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Abstract

This paper gathers the supplementary material to the original paper. In Section A, we discuss
the identification power of the factor structure. In Section B, we propose an estimator based
on our constructive identification strategy and establish its asymptotic properties. Section C
contains a simulation study. In Sections D and E, we prove Theorems 2.1 and 3.1, respectively.
In Section F, we establish the asymptotic distribution for the rank estimator. In Section G,
we consider the identification of the model with two idiosyncratic shocks but no continuous
repeated measurements of the common factor. In Sections H, I, J and K, we prove Theorems
A.1, A.2, G.1 and G.2, respectively.

Keywords: Factor Structures, Discrete Choice, Causal Effects.

A Identification with and without Factor Structure

A.1 Identification Without Auxiliary Measurements

In this section, we discuss the information content of factor structure. For illustration purpose, we

focus on the “condensed” model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.
(A.1)

Assumption 1.

1. (X1, X) ⊥ (U, V ).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure. The conditional support of X1 given X is [a, b].

3. V is continuously distributed over < and its density w.r.t. Lebesgue measure exist.
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Theorem A.1. If Assumption 1 holds, then |α0| ≤ b − a is necessary and sufficient for α0 to be

identified.

We note that under Assumption 1, |α0| ≤ b − a is equivalent to the fact that we can find x1

and x̃1 in the support of X1 such that α0 = x1 − x̃1.

Next, we assume, in addition to Assumption 1, the factor structure, i.e., (2.6) in Section 2. Our

rank estimator can be written as an M-estimator

θ̂ = arg max
θ
Qn(θ) ≡

∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We will study the asymptotic properties of this estimator in Section B.

The information content explored by the M-estimator can be summarized as follows:

A2(θ) = {(X1, X̃1, X, X̃),Φ(X1, X, X̃1, X̃; θ0) ≥ 0 > Φ(X1, X, X̃1, X̃; θ)

or Φ(X1, X, X̃1, X̃; θ0) < 0 ≤ Φ(X1, X, X̃1, X̃; θ)}.

Then we cannot distinguish, from the true parameter θ0, all impostors in

A2 = {θ : P (A2(θ)) = 0}.

In the condensed model, if Supp(X1, X) = [a, b]×[c, d], then θ0 is identified if |α0| < b−a+|γ0|(d−c).
Recall Theorem A.1, without imposing factor structure, the necessary and sufficient condition for

achieving identification is |α0| ≤ b−a. Therefore, the blue area in the Figure below is the additional

parts of parameter space that are identified with factor structure but not otherwise.
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α0

γ0

|α0| = b− a+ |γ0|(d− c)

|α0| = b− a

Figure 1: Identifying Power of Factor Structure

Theorem A.2. Assumption 1 holds. When |α0| > b− a, the sharp identified set for α0 is

A∗ = {α : α > b− a if α0 > 0 and α < a− b if α0 < 0}.

Theorem A.2 highlights that, in the case without the factor structure and α0 does not satisfy

the parameter restriction, except for the fact that the sign of α0 is identified, we actually cannot

say much about the value of |α0|. When we assume the factor structure, the parameter is still not

identified if |α0| > b−a+ |γ0|(d− c). In addition, suppose α0 > 0. In this case, if we do not impose

factor structure, by Theorem A.2, the sharp identified set is {α : α > b− a} while with the factor

structure, the identified set (not necessarily sharp) is α > b − a + |γ|(d − c). This implies, when

identification fails in both cases, the blue area is also the extra identifying power on the identified

set given by the factor structure.

A.2 Identification with two auxiliary measurements

Next, we expand our condensed model to include two continuous measurements. We show in this

case, without the factor structure, α0 is not identified. This is in contrast with the identification

result established in Theorem 3.1.

Suppose in addition to (A.1), we also observe two continuous measurements denoted as Y3 and

Y4.

Assumption 2.

1. (X1, X) ⊥ (U, V, Y3, Y4).
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2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure. The conditional support of X1 given X is [a, b].

3. V is continuously distributed over < and its density w.r.t. Lebesgue measure exist.

Theorem A.3. If Assumption 2 holds, then |α0| ≤ b − a is necessary and sufficient for α0 to be

identified.

The proof of Theorem A.3 is similar to that of Theorem A.1, and thus, is omitted. In the proof

of Theorem A.1, we show that when |α0| > b− a, we can find an impostor α 6= α0 and Ũ such that

for any x1 ∈ [a, b] and any v ∈ Supp(V ), we have

P (Ũ ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (U ≤ x1|V = v).

