **B2** W is not normally distributed or both  $\eta_3$  and  $\eta_4$  do not have a Gaussian component.

**B3** 
$$E(\eta_3) = E(\eta_4) = 0, E(|\eta_3|) < \infty$$
, and  $E(|\eta_4|) < \infty$ .

**B4** 
$$E(\exp(i\zeta\eta_2)), E(\exp(i\zeta\eta_3)), \text{ and } E(\exp(i\zeta\eta_4)) \text{ do not vanish for any } \zeta \in \Re, \text{ where } i = \sqrt{-1}.$$

- **B5**  $E(\exp(i\zeta W)) \neq 0$  for all  $\zeta$  in a dense subset of  $\Re$ .
- **B6** The distributions of W,  $\eta_2$ , and  $\eta_3$  admit uniformly bounded densities  $f_W(\cdot)$ ,  $f_{\eta_2}(\cdot)$ , and  $f_{\eta_3}(\cdot)$  with respect to the Lebesgue measure that are supported on an interval (which may be infinite), respectively.

**B7** Let  $Z_{1,-1}$  be all the coordinates of  $Z_1$  except the first one, and  $d = d_1 + d_3 + 1$ . There exist 2d vectors  $\{z_1^{(l)}, z_3^{(l)}\}_{l=1}^d$  and  $\{\tilde{z}_1^{(l)}, \tilde{z}_3^{(l)}\}_{l=1}^d$  in the joint support of  $(Z_1, Z_3)$  and  $\{w^{(l)}\}_{l=1}^d, \{\tilde{w}^{(l)}\}_{l=1}^d$  such that

$$\alpha_0 + (z_{1,-1}^{(l)} - \tilde{z}_{1,-1}^{(l)})'\lambda_{0,-1} + (z_3^{(l)} - \tilde{z}_3^{(l)})'\beta_0 - \gamma_0(w^{(l)} - \tilde{w}^{(l)}) = \tilde{z}_{1,1}^{(l)} - z_{1,1}^{(l)}, \ l = 1, \cdots, d$$

and  $\operatorname{rank}(\mathcal{M}) = d$ , where

$$\mathcal{M} = \begin{pmatrix} 1 & \cdots & 1 \\ z_{1,-1}^{(1)} - \tilde{z}_{1,-1}^{(1)} & \cdots & z_{1,-1}^{(d)} - \tilde{z}_{1,-1}^{(d)} \\ z_{3}^{(1)} - \tilde{z}_{3}^{(1)} & \cdots & z_{3}^{(d)} - \tilde{z}_{3}^{(d)} \\ w^{(1)} - \tilde{w}^{(1)} & \cdots & w^{(d)} - \tilde{w}^{(d)} \end{pmatrix}.$$

We now discuss these assumptions, before turning to the identification result. First, Assumption B0 is similar to Assumptions A1 and A2. We only need one of the idiosyncratic errors in the continuous measurements to be independent of the covariates because the other one is used to identify the distribution of the common factor W only. Second, as we assume in Assumption B1 that  $\gamma_0 \neq 0$  and X has full support, the support condition

$$d(Z_1'\lambda_0 + Z_3'\beta_0 - \gamma_0 X) \ge |\alpha_0|.$$

holds automatically. The full support condition of X is necessary to identify the density of V, which is further used to identify the distribution of  $\eta_2$ . Assumption B1 reinforces this condition by supposing that X has full support conditional on  $Z_1$  and  $Z_3$ , which is needed to identify the parameters from the outcome equation in a second step. Since  $X = Z'\delta_0$  with  $Z = (Z_1, Z_2)$ , this is in turn equivalent to  $Z_2$  having full support conditional on  $Z_1$  and  $Z_3$ . Third, Assumptions B2–B6 imply Assumptions 1 to 4 in Hu and Schennach (2013). In practice we add the condition that the characteristic function of  $\eta_2$  does not vanish, which is used for the deconvolution arguments in the proof of Theorem 3.1. We refer the reader to Hu and Schennach (2013) for more discussions of these assumptions.<sup>9</sup>

### **Theorem 3.1.** If (3.1)–(3.3) and Assumptions B0–B7 hold, then $\theta_0$ are identified.

The proof of Theorem 3.1 can be found in Section E of the Supplement. Several remarks are in order. First, while we allow for a more general factor structure on the unobservables Uand V, we also depart from our baseline specification by supposing that we have access to two continuous noisy measurements of the common factor W. This is a standard requirement in the nonparametric measurement error literature (Hu and Schennach, 2008). Besides, assuming access to a set of (selection-free) noisy measurements of the unobserved factors is also very standard in the evaluation literature. See, among many others, Carneiro, Hansen, and Heckman (2003), Heckman

<sup>&</sup>lt;sup>9</sup>Note that Hu and Schennach (2013, Assumptions 5 and 6) hold automatically in our model with  $\nu_0 \neq 0$ .

and Navarro (2007), Heckman and Vytlacil (2007a), and Cunha, Heckman, and Schennach (2010). For instance, in applications in labor economics, the unobserved factor W often captures individual ability. This would apply, for example, to the evaluation of the effect of college employment ( $Y_2$ ) on college graduation ( $Y_1$ ). In these cases, cognitive skill measurements, such as the ASVAB test components that are available in the NLSY79 and NLSY97 surveys, are natural and often used candidates for these types of continuous measurements (Ashworth, Hotz, Maurel, and Ransom, 2020).

