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Abstract

We study the informational content of factor structures in discrete triangular systems. Factor
structures have been employed in a variety of settings in cross sectional and panel data models,
and in this paper we formally quantify their identifying power in a bivariate system often
employed in the treatment effects literature. Our main findings are that imposing a factor
structure yields point identification of parameters of interest, such as the coefficient associated
with the endogenous regressor in the outcome equation, under weaker assumptions than usually
required in these models. In particular, we show that a “non-standard” exclusion restriction
that requires an explanatory variable in the outcome equation to be excluded from the treatment
equation is no longer necessary for identification, even in cases where all of the regressors from
the outcome equation are discrete. We also establish identification of the coefficient of the
endogenous regressor in models with more general factor structures, in situations where one has
access to at least two continuous measurements of the common factor.
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1 Introduction

Factor models see widespread and increasing use in various areas of econometrics. This type of

structure has been employed in a variety of settings in cross sectional, panel and time series models,

and have proven to be a flexible way to model the behavior of and relationship between unobserved

components of econometric models. The basic idea behind factor models is to assume that the

dependence across the unobservables is generated by a low-dimensional set of mutually independent
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random factors. The applied and theoretical research employing factor structures in econometrics

is extensive. In particular, these models are often used in the treatment effect literature as a

way to identify the joint distribution of potential outcomes from the marginal distributions, and

then recover the distribution of treatment effects from this joint distribution.1 Factor models have

been used in a number of different contexts in applied microeconomics. These include, among

others, earnings dynamics (Abowd and Card, 1989; Bonhomme and Robin, 2010), estimation of

returns to schooling and work experiences (Ashworth, Hotz, Maurel, and Ransom, 2020), as well as

cognitive and non-cognitive skill production technology (Cunha, Heckman, and Schennach, 2010).

Heckman and Vytlacil (2007a,b) provide various additional references. All of these papers, with

the notable exception of Cunha, Heckman, and Schennach (2010), rely on linear factor models

where the unobservables are assumed to be written as the sum of a linear combination of mutually

independent factors and an idiosyncratic shock.

In this paper we bring together the literature on factor models with the literature on the

identification and estimation of triangular binary choice models (Chesher (2005); Vytlacil and

Yildiz (2007); Shaikh and Vytlacil (2011); Han and Vytlacil (2017)) by exploring the informational

content of factor structures in this class of models.2 Focusing on this class can be well motivated

from both an empirical and theoretical perspective. From the former, many treatment effect models

fit into this framework as treatment is typically a binary and endogenous variable in the system,

whose effect on outcomes is often a parameter the econometrician wishes to conduct inference

on. From a theoretical perspective, inference on this type of system can be complicated, if not

impossible without strong parametric assumptions, which may not be reflected in the observed

data. Imposing no restriction on the structure of endogeneity often fails to achieve identification

of parameter, or at best only do so in sparse regions of the data, thus making inference impractical

in practice. In this context, modeling the endogeneity between the selection and the outcome by

a factor structure may be a useful “in-between” setting, which, at the very least, can be used to

gauge the sensitivity of the parametric approach to their stringent assumptions.

We start our analysis by imposing a particular factor structure to the two unobservables in this

system and explore the informational content of this assumption. We assume that the unobservables

from the treatment equation (V ) and the outcome equation (U) are related through the following

factor model:

U = γ0V + Π (1.1)

where Π is an unobserved random variable assumed to be distributed independently of V and γ0 is a

scalar parameter. This structure generalizes the canonical case where the unobservables (U, V ) are

jointly normally distributed, for which this relationship always holds. Our main finding is that there

1See also Abbring and Heckman (2007) for an extensive discussion of factor structures and prior studies using
these models in the context of treatment effect estimation.

2See also recent work by Lewbel, Schennach, and Zhang (2020), who study the identification of a triangular linear
model assuming that the disturbances are related through a factor model.
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is indeed informational content of factor structures in the sense that, in contrast to prior literature -

notably Vytlacil and Yildiz (2007) - one no longer requires an additional “non-standard” exclusion

restriction, nor the strong support conditions on the covariates entering the outcome equation that

are generally needed for identification in these models. Our identification results are constructive

and translate directly into a rank based estimator of the coefficient associated with the binary

endogenous variable, which we provide and study in a supplement to this paper.