This implies the conditional CDF of (Y1, Y2) given (X1, X) under the DGPs (U, V, α0) and (Ũ , V, α)

are the same, and thus, α0 is observationally equivalent to the impostor α. Similarly, with the two

continuous measurements, we can use the exact same construction of Ũ and α to show that, for

any x1 ∈ [a, b] and (v, y3, y4) ∈ Supp(V, Y3, Y4), we have

P (Ũ ≤ x1 + α|V = v, Y3 = y3, Y4 = y4) = P (U ≤ x1 + α0|V = v, Y3 = y3, Y4 = y4)

P (Ũ ≤ x1|V = v, Y3 = y3, Y4 = y4) = P (U ≤ x1|V = v, Y3 = y3, Y4 = y4).

This implies the conditional CDF of (Y1, Y2, Y3, Y4) given (X1, X) under the DGPs (U, V, Y3, Y4, α0)

and (Ũ , V, Y3, Y4, α) are the same too. Such non-identification result holds even when X has full

support.

B Estimation and Asymptotic Properties

Our identification result is constructive in the sense that it motivates an estimator for the param-

eters of interest which we describe in detail here.

As we did in Section A, to simplify exposition, in the following we focus exclusively on the

parameters α0, γ0. Recall the choice probabilities P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x)

and its second derivative ∂2P
ij(x1, x), which can be estimated as we describe below. Another

function needed for our identification result is the density function of the unobserved term V ,

denoted by fV (·). This is also unknown, but from the structure of our model can be recovered

from the derivative with respect to the instrument X of E[Y2|X], and hence is estimable from

the data. Note that the proof of Theorem 2.1 shows that the sign of the index evaluated at two

different regressor values, which we denote here by (X1, X) and (X̃1, X̃) is determined by the choice
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probabilities via

∂2P
11(X1, X)/fV (X) + ∂2P

10(X̃1, X̃)/fV (X̃) ≥ 0 ⇐⇒ X1 + α− γX − (X̃1 − γX̃) ≥ 0.

This motivates us to use the maximum rank correlation estimator proposed by Han (1987).

Implementation requires further details to pay attention to. The unknown choice probabilities,

their derivatives, and the density of V will be estimated using nonparametric methods, and for this

we adopt locally linear methods as they are particularly well suited for estimating derivatives of

functions.

With functions and their derivatives estimated in the first stage of our procedure, the second

stage plugs in these estimated values into an objective function to be optimized. Specifically, letting

θ̂ denote (α̂, γ̂), our estimator is of the form:

θ̂ = arg max
θ
Qn(θ), Qn(θ) ≡

∑
i 6=j

ĝi,j(θ) (B.2)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We note that this estimator falls into the class of those which optimize a nonsmooth U-process

involving components estimated nonparametrically in a preliminary stage.1 Examples of other

estimators in this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010),

Jochmans (2013), Chen, Khan, and Tang (2016), and our approach to deriving the limiting dis-

tribution theory of our estimator will follow along the steps used in those papers. Our limiting

distribution theory for this estimator is based on the following regularity conditions:

RK1 θ0 lies in the interior of Θ, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

1An alternative estimation procedure could be based on the exact relationship in (2.7). Note the equality on the
left-hand side of (2.7) is a function of the data alone and not the unknown parameters. The right-hand side equality
can then be regarded as a moment condition to estimate the unknown parameters. We describe this estimator and
derive its asymptotic properties in the Online Supplement to the paper. While the two estimation approaches will
have similar asymptotic properties (root-n consistent, asymptotically normal), we prefer the rank estimator in (B.2)
which involves fewer tuning parameters. Furthermore rank type estimators in general are more robust to certain
types of misspecification, as pointed out in Khan and Tamer (2018).
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function which is twice continuously differentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P i,j(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are continuously

differentiable of order p2.

RK4 (First stage kernel function conditions) K(·), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of order p2.

RK5 (Rate condition on first stage bandwidth sequence) The first stage bandwidth sequence Hn

used in the nonparametric estimator of the choice probability functions and their derivatives

satisfies
√
nHp2−1

n → 0 and n−1/4H−1
n → 0.

The smoothness condition in Assumption RK4 and Assumption RK5 is due to the fact that we

need to nonparametrically estimate ∂2P
ij(X1, X) with sufficiently faster convergence rate. This will

require a stronger smoothness condition than that required for standard nonparametric estimation.