Second, as is clear from the proof of Theorem 3.1, the key purpose of the continuous measurements is to identify the distribution of the common factor W. While we assume in this section that the measurement equations are linear, it is possible to identify  $\theta_0$  with a more general nonlinear system of continuous measurements, provided that the researcher has access to at least three such measurements. One can then combine Theorem 2 in Cunha, Heckman, and Schennach (2010) (Section 3.3, pp. 894-895), that yields identification of the distribution of W, with the proof of Theorem 3.1 in order to show identification of  $\theta_0$  for the case of nonlinear auxiliary measurements. Assuming access to a set of at least three measurements also makes it possible to relax the nonnormality requirement imposed in Assumption B2.

Third, similar to the earlier discussions in Remark 2.2 and Section 2.2, Assumption B7 may still hold even when  $Z_3$  is an empty set and  $Z_1$  is discrete, since W is assumed to have full support. In such a case, identification primarily relies on the factor structure and the variation of the covariates in the selection equation, rather than that in the outcome equation. In this respect, this identification result is similar in spirit to Theorem 2.1 and different from the existing identification results in the literature for triangular binary models, e.g., Vytlacil and Yildiz (2007) and Vuong and Xu (2017). More generally, in Section A.2 in the supplement we establish that the factor model provides identification restrictions that are not otherwise available.<sup>10</sup>

# 4 Conclusion

In this paper, we explore the identifying power of linear factor structures in the context of simultaneous binary response models. We impose two alternative types of factor structures on the unobservables of the model. The first setup is a natural distribution-free extension of the bivariate Probit model, while the second model corresponds to a standard linear factor model with one common factor and two equation-specific idiosyncratic shocks. We establish that both factor models have identifying power in that they make it possible to relax some of the exclusion and support

<sup>&</sup>lt;sup>10</sup>Specifically, we consider a version of the model (3.1), where we do not impose the factor structure and allow for an arbitrary (unknown to econometricians) dependence structure across the unobservables of the model. In this case, we show non-identification of  $\alpha_0$  as long as  $|\alpha_0| > b - a$ , where [a, b] denotes the conditional support of  $X_1$  given X and, consistent with our Assumption B1, X has full support on the real line. However, by imposing the factor structure (and other conditions implied by B0–B7), Theorem 3.1 shows that  $\alpha_0$  is identified for this model even when  $|\alpha_0| > b - a$ .

conditions typically required for identification in this class of models (Vytlacil and Yildiz, 2007). Overall, our analysis complements results obtained by Bai and Ng (2010) in the context of a linear regression model with endogenous regressors, and, more generally, adds to our understanding of the identifying power of factor models, beyond their well known usefulness to recover the joint distribution of potential outcomes from the marginal distributions.

The work here opens areas for future research. The factor structure we assume could prove useful in more general nonlinear models. For instance, non-triangular discrete systems have shown to be an effective way to model entry games in the empirical industrial organization literature- see, for example, Tamer (2003). However, as shown in Khan and Nekipelov (2018), identification of structural parameters in these models can be even more challenging than for the triangular model considered in this paper. It would be useful to determine if factor structures on the unobservables could alleviate this problem. We leave this open question to future work.

## References

- ABBRING, J., AND J. HECKMAN (2007): "Econometrics Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," in *Handbook of Econometrics, Vol. 6B*, ed. by J. J. Heckman, and E. E. Leamer. North Holland.
- ABOWD, J. M., AND D. CARD (1989): "On the Covariance Structure of Earnings and Hours Changes," *Econometrica*, 57(2), 411–445.
- ABREVAYA, J., J. HAUSMAN, AND S. KHAN (2010): "Testing for Causal Effects in a Generalized Regression Model with Endogenous Regressors," *Econometrica*, 78(6), 2043–2061.
- ASHWORTH, J., V. J. HOTZ, A. MAUREL, AND T. RANSOM (2020): "Changes Across Cohorts in Wage Returns to Schooling and Early Work Experiences," forthcoming, *Journal of Labor Economics*.
- BAI, J., AND S. NG (2002): "Determining the Number of Factors in Approximate Factor Models," *Econometrica*, 70(1), 191–221.
- BAI, J., AND S. NG (2010): "Instrumental Variable Estimation in a Data Rich Environment," *Econometric Theory*, 26(6), 1577–1606.
- BIERENS, H., AND J. HARTOG (1988): "Non-Linear Eegression with Discrete Explanatory Variables, with an Application to the Earnings Function," *Journal of Econometrics*, 38(3), 269–299.
- BONHOMME, S., AND J.-M. ROBIN (2010): "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," *Review of Economic Studies*, 77(2), 491–533.