While an appealing feature of the structure considered in Equation (1.1) is that it is a natural

extension of the bivariate Probit specification that has often been considered in the literature, this

model does impose significant restrictions on the nature of the dependence between the unobserv-

ables U and V . In the paper we extend this baseline specification by considering a linear factor

structure of the form:

U = γ0W + η1 (1.2)

V = W + η2 (1.3)

where (W, η1, η2) are mutually independent unobserved random variables. We study the informa-

tional content of this extended factor structure in the context of triangular binary choice models

and establish identification, assuming access to at least two continuous noisy measurements of the

unobserved factor W . This setup has been used in a number of applications, in particular in labor

economics. In these applications, the unobserved factor is typically interpreted as latent individual

ability, about which several continuous noisy measurements are available from the data. This is

the case of, for instance, Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and Schennach

(2010), Heckman, Humphries, and Veramendi (2018) and Ashworth, Hotz, Maurel, and Ransom

(2020), who use components of the Armed Services Vocational Aptitude Battery test as measure-

ments of cognitive ability. At a high level, it is interesting to note that these results complement

Bai and Ng (2010), who show that, in the context of a linear regression model with endogenous

regressors, factor models have identifying power, in that they can be used to create instrumental

variables even when none of the observed variables are valid instruments.

The rest of the paper is organized as follows. In Section 2 we formally describe the triangular

system with our factor structure, and discuss our main identification results for the parameters of

interest in this model. Section 3 explores identification in more general factor structure models

which involve multiple idiosyncratic errors, in a context where one has access to two continuous

noisy measurements of the common unobserved factor. Finally, Section 4 concludes. The Supple-

mentary Material collects the proofs of our results, derives and studies the asymptotic properties

of a rank-based estimator for α0, explores its finite sample properties through some Monte Carlo

simulation exercises, and shows the non-identification of the two-factor model with a compact-

supported common factor and no continuous repeated measurements. Finally, we also establish the

sharp identified set of α0 when the support condition for point-identification is violated.
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Notation: throughout the paper we write 1{A} to denote the usual indicator function that takes

value 1 if event A happens, and 0 otherwise. We also denote by d(U) and d(U |V ) the lengths of

the support of random variable U , and the conditional support of U given V , respectively.

2 Triangular Binary Model with Factor Structure

2.1 Set-up and Main Identification Result

In this section we consider the identification of the following triangular binary model:

Y1 = 1{Z ′1λ0 + Z ′3β0 + α0Y2 − U > 0} (2.4)

Y2 = 1{Z ′δ0 − V > 0} (2.5)

where Z ≡ (Z1, Z2) and (U, V ) is a pair of random shocks. Z2 and Z3 provide the exclusion

restrictions in the model, and the distribution of (Z2, Z3) is required to be nondegenerate conditional

on Z ′1λ0 + Z ′3β0. We further assume that the error terms U and V are jointly independent of

(Z1, Z2, Z3). The endogeneity of Y2 in (2.4) arises when U and V are not independent.

The above model, or minor variations of it, have often been considered in the recent literature.

See for example, Vytlacil and Yildiz (2007), Abrevaya, Hausman, and Khan (2010), Klein, Shan,

and Vella (2015), Vuong and Xu (2017), Khan and Nekipelov (2018) and references therein. A

key parameter of interest in our paper and in the rest of the literature is α0. In this paper we

provide conditions under which the parameters of interest are point-identified. As such, our analysis

complements alternative partial-identification approaches that have been proposed in the context

of triangular binary models. See, in particular, Chiburis (2010), Shaikh and Vytlacil (2011), and

Mourifié (2015).3 As discussed in the aforementioned papers, the parameter α0 is difficult, if not

impossible to identify and estimate without imposing parametric restrictions on the unobserved

variables in the model, (U, V ).