Assumption RK5 ensures that the bias of the first stage estimator of the derivative function con-

verges at the parametric rate and the RMSE of this estimator (with two regressors) is fourth-root

consistent, so results for two step estimation in Newey and McFadden (1994) can be applied.

Based on these conditions, we have the following theorem, whose proof is in Section F of the

Supplementary Appendix which characterizes the rate of convergence and asymptotic distribution

of the proposed estimator:

Theorem B.1. Under Assumptions RK1-RK5,

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (B.3)

where the forms of the Hessian term V and outer score term ∆ are described in detail in Section

F of the Supplementary Appendix.

C Finite Sample Properties

In this section we explore the finite sample properties of the proposed estimation procedure via a

simulation study. We will also see how sensitive the performance of the proposed estimator is to the

factor structure assumption. As a base comparison, we also report results for the estimator proposed

in Vytlacil and Yildiz (2007) to see how sensitive it is to their second instrument restriction.

Our data are simulated from base models of the form

Y1 = 1{X1 + α0Y2 − U ≥ 0} (C.1)

Y2 = 1{X − V > 0}, (C.2)

6



where X1 is binary with success probability 0.6, X has marginal distribution N (0, 1), X1 and

X are mutually independent, (X1, X) ⊥ (V,Π), U = γ0V +Π. (V,Π) are distributed independently

of each other, where Π is distributed following a standard normal distribution, and V is distributed

either standard normal, Laplace, or T (3). The parameters (α0, γ0) = (−0.25, 1.2) or (0.5, 1.2).

SinceX1 is discrete, Vytlacil and Yildiz’s (2007) identification condition does not hold. However,

the identification condition in this paper becomes

|α| ≤ length of the support of X,

which holds.

For each choice of sample size n = 100, 200, 400, 800, 1, 600, we simulate 280 samples and report

the bias, standard deviation (std), root mean squared error (RMSE), and median absolute deviation

(MAD) for both Vytlacil and Yildiz’s (2007) estimator (VY) and ours (KMZ). For implementation,

we use the second order local polynomial along with Gaussian kernels to nonparametrically estimate

the ∂2P
11(x1, x) and ∂2P

10(x1, x). The bandwidth we use is h1 = σxN
−1/7 where σx is the standard

deviation of X. fV (x) is nonparametrically estimated using a local linear estimator with the tuning

parameter h2 = σxN
−1/6.

As results from the table indicate, the finite sample performance of our estimator generally

agrees with the asymptotic theory. The RMSE for the estimator proposed here is decreasing as the

sample size increases, as one could expect given the consistency property of our estimator. Besides,

the decay rate of the RMSE and MAD is about
√

2 when n ≥ 400 as sample sizes doubles, in line

with the parametric rate of convergence of our estimator.

Vytlacil and Yildiz’s (2007) estimator, which does not exploit the factor structure, demonstrates

inconsistency for certain parameter values, as indicated by the bias and median bias not shrinking

with the sample size. In addition, the RMSE and MAD do not appear to decline at all, which also

suggests that Vytlacil and Yildiz’s (2007) estimator is inconsistent in these designs.2

Table 1: Normal V , α = 0.5

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.026 0.665 0.660 -0.246 0.658 0.500 0.032 0.634 0.560 -0.293 0.658 0.500 0.010 0.676 0.665 -0.225 0.662 0.500
200 0.004 0.591 0.475 -0.329 0.633 0.500 -0.015 0.568 0.400 -0.336 0.612 0.500 -0.003 0.616 0.495 -0.279 0.629 0.500
400 0.005 0.483 0.365 -0.341 0.573 0.500 0.030 0.459 0.310 -0.323 0.559 0.500 0.018 0.542 0.405 -0.314 0.589 0.500
800 0.065 0.456 0.300 -0.348 0.544 0.500 0.096 0.391 0.250 -0.357 0.511 0.500 0.046 0.462 0.295 -0.346 0.552 0.500

1,600 0.040 0.321 0.195 -0.413 0.503 0.500 0.017 0.294 0.190 -0.450 0.506 0.500 0.034 0.371 0.240 -0.368 0.506 0.500