- CARNEIRO, P., K. HANSEN, AND J. J. HECKMAN (2003): "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," *International Economic Review*, 44(2), 361–422.
- CARNEIRO, P., AND S. LEE (2009): "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," *Journal of Econometrics*, 149(2), 191–208.
- CHESHER, A. (2005): "Nonparametric identification under discrete variation," *Econometrica*, 73(5), 1525–1550.
- CHIBURIS, R. (2010): "Semiparametric Bounds on Treatment Effects," *Journal of Econometrics*, 159(2), 267–275.
- CUNHA, F., J. J. HECKMAN, AND S. M. SCHENNACH (2010): "Estimating the Technology of Cognitive and Noncognitive Skill Formation," *Econometrica*, 78(3), 883–931.
- GOURIEROUX, C., A. MONFORT, AND J.-P. RENNE (2017): "Statistical inference for independent component analysis: Application to structural VAR models," *Journal of Econometrics*, 196(1), 111–126.
- HAN, A. (1987): "Non-parametric analysis of a generalized regression model: The maximum rank correlation estimator," *Journal of Econometrics*, 35(2–3), 303–316.
- HAN, S., AND S. LEE (2019): "Estimation in a Generalization of a Bivariate Probit Models with Dummy Endogenous Regressors," *Journal of Applied Econometrics*, 34(6), 994–1015.
- HAN, S., AND E. J. VYTLACIL (2017): "Identification in a generalization of bivariate probit models with endogenous regressors," *Journal of Econometrics*, 199(1), 63–73.
- HECKMAN, J., AND S. NAVARRO (2007): "Dynamic Discrete Choice and Dynamic Treatment Effects," *Journal of Econometrics*, 136(2), 341–396.
- HECKMAN, J. J., J. HUMPHRIES, AND G. VERAMENDI (2018): "Returns to Education: The Causal Effects of Education on Earnings, Health, and Smoking," *Journal of Political Economy*, 126, S197–S246.
- HECKMAN, J. J., AND E. VYTLACIL (2005): "Structural equations, treatment effects, and econometric policy evaluation 1," *Econometrica*, 73(3), 669–738.
- HECKMAN, J. J., AND E. J. VYTLACIL (2007a): "Econometric evaluation of social programs, part I: Causal models, structural models and econometric policy evaluation," *Handbook of econometrics*, 6, 4779–4874.

(2007b): "Econometric evaluation of social programs, part II: Using the marginal treatment effect to organize alternative econometric estimators to evaluate social programs, and to forecast their effects in new environments," *Handbook of econometrics*, 6, 4875–5143.

- HU, Y., AND S. M. SCHENNACH (2008): "Instrumental variable treatment of nonclassical measurement error models," *Econometrica*, 76(1), 195–216.
- HU, Y., AND S. M. SCHENNACH (2013): "Nonparametric identification and semiparametric estimation of classical measurement error models without side information," *Journal of the American Statistical Association*, 108(501), 177–186.
- HYVÄRINEN, A., AND E. OJA (2000): Independent component analysis: algorithms and applications, vol. 13. Elsevier.
- KHAN, S., AND D. NEKIPELOV (2018): "Information structure and statistical information in discrete response models," *Quantitative Economics*, 9(2), 995–1017.
- KLEIN, R., C. SHAN, AND F. VELLA (2015): "Estimation of marginal effects in semiparametric selection models with binary outcomes," *Journal of Econometrics*, 185(1), 82–94.
- KLEIN, R., AND R. SPADY (1993): "An Efficient Semiparametric Estimator for Binary Response Model," *Econometrica*, 61(2), 387–421.
- LEWBEL, A. (2000): "Semiparametric Qualitative Response Model Estimation with Unknown Heteroscedasticity or Instrumental Variables," *Journal of Econometrics*, 97(1), 145–177.
- LEWBEL, A., S. M. SCHENNACH, AND L. ZHANG (2020): "Identification of a Triangular Two Equation System Without Instruments," Working Paper.
- MONETA, A., D. E. P. O. HOYER, AND A. COAD (2013): "Causal inference by independent component analysis: Theory and applications," Oxford Bulletin of Economics and Statistics, 75(5), 705–730.
- MOURIFIÉ, I. (2015): "Sharp Bounds on Treatment Effects in a Binary Triangular System," Journal of Econometrics, 187(1), 74–81.
- SHAIKH, A. M., AND E. VYTLACIL (2011): "Partial Identification in Triangular Systems of Equations with Binary Dependent Variables," *Econometrica*, 79(3), 949–955.
- TAMER, E. (2003): "Incomplete Bivariate Discrete Response Model with Multiple Equilibria," *Review of Economic Studies*, 70(1), 147–167.
- VUONG, Q., AND H. XU (2017): "Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity," *Quantitative Economics*, 8(2), 589–610.
- VYTLACIL, E. J., AND N. YILDIZ (2007): "Dummy Endogenous Variables in Weakly Separable Models," *Econometrica*, 75(3), 757–779.