The difficulty of identifying α0 in semi-parametric “distribution-free” models, and the sensitivity

of its identification to misspecification in parametric models is what motivates the factor structure

we add in this paper to the above model. Specifically, to allow for endogeneity in the form of possible

non-zero correlation between U and V , we augment the model with the following equation:

U = γ0V + Π (2.6)

3In Section A in the supplement, we establish the sharp identified set of α0 when the support condition for
point-identification is violated. This result highlights that, except for the fact that the sign of α0 is identified, we
generally cannot say much about the value of |α0|. Related work by Shaikh and Vytlacil (2011) also provides partial
identification results for a triangular binary model. That the bounds for α0 are generally tighter in their analysis
reflects the identifying power of the additional support restrictions that they impose.
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where Π is an unobserved random variable, assumed to be distributed independently of (V,Z1, Z2, Z3),

and γ0 is an additional unknown scalar parameter. Importantly, this type of factor structure al-

ways holds when the residuals of both equations are jointly normally distributed. Furthermore, this

specification corresponds to the type of structure used in Independent Component Analysis (ICA),

where V and Π are two mutually independent factors. This method has found many applications in

various fields, including signal processing and image extraction; applications in economics include

e.g., Hyvärinen and Oja (2000), Moneta, Hoyer, and Coad (2013) and Gourieroux, Monfort, and

Renne (2017). While, in contrast to the ICA literature, the factors and the factor loadings are not

the main objects of interest in our analysis, this dimension-reducing structure plays a key role in

our identification results.

Our aim is to first explore identification of the parameters (α0, δ0, γ0, β0, λ0) under standard

nonparametric regularity conditions on (V,Π). Note that the parameter δ0 in the selection equation

can be identified up to scale in various ways. See, for example, Klein and Spady (1993) and Han

(1987), among others. We then impose the usual condition that one of δ0’s coordinates is equal to

one to fix the scale. For simplicity, for the rest of the paper, we denote X ≡ Z ′δ0 and assume X is

observed. We further define X1 ≡ Z ′1λ0 +Z ′3β0. However, we cannot identify λ0 and β0 beforehand.

We propose instead to identify them along with α0.

Our main identification result is based on the Assumptions A1-A4 we state below:

A1 The first coefficient of λ0 is normalized to one so that λ0 = (1, λT0,−1)T . The parameter

θ0 ≡ (α0, γ0, λ0,−1, β0) is an element of a compact subset of <d1+d3+1, where d1 and d3 are

the dimensions of Z1 and Z3, respectively.

A2 The vector of unobserved variables, (U, V,Π) is continuously distributed with support on a

subset of <3 and independently distributed of the vector (Z1, Z2, Z3). Furthermore, we assume

that the unobserved random variables Π, V are distributed independently of each other.

A3 X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure. Its

density is bounded and bounded away from zero on any compact subset of its support.

A4 Let Z1,−1 be all the coordinates of Z1 except the first one, and d = d1 + d3 + 1. There exist 2d

vectors {z(l)
1 , z

(l)
3 , x(l)}dl=1 and {z̃(l)

1 , z̃
(l)
3 , x̃(l)}dl=1 in the joint support of (Z1, Z3, X) such that

α0 + (z
(l)
1,−1 − z̃

(l)
1,−1)′λ0,−1 + (z

(l)
3 − z̃

(l)
3 )′β0 − γ0(x(l) − x̃(l)) = z̃

(l)
1,1 − z

(l)
1,1, l = 1, · · · , d

and rank(M) = d, where

M =


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

x(1) − x̃(1) · · · x(d) − x̃(d)

 .
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Before turning to our main identification result, a couple of remarks are in order.

Remark 2.1. The first part of Assumption A1 is a standard scale normalization. Assumption

A2 is also standard in this literature. The assumption that the instruments are independent of the

unobservables can also be found in, among others, Abrevaya, Hausman, and Khan (2010), Vytlacil

and Yildiz (2007), Klein, Shan, and Vella (2015), and Khan and Nekipelov (2018). The assumption

of independence between Π and V is also made in Bai and Ng (2002) and Carneiro, Hansen, and

Heckman (2003).