2Because X1 is binary, Vytlacil and Yildiz’s (2007) estimator can only take 3 possible values: 0, -1 or 1. In
particular, when α = 0.5, in most of the replications, the estimator takes values 0 or 1. When α = −0.25, in most of
the replications, the estimator takes value -1. In both of these cases, the MAD remains constant over the different
sample sizes.
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Table 2: Normal V , α = −0.25

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.088 0.650 0.555 -0.466 0.710 0.750 0.092 0.614 0.530 -0.358 0.650 0.750 0.004 0.619 0.505 -0.430 0.681 0.750
200 -0.035 0.599 0.420 -0.446 0.681 0.750 0.012 0.552 0.385 -0.485 0.689 0.750 -0.008 0.583 0.425 -0.463 0.687 0.750
400 -0.016 0.467 0.325 -0.487 0.668 0.750 -0.010 0.388 0.200 -0.552 0.686 0.750 -0.003 0.496 0.340 -0.489 0.675 0.750
800 -0.028 0.324 0.165 -0.591 0.697 0.750 0.006 0.279 0.180 -0.599 0.701 0.750 0.032 0.399 0.230 -0.533 0.682 0.750

1,600 -0.006 0.244 0.150 -0.654 0.718 0.750 -0.028 0.204 0.130 -0.714 0.738 0.750 -0.021 0.279 0.190 -0.629 0.710 0.750

In the following, we also consider three DGPs (DGPs 1–3) such that the one-factor model does

not hold but the identification assumption in Vytlacil and Yildiz (2007) does. In this case, our

simulation results show that while, as expected, the estimator VY is still valid, our estimator still

performs reasonably well. Interestingly, this offers suggestive evidence that our estimator is robust

to some degree of misspecification. As such, these results complement previous work highlighting

the robustness of rank type estimators to misspecification Khan and Tamer (2018). In DGP 4, the

identification assumptions in both Vytlacil and Yildiz (2007) and our paper hold. In this case, we

found that our estimator has similar performance as that proposed by Vytlacil and Yildiz (2007).

The outcome and selection equations are the same as (C.1) and (C.2), respectively. Then,

DGP 1 : (X1, X) is jointly standard normally distributed. Let (e1, e2) jointly Laplace distributed

with mean zero and variance-covariance matrix Σ =

(
1 −0.5

−0.5 1

)
, e3 and e4 are uniformly

distributed on (0, 1), independent of each other, and independent of (e1, e2), V = e1 +e3−0.5,

U = e2 + e4 − 0.5, and α = −0.25.

DGP 2 : (X1, X) are the same as above, U = e1 + e2 − 0.5, and V = e1 + e3 − 0.5, where e1

is standard normally distributed, (e2, e3) are uniformly distributed on (0, 1), (e1, e2, e3) are

mutually independent, and α = −0.25.

DGP 3 : (X1, X) are the same as above, V = exp(e1+e2−0.5)−1
4 , U = exp(e1+e3−0.5)−1

4 , (e1, e2, e3) are

defined as above, and α = −0.5.

DGP 4 : (X1, X) are the same as above, V is Laplace distributed with mean zero and standard

derivation 0.5, U = V +V ′−0.5, where V ′ is uniform distributed on (0, 1) and is independent

of V , and α = −0.25.

For DGPs 1, 2, and 4, when computing ∂2P
11(x1, x) and ∂2P

10(x1, x), we use bandwidths h1 =

σx1N
−1/7 and h = σxN

−1/7 for variables X1 and X, respectively, where σx1 and σx are the standard

errors of X1 and X, respectively. To estimate the density fV (x), we use bandwidth h2 = σxN
−1/6.

For DGP 3, we use h1 = h2 = h = σx1N
−1/5. In all simulations, we use 280 replications.
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Table 3: Alternative DGPs

DGP 1 DGP 2

kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.065 0.678 0.600 -0.055 0.666 0.535 -0.058 0.621 0.505 -0.05 0.621 0.470
200 -0.118 0.543 0.370 -0.080 0.497 0.320 -0.122 0.523 0.350 -0.097 0.495 0.350
400 -0.117 0.413 0.280 -0.071 0.378 0.245 -0.062 0.335 0.215 -0.033 0.316 0.220
800 -0.102 0.287 0.170 -0.062 0.243 0.160 -0.031 0.242 0.150 -0.008 0.215 0.150

1,600 -0.071 0.193 0.140 -0.035 0.155 0.100 -0.038 0.167 0.100 -0.031 0.158 0.100

DGP 3 DGP 4

100 -0.012 0.583 0.480 -0.015 0.565 0.430 -0.057 0.401 0.240 -0.066 0.422 0.240
200 -0.061 0.425 0.275 -0.068 0.399 0.270 -0.041 0.282 0.180 -0.049 0.263 0.145
400 -0.041 0.259 0.170 -0.042 0.237 0.155 -0.062 0.184 0.135 -0.047 0.186 0.120
800 -0.061 0.219 0.140 -0.047 0.182 0.120 -0.029 0.119 0.080 -0.034 0.115 0.070

1,600 -0.038 0.130 0.080 -0.035 0.119 0.080 -0.024 0.090 0.060 -0.022 0.086 0.070

In the first three DGPs, we see that VY’s estimator has better performance in terms of both bias

and MSE. On the other hand, although the models do not have a factor structure, our estimator

still performs reasonably well. In the last DGP, support conditions in both Vytlacil and Yildiz

(2007) and our paper hold. Table 3 shows that our and Vytlacil and Yildiz’s (2007) estimators

have similar performance in terms of bias and MSE. Although our estimator is expected to be more

efficient as we use the factor structure in estimation, it is not. We conjecture that it is because our

estimator does not necessarily use all the information, or in other words, achieve the semiparametric

efficiency bound. To establish the semiparametric efficient estimator in the model with and without

the factor structure is an interesting yet challenging task. We leave it as a topic for future research.

D Proof of Theorem 2.1

Proof: Note that

P 11(z1, z3, x) =

∫ x

−∞
FΠ(z′1λ0 + z′3β0 + α0 − γ0v)fV (v)dv

P 10(z̃1, z̃3, x̃) =

∫ +∞

x̃
FΠ(z̃′1λ0 + z̃′3β0 − γ0v)fV (v)dv.

Taking derivatives w.r.t. the third argument of the LHS function, we obtain

∂xP
11(z1, z3, x)/fV (x) = FΠ(z′1λ0 + z′3β0 + α0 − γ0x)

−∂xP 10(z̃1, z̃3, x̃)/fV (x̃) = FΠ(z̃′1λ0 + z̃′3β0 − γ0x̃).
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By Assumption A4, we know that there exists pairs such that

Z ′1λ0 + Z ′3β0 + α0 − γ0X = Z̃ ′1λ0 + Z̃ ′3β0 − γ0X̃.

Because FΠ(·) is monotone increasing, we have

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = 0

Note the LHS of the above display is identified from data. Denote Z1,1 as the first element of Z1,

whose coefficient is set to one. The rest of Z1 is denoted as Z1,−1, whose coefficient is denoted as

λ0,−1. Then, we have

α0 + (Z1,−1 − Z̃1,−1)′λ0,−1 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = Z̃1,1 − Z1,1.

Then, by Assumption A4, we can find (z
(l)
1 , z

(l)
3 , x(l))dl=1 and (z̃

(l)
1 , z̃

(l)
3 , x̃(l))dl=1 such that

rank


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

x(1) − x̃(1) · · · x(d) − x̃(d)

 = d.

Then, we can identify (α0, λ0, β0, γ0) by solving the linear system that

α0 + (z
(1)
1,−1 − z̃

(1)
1,−1)′λ0,−1 + (z

(1)
3 − z̃

(1)
3 )′β0 − γ0(x(1) − x̃(1)) =z̃

(1)
1,1 − z

(1)
1,1 ,

...

α0 + (z
(d)
1,−1 − z̃

(d)
1,−1)′λ0,−1 + (z

(d)
3 − z̃(d)

3 )′β0 − γ0(x(d) − x̃(d)) =z̃
(d)
1,1 − z

(d)
1,1 .

This concludes the proof.

E Proof of Theorem 3.1

For notation simplicity, we write W̃ = ν0W , σ̃0 = σ0/ν0, ν̃0 = 1/ν0, and

Y2 = 1{X ≥ ν̃0W̃ + η2}

Y3 = W̃ + η3

Y4 = σ̃0W̃ + η4.
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Because Assumptions B2–B6 hold, by applying Hu and Schennach (2013, Theorem 1) to Y3 and

Y4, we can identify the densities for ν0W = W̃ , η3, and η4 as well as σ0/ν0 = σ̃0.

Then, we have

∂y3P(Y2 = 1, Y3 ≤ y3|X = x) =∂y3

∫
Fη2(x− ν̃0w)Fη3(y3 − w)fW̃ (w)dw

=

∫
Fη2(x− ν̃0w)fη3(y3 − w)fW̃ (w)dw.