Remark 2.2. Assumptions A3 and A4 impose some restrictions on the distributions of the co-

variates entering the selection and outcome equations, respectively. Specifically, Assumption A3

requires one component of the covariates Z entering the selection equation to be continuously dis-

tributed, which is often required in models with discrete outcomes. In contrast, Assumption A4 only

requires some variation of (Z1, Z3). In particular, the distribution of (Z1, Z3) cannot be degenerate

but is allowed to be discrete. This assumption can be interpreted as a full rank condition, which

ensures that the system of linear equations that delivers point identification has a unique solution.

We now turn to our main identification result, Theorem 2.1, which concludes that under our

stated conditions and our factor structure we can attain point identification of the vector of pa-

rameters θ0.

Theorem 2.1. Under Assumptions A1-A4, θ0 is point identified.

An important takeaway from this result, which we discuss further in Subsection 2.2 below, is

that imposing the factor structure (2.6) yields point-identification under weaker support conditions

when compared to the existing literature, and does not require a second exclusion restriction either.

In particular, our model delivers point-identification of the parameters of interest even in situations

where all of the regressors from the outcome equation are discrete. This indicates that, from the

selection equation combined with the factor structure that we impose here, we can overturn the

non-identification result of Bierens and Hartog (1988) which would apply to the outcome equation

alone.

The proof of Theorem 2.1, which is reported in Section D in the Supplementary Appendix,

relies on the fact that, for two observations (Z1, Z3, X) and (Z̃1, Z̃3, X̃),

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = 0, (2.7)

where fV (·) is the pdf. of V , which is identified over the support of X, and P ij(z1, z3, x) ≡
Prob(Y1 = i, Y2 = j|Z1 = z1, Z3 = z3, X = x) (∂xP

ij(z1, z3, x)) denote the choice probability

(partial derivative of the ij-choice probability with respect to the third argument), which are both

identified from the data.
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Remark 1. This identification result can be extended to the case of a separable nonparametric

factor model. Namely, consider the following relationship between unobserved components:

U = g0(V ) + Π̃ (2.8)

where Π̃ is an unobserved random variable assumed to be distributed independently of V and all

instruments. g0(·) is an unknown function assumed to satisfy standard smoothness conditions. The

parameter of interest is (α0, λ0, β0), but now the unknown nuisance parameter in the factor equation

is infinite dimensional. By replacing γ0X by g0(X) in (2.7), we have

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − (g0(X)− g0(X̃)) = 0. (2.9)

One can then establish identification after modifying the rank condition A4 by replacing γ0(x(l)−x̃(l))

by g0(x(l))− g0(x̃(l)).

2.2 Connection with Prior Literature

We now discuss in detail how our setup and main identification result relates to the existing liter-

ature.

In a related work, Han and Vytlacil (2017) consider the identification of a generalized bivariate

Probit model.4 Our linear factor structure and the one-parameter copula model considered in Han

and Vytlacil (2017) are not nested by each other. First, note that based on the factor structure,

we can recover FΠ, the distribution of Π, as a function of (FU , FV , γ0) by deconvolution. We can

then write the copula of (U, V ) as

FU,V (F−1
U (u), F−1

V (v)) =

∫ F−1
V (v)

−∞
FΠ(F−1

U (u)− γ0w;FU , FV , γ0)fV (w)dw = C(u, v;FU , FV , γ0).

The copula depends not only on γ0 but also on two infinite dimensional parameters (FU , FV ). Thus,

unlike Han and Vytlacil (2017), our factor structure cannot be characterized by a one-parameter

copula. In addition, in order to achieve identification, Han and Vytlacil (2017) first nonparametri-

cally identify the two marginals by assuming the existence of a full support regressor that is common

to both equations.5 In contrast, our approach does not rely on the existence of such a regressor.

Under the factor structure assumed in our analysis, we bypass the nonparametric identification of

the marginals as a whole and directly consider the identification of the structural parameters. It

4See also recent work by Han and Lee (2019) who study semiparametric estimation and inference in the framework
considered by Han and Vytlacil (2017).