Applying Fourier transform w.r.t. y3 on both sides, we have

F(∂y3P(Y2 = 1, Y3 ≤ ·|X = x))(t) = F(Fη2(x− ν̃0·)fW̃ (·))(t)F(fη3(·))(t),

where for a generic function g(w),

F(g(·))(t) =
1√
2π

∫
exp(−2πitw)g(w)dw.

Therefore,

F−1
(
F(∂y3P(Y2=1,Y3≤·|X=x))(·)

F(fη3 (·))(·)

)
(w)

fW̃ (w)
= Fη2(x− ν̃0w), (E.1)

where for a generic function g(w),

F−1(g(·))(t) =
1√
2π

∫
exp(2πitw)g(w)dw.

Note the LHS of (E.1) can be identified from data. We choose two pairs (x,w) and (x′, w′) such

that w 6= w′ and

F−1
(
F(∂y3P(Y2=1,Y3≤·|X=x))(·)

F(fη3 (·))(·)

)
(w)

fW̃ (w)
=
F−1

(
F(∂y3P(Y2=1,Y3≤·|X=x′))(·)

F(fη3 (·))(·)

)
(w′)

fW̃ (w′)
.

Then, given the monotonicity of Fη2 , we have

x− ν̃0w = x′ − ν̃0w
′,

or

ν̃0 = (x− x′)/(w − w′),

which is identified. Given the identification of ν̃0 and the distribution of W̃ , we can identify the

distribution of W = ν̃0W̃ . Recall Fη1(·) and fη2(·) are the CDF and PDF of η1 and η2, respectively.
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Then, we have

P (Y2 = 1|X = x) = P (W + η2 ≤ x).

Because X has full support, we can identify the distribution of W + η2. Then, it follows from

standard deconvolution argument and the fact that the distribution of W is identified that we can

identify the distribution of η2. In addition, note that

P 11(z1, z3, x) =P (Y1 = 1, Y2 = 1|Z1 = z1, Z3 = z3, X = x)

=

∫
Fη1(z′1λ0 + z′3β0 + α0 − γ0w)Fη2(x− w)fW (w)dw

and

P 10(z1, z3, x) =P (Y1 = 1, Y2 = 0|Z1 = z1, Z3 = z3, X = x)

=

∫
Fη1(z′1λ0 + z′3β0 − γ0w)(1− Fη2(x− w))fW (w)dw.

Taking derivatives of P 11(z1, z3, x) and P 10(z1, z3, x) w.r.t. x, we have

∂xP
11(z1, z3, x) =

∫
Fη1(z′1λ0 + z′3β0 + α0 − w)fη2(x− w)fW (w)dw (E.2)

and

−∂xP 10(z1, z3, x) =

∫
Fη1(z′1λ0 + z′3β0 − γ0w)fη2(x− w)fW (w)dw. (E.3)

Applying Fourier transform on both sides of (E.2) and (E.3), we have

F(∂xP
11(z1, z3, ·)) = F(Fη1(z′1λ0 + z′3β0 + α0 − ·)fW (·))F(fη2(·)) (E.4)

and

F(−∂xP 10(z1, z3, ·)) = F(Fη1(z′1λ0 + z′3β0 − ·)fW (·))F(fη2(·)).

Then, by (E.4), we can identify Fη1(z′1λ0 + z′3β0 + α0 − ·) by

Fη1(z′1λ0 + z′3β0 + α0 − γ0·) = F−1

(
F(∂xP

11(z1, z3, ·))
F(fη2(·))

)
(·)/fW (·).

12



Similarly, we can identify

Fη1(z′1λ0 + z′3β0 − γ0·) = F−1

(
F(−∂xP 10(z1, z3, ·))

F(fη2(·))

)
(·)/fW (·).

Because Fη1(·) is monotone increasing, we have

F−1

(
F(∂xP

11(z1, z3, ·))
F(fη2(·))

)
(w)/fW (w) = F−1

(
F(−∂xP 10(z̃1, z̃3, ·))

F(fη2(·))

)
(w̃)/fW (w̃)

⇐⇒ α0 + (z1 − z̃1)′λ0 + (z3 − z̃3)′β0 − γ0(w − w̃) = 0

Then, by Assumption B7, we can find (z
(l)
1 , z

(l)
3 , w(l))dl=1 and (z̃

(l)
1 , z̃

(l)
3 , w̃(l))dl=1 such that

rank


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

w(1) − w̃(1) · · · w(d) − w̃(d)

 = d.

Then, we can identify (α0, λ0, β0, γ0) by solving the linear system that

α0 + (z
(1)
1,−1 − z̃

(1)
1,−1)′λ0,−1 + (z

(1)
3 − z̃

(1)
3 )′β0 − γ0(w(1) − w̃(1)) =z̃

(1)
1,1 − z

(1)
1,1 ,

...

α0 + (z
(d)
1,−1 − z̃

(d)
1,−1)′λ0,−1 + (z

(d)
3 − z̃(d)

3 )′β0 − γ0(w(d) − w̃(d)) =z̃
(d)
1,1 − z

(d)
1,1 .

This concludes the proof.

F Proof of Theorem B.1

Recall we defined our two step rank estimator as follows: Letting θ̂ denote (α̂, γ̂), our estimator is

of the form:

θ̂ = arg max
θ
Q̂n(θ) ≡

∑
i 6=j

ĝi,j(θ)

13



in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃)

We first show consistency of the rank estimator. To do so we first define the objective function

Qifn,2(θ), defined as

Qifn,2(θ) ≡
∑
i 6=j

gi,j(θ)

where

gi,j(θ) = [1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

Since gi,j is bounded by 1 ∀i, j, and our random sampling assumption, we have for each θ,

Qifn,2(θ)
p→ E[gi,j(θ)] ≡ Γ0(θ)

Furthermore, by Assumptions RK2, RK3 we can extend this result to converging uniformly over

θ ∈ Θ (see, e.g. Sherman (1994a), Sherman (1993).) Γ0(θ) is continuous in θ by Assumptions

RK2,RK3, and uniquely maximized at θ = θ0 by our identification result in Theorem 2.1. Along

with Assumption RK1, the infeasible estimator, defined as the maximizer of Qifn,2(θ) converges in

probability to θ0 by, for example Theorem 2.1 in Newey and McFadden (1994). To show consis-

tency of the feasible estimator, where we first estimate the choice probability functions and their

derivatives nonparametrically, we only now need to show the two objective functions converged to

each other uniformly in θ ∈ Θ. Consistency of the first stage estimators follows from Assumptions

RK3-RK5, see for example Henderson, Li, Parmeter, and Yao (2015). However, this does not

immediately imply convergence of the difference in feasible and infeasible objective functions since

the nonparametric estimators are inside indicator functions so the continuous mapping theorem

does immediately not apply. Nonetheless the desired result can still be attained in one of two ways.

One would be to replace indicator functions with smooth distribution functions in a fashion analo-

gous to Horowitz (1992). This would have the disadvantage of introducing tuning parameters, but

another approach would be to replace the indicator functions with their conditional expectations,
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and note that the conditional expectations are smooth functions using Assumption RK2, RK3.

To see why, let m̂(xi) be a nonparametric estimator of a function m(xi), which is assumed to be

smooth. We evaluate the plim of

I[m̂(xi) > 0]− I[m(xi) > 0] = I[m̂(xi) > 0,m(xi) < 0]− I[m̂(xi) < 0,m(xi) > 0]

we show that the first term converges in probability to 0 as identical arguments can be used for the

second term. Let ε > 0 be given; P (I[m̂(xi) > 0,m(xi) < 0] > ε) ≤ E[I[m̂(xi) > 0,m(xi) < 0]/ε

by Markov’s inequality. But the expectation in the numerator on the right hand side is

P (m̂(xi) > 0,m(xi) < 0) = P (m̂(xi) > 0,m(xi) ≤ −δn) + P (m̂(xi) > 0,m(xi) ∈ (−δn, 0))

where δn is a sequence of positive numbers converging to 0, at a slow rate, e.g.(log n−1). The first

term on the right hand side is bounded above by

P (|m̂(xi)−m(xi)| > δn) ≤ P (‖m̂(·)−m(·)‖ > δn)

where the notation ‖m̂(·) − m(·)‖ above denotes the sup norm over xi. The right hand side

probability above will be sufficiently small for n large enough by the rate of convergence of the

nonparametric estimator. The second term, P (m̂(xi) > 0,m(xi) ∈ (−δn, 0)), is bounded above by