5Han and Vytlacil (2017) establish their identification of the coefficient on the endogeneous regressor (Theorems
4.2 and 5.1) under the assumption that the marginal distributions Fε and Fν are known. Then, they verify this
condition by showing the identification of these two marginal distributions using large support common regressors.
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follows that our model cannot be nested by the one-parameter copula model considered by Han

and Vytlacil (2017). On the other hand, there exist one-parameter copula models that cannot be

decomposed into linear factor structures.6 This implies that our model does not nest Han and

Vytlacil (2017) either.

Our analysis also relates to Vytlacil and Yildiz (2007) and Vuong and Xu (2017), who consider

the identification of α0 in a triangular binary model. Our identification result, however, differs

from theirs in important ways. Namely, denote X = Z ′δ0 = Z ′1δ1,0 +Z ′2δ2,0. Then, Assumption A4

implies that we can find a pair of observations (z1, z2, z3) and (z̃1, z̃2, z̃3) such that

z′1λ0 + z′3β0 + α0 − γ0(z′1δ1,0 + z′2δ2,0) = z̃′1λ0 + z̃′3β0 − γ0(z̃′1δ1,0 + z̃′2δ2,0). (2.10)

In contrast, using our notation, Vytlacil and Yildiz (2007) require that one can find a pair of

observations (z1, z2, z3) and (z̃1, z̃2, z̃3) such that z′δ0 = z̃′δ0 and

z′1λ0 + z′3β0 + α0 = z̃′1λ0 + z̃′3β0. (2.11)

Vuong and Xu (2017) do not assume the existence of Z3. In our binary outcome setup, the

functions h(0, x, τ) and h(1, x, τ) defined in Vuong and Xu (2017) are equal to 1{x+ F−1
−U (τ) ≥ 0}

and 1{x+α+F−1
−U (τ) ≥ 0}, respectively, where x = z′1λ0 and F−U is the CDF of −U . Then, Vuong

and Xu (2017, Assumption C’(ii)) requires that we can find z1 and z̃1 in the support of Z1 so that

for any τ1, τ2, if 1{z̃′1λ0 + F−1
−U (τ1) ≥ 0} = 1{z̃1λ0 + F−1

−U (τ2) ≥ 0}, then 1{z′1λ0 + α0 + F−1
−U (τ1) ≥

0} = 1{z1λ0 + α0 + F−1
−U (τ2) ≥ 0}. Provided that the support of U nests the supports of Z ′1λ0 and

Z ′1λ0 + α0, Vuong and Xu (2017, Assumption C’(ii)) is then equivalent to:7

z′1λ0 + α0 = z̃′1λ0. (2.12)

Several remarks are in order. First, note that sufficient support conditions for the restrictions

(2.10)–(2.12) are d(Z ′1λ0 +Z ′3β0 −Z ′δ0γ0) ≥ |α0|, d(Z ′1λ0 +Z ′3β0|Z ′δ0) ≥ |α0|, and d(Z ′1λ0|Z ′δ0) ≥
|α0| with a positive probability, respectively. These three support conditions are such that

d(Z ′1λ0 + Z ′3β0 − Z ′δ0γ0) ≥ d(Z ′1λ0 + Z ′3β0|Z ′δ0) ≥ d(Z ′1λ0|Z ′δ0),

where the first and second inequalities are strict if Z2 and Z3 have at least one continuous com-

ponent, respectively. Importantly, we show in Section A of the Supplement that for a version of

6For instance, suppose that (U, V ) has a Gaussian copula with correlation ρ, and that the marginal distributions
of U and V are uniform [0, 1]. It then follows that, denoting by Φ(.) the standard normal cdf.,

(
Φ−1(U),Φ−1(V )

)
is bivariate normal with correlation ρ, which in turn yields the following non-linear relationship between U and V :
U = Φ

(
ρΦ−1(V ) +W

)
, where W is normally distributed and independent from V .

7To see this, note that if, say, z′1λ0 +α0 > z̃′1λ0, then we can find τ1, τ2 such that −z′1λ0−α0 ≤ F−1
−U (τ1) < −z̃′1λ0

and F−1
−U (τ2) < −z′1λ−α0 < −z̃′1λ0. This violates the above requirement, and thus, shows that Vuong and Xu (2017,

Assumption C’(ii)) implies (2.12). On the other hand, if z′1λ0 + α0 = z̃′1λ0, then Vuong and Xu (2017, Assumption
C’(ii)) holds trivially.
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the triangular binary model with univariate Z2 and Z3 and no common regressor Z1, the support

condition d(Z ′1λ0 + Z ′3β0|Z ′δ0) ≥ |α0| is actually also necessary to the identification of the model

without factor structure. This implies that by imposing our factor structure, one can identify values

of α0 in a region that cannot be identified in the model considered by Vytlacil and Yildiz (2007).

Such region is characterized in Section A of the Supplement.

Second, it directly follows from these support conditions that, in the presence of a factor model

and in contrast to both Vytlacil and Yildiz (2007) and Vuong and Xu (2017), variation in Z2

helps in the identification of α0. In that sense, the factor model allows to restore the intuition

from standard IV approaches in linear models that variation in the instrument Z2 is critical to the

identification of the parameters of the outcome equation. Related to this, the support of Z2 plays

an important role in our identification analysis. In particular, if Z2 is discrete, our identification

strategy requires sufficient variation in the variables in the outcome equation, namely Z1 and Z3.

In this case, our support requirement is equivalent to that assumed by Vytlacil and Yildiz (2007).

Third, another important aspect of Assumption A4 is that it does not impose any constraint on

the variables from the outcome equation. Specifically, consider a case where the outcome equation

does not contain a variable that is excluded from the selection equation (i.e., β0 = 0), the regressor

that is common to both equations, Z1, is scalar and binary, and where λ0 = 1. In this case, one can

show that the identifying support conditions associated with Vytlacil and Yildiz (2007) (2.11) and

Vuong and Xu (2017) (2.12) generally fail to hold, except for a finite set of values α0 ∈ {−1, 0, 1}. In

contrast, our support restriction (2.10) holds under more general conditions: without any restriction

on α0 if one element of Z2 is continuous with large support, and on a continuum of possible values

for α0 if one element of Z2 is continuous with bounded support. In that sense, the factor structure

replaces the need for a continuous component in (Z1, Z3) in the outcome equation.

Finally, at a high level, our identification strategy shares similarities with the Local Instrumen-

tal Variable (LIV) approach that has been proposed by Heckman and Vytlacil (2005) and further

discussed by Carneiro and Lee (2009). In particular, our identifying restriction (2.7) can be al-

ternatively derived from a local IV strategy applied to a potential outcomes model characterized

by Y1(y2) = 1{Z ′1λ0 + Z ′3β0 + α0y2 − U > 0}, with treatment given by Y2 = 1{Z ′δ0 − V > 0}.
In contrast to the LIV literature though, we focus in our analysis on the structural parameter α0

rather than on the marginal treatment effects. Our identification result shows that, by leveraging

the identifying power of the factor structure, one can identify α0 under weaker support restric-

tions than in the prior literature. In particular, our strategy makes it possible to use variation in

X = Z ′δ0 to identify α0, even when all the components of Z1 and Z3 are discrete.8

8An alternative approach to identifying this parameter can be found in Lewbel (2000). In his approach a second
equation to model the endogenous variable is not needed, nor is the factor structure we impose. However, he imposes
a strong support condition on a variable like Z3 requiring that it exceeds the length of the unobservable U .
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3 Extended Factor Structure in the presence of Continuous Mea-

surements

Up until now we have proposed identification and estimation results for a triangular system with a

particular factor structure. A disadvantage of this structure is that it only includes one idiosyncratic

shock (Π). We consider below an extension that addresses this limitation.

Namely, we consider the following model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0},
(3.1)

where X1 = Z ′1λ0 + Z ′3β0, X = Z ′δ0, U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually

independent. Recall that, following the arguments in Section 2.1 above, we assume that X is

observed. In addition, we assume two auxiliary continuous measurements

Y3 = ν0W + η3 (3.2)

Y4 = σ0W + η4, (3.3)

where (W, η1, η2, η3, η4) are mutually independent, and ν0 6= 0.

Our identification result is based on the following assumptions:

B0 The first coefficient of λ0 is normalized to one so that λ0 = (1, λT0,−1)T . The parameter

θ0 ≡ (α0, γ0, λ0,−1, β0, ν0, σ0) is an element of a compact subset of <d1+d3+3, where d1 and d3

are the dimensions of Z1 and Z3, respectively. The vector of unobservables in the outcome

and selection equations (W, η1, η2, η3) are independently distributed of the vector (Z1, Z2, Z3).

Both η1 and η2 are continuously distributed.

B1 γ0 6= 0. X is continuously distributed with absolute continuous density w.r.t. Lebesgue

measure over the whole real line, conditionally on Z1 and Z3. The unconditional density of

X is bounded and bounded away from zero on any compact subset of its support.

B2 W is not normally distributed or both η3 and η4 do not have a Gaussian component.

B3 E(η3) = E(η4) = 0, E(|η3|) <∞, and E(|η4|) <∞.

B4 E(exp(iζη2)), E(exp(iζη3)), and E(exp(iζη4)) do not vanish for any ζ ∈ <, where i =
√
−1.

B5 E(exp(iζW )) 6= 0 for all ζ in a dense subset of <.

B6 The distributions of W , η2, and η3 admit uniformly bounded densities fW (·), fη2(·), and fη3(·)
with respect to the Lebesgue measure that are supported on an interval (which may be

infinite), respectively.
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B7 Let Z1,−1 be all the coordinates of Z1 except the first one, and d = d1 + d3 + 1. There exist 2d

vectors {z(l)
1 , z

(l)
3 }dl=1 and {z̃(l)

1 , z̃
(l)
3 }dl=1 in the joint support of (Z1, Z3) and {w(l)}dl=1, {w̃(l)}dl=1

such that

α0 + (z
(l)
1,−1 − z̃

(l)
1,−1)′λ0,−1 + (z

(l)
3 − z̃

(l)
3 )′β0 − γ0(w(l) − w̃(l)) = z̃

(l)
1,1 − z

(l)
1,1, l = 1, · · · , d

and rank(M) = d, where

M =


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

w(1) − w̃(1) · · · w(d) − w̃(d)

 .

We now discuss these assumptions, before turning to the identification result. First, Assumption

B0 is similar to Assumptions A1 and A2. We only need one of the idiosyncratic errors in the

continuous measurements to be independent of the covariates because the other one is used to

identify the distribution of the common factor W only. Second, as we assume in Assumption B1

that γ0 6= 0 and X has full support, the support condition

d(Z ′1λ0 + Z ′3β0 − γ0X) ≥ |α0|.

holds automatically. The full support condition of X is necessary to identify the density of V ,

which is further used to identify the distribution of η2. Assumption B1 reinforces this condition

by supposing that X has full support conditional on Z1 and Z3, which is needed to identify the

parameters from the outcome equation in a second step. Since X = Z ′δ0 with Z = (Z1, Z2), this is

in turn equivalent to Z2 having full support conditional on Z1 and Z3. Third, Assumptions B2–B6

imply Assumptions 1 to 4 in Hu and Schennach (2013). In practice we add the condition that the

characteristic function of η2 does not vanish, which is used for the deconvolution arguments in the

proof of Theorem 3.1. We refer the reader to Hu and Schennach (2013) for more discussions of

these assumptions.9

Theorem 3.1. If (3.1)–(3.3) and Assumptions B0–B7 hold, then θ0 are identified.

The proof of Theorem 3.1 can be found in Section E of the Supplement. Several remarks

are in order. First, while we allow for a more general factor structure on the unobservables U

and V , we also depart from our baseline specification by supposing that we have access to two

continuous noisy measurements of the common factor W . This is a standard requirement in the

nonparametric measurement error literature (Hu and Schennach, 2008). Besides, assuming access

to a set of (selection-free) noisy measurements of the unobserved factors is also very standard in the

evaluation literature. See, among many others, Carneiro, Hansen, and Heckman (2003), Heckman

9Note that Hu and Schennach (2013, Assumptions 5 and 6) hold automatically in our model with ν0 6= 0.
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and Navarro (2007), Heckman and Vytlacil (2007a), and Cunha, Heckman, and Schennach (2010).

For instance, in applications in labor economics, the unobserved factor W often captures individual

ability. This would apply, for example, to the evaluation of the effect of college employment (Y2)

on college graduation (Y1). In these cases, cognitive skill measurements, such as the ASVAB test

components that are available in the NLSY79 and NLSY97 surveys, are natural and often used

candidates for these types of continuous measurements (Ashworth, Hotz, Maurel, and Ransom,

2020).

Second, as is clear from the proof of Theorem 3.1, the key purpose of the continuous measure-

ments is to identify the distribution of the common factor W . While we assume in this section

that the measurement equations are linear, it is possible to identify θ0 with a more general nonlin-

ear system of continuous measurements, provided that the researcher has access to at least three

such measurements. One can then combine Theorem 2 in Cunha, Heckman, and Schennach (2010)

(Section 3.3, pp. 894-895), that yields identification of the distribution of W , with the proof of

Theorem 3.1 in order to show identification of θ0 for the case of nonlinear auxiliary measurements.

Assuming access to a set of at least three measurements also makes it possible to relax the non-

normality requirement imposed in Assumption B2.

Third, similar to the earlier discussions in Remark 2.2 and Section 2.2, Assumption B7 may

still hold even when Z3 is an empty set and Z1 is discrete, since W is assumed to have full

support. In such a case, identification primarily relies on the factor structure and the variation

of the covariates in the selection equation, rather than that in the outcome equation. In this

respect, this identification result is similar in spirit to Theorem 2.1 and different from the existing

identification results in the literature for triangular binary models, e.g., Vytlacil and Yildiz (2007)

and Vuong and Xu (2017). More generally, in Section A.2 in the supplement we establish that the

factor model provides identification restrictions that are not otherwise available.10

4 Conclusion

In this paper, we explore the identifying power of linear factor structures in the context of si-

multaneous binary response models. We impose two alternative types of factor structures on the

unobservables of the model. The first setup is a natural distribution-free extension of the bivariate

Probit model, while the second model corresponds to a standard linear factor model with one com-

mon factor and two equation-specific idiosyncratic shocks. We establish that both factor models

have identifying power in that they make it possible to relax some of the exclusion and support

10Specifically, we consider a version of the model (3.1), where we do not impose the factor structure and allow for
an arbitrary (unknown to econometricians) dependence structure across the unobservables of the model. In this case,
we show non-identification of α0 as long as |α0| > b − a, where [a, b] denotes the conditional support of X1 given
X and, consistent with our Assumption B1, X has full support on the real line. However, by imposing the factor
structure (and other conditions implied by B0–B7), Theorem 3.1 shows that α0 is identified for this model even when
|α0| > b− a.
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conditions typically required for identification in this class of models (Vytlacil and Yildiz, 2007).

Overall, our analysis complements results obtained by Bai and Ng (2010) in the context of a linear

regression model with endogenous regressors, and, more generally, adds to our understanding of

the identifying power of factor models, beyond their well known usefulness to recover the joint

distribution of potential outcomes from the marginal distributions.

The work here opens areas for future research. The factor structure we assume could prove

useful in more general nonlinear models. For instance, non-triangular discrete systems have shown

to be an effective way to model entry games in the empirical industrial organization literature- see,

for example, Tamer (2003). However, as shown in Khan and Nekipelov (2018), identification of

structural parameters in these models can be even more challenging than for the triangular model

considered in this paper. It would be useful to determine if factor structures on the unobservables

could alleviate this problem. We leave this open question to future work.
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