P (m(xi) ∈ (−δn, 0)) which by the smoothness of m(xi) converges to 0, and hence can be made

arbitrarily small. �

To derive the rate of convergence and limiting distribution theory for the feasible estimator

where we first estimate choice probability functions and their derivatives nonparametrically, we

expand the nonparametric estimators around true functions that are inside the indicator function in

Qn2. Then we can follow the approach in Sherman (1994b). Having already established consistency

of the estimator, we will first establish root-n consistency and then asymptotic normality. For

root-n consistency we will apply Theorem 1 of Sherman (1994b) and so here we change notation

to deliberately stay as close as possible to his. We will actually apply this theorem twice, first

establishing a slower than root-n consistency result and then root-n consistency. Keeping our

notation deliberately as close as possible to Sherman(1994b), here replacing our second stage rank

objective function Q̂2,n(θ) with Ĝn(θ), our infeasible objective function Qifn,2(θ) with Gn(θ), and

denoting our limiting objective function, previously denoted by Γ0(θ), by G(θ). We have the

following theorem:

Theorem F.1. (From Theorem 1 in Sherman (1994b)).

If δn and εn are sequences of positive numbers converging to 0, and

1. θ̂ − θ0 = op(δn)

2. There exists a neighborhood of θ0 and a constant κ > 0 such that G(θ)− G(θ0) ≥ κ‖θ − θ0‖2
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for all θ in this neighborhood.

3. Uniformly over Op(δn) neighborhoods of θ0

Ĝn(θ) = G(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(εn)

then θ̂ − θ0 = Op(max(ε1/2, n−1/2)).

Once we use this theorem to establish the rate of convergence of our rank estimator, we can

attain limiting distribution theory, which will follow from the following theorem:

Theorem F.2. (From Theorem 2 in Sherman (1994b)). Suppose θ̂ is
√
n-consistent for θ0, an

interior point of Θ. Suppose also that uniformly over Op(n
−1/2) neighborhoods of θ0,

Ĝn(θ) =
1

2
(θ − θ0)′V (θ − θ0) +

1√
n

(θ − θ0)′Wn + op(1/n) (F.1)

where V is a negative definite matrix, and Wn converges in distribution to a N(0,∆) random vector.

Then

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (F.2)

We first turn attention to applying Theorem F.1 to derive the rate of convergence of our estima-

tor. Having already established consistency of our rank estimator, we turn attention to the second

condition in Theorem F.1. To show the second condition, we will first derive an expansion for

G(θ) around G(θ0). We denote that even though Gn(θ) is not differentiable in θ, G(θ) is sufficiently

smooth for Taylor expansions to apply as the expectation operator is a smoothing operator and

the smoothness conditions in Assumptions RK2, RK3. Taking a second order expansion of G(θ)

around G(θ0), we obtain

G(θ) = G(θ0) +∇βG(θ0)′(θ − θ0) +
1

2
(θ − θ0)′∇θθG(θ∗)(θ − θ0) (F.3)

where ∇θ and ∇θθ denote first and second derivative operators and θ∗ denotes an intermediate

value. We note that the first two terms of the right hand side of the above equation are 0, the first

by how we defined the objective function, and the second by our identification result in Theorem

2.1. Define

V ≡ ∇θθG(θ0) (F.4)

and V is positive definite by Assumption A3, so we have

(θ − θ0)′∇θθG(θ0)(θ − θ0) > 0 (F.5)
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∇θθG(θ) is also continuous at θ = θ0 by Assumptions RK2 and RK3, so there exists a neighborhood

of θ0 such that for all θ in this neighborhood, we have

(θ − θ0)′∇θθG(θ)(θ − θ0) > 0 (F.6)

which suffices for the second condition to hold.

To show the third condition in Theorem F.1, we next establish the form of the remainder term
when we replace nonparametric estimators with the true functions they are estimating. Specifically
we wish to evaluate the difference between

[1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (F.7)

+ 1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (F.8)

and

[1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (F.9)

+ 1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (F.10)

To establish a representation for this difference, we first simplify notation we write the expressions

as:

I[m̂1(xi) + m̂2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (F.11)

+ I[m̂1(xi) + m̂2(xj) < 0]I[∆x′ijθ < 0] (F.12)

and

I[m1(xi) +m2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (F.13)

+ I[m1(xi) +m2(xj) < 0]I[∆x′ijθ < 0] (F.14)

respectively, where here xi denotes the separate components of x1i, xi, and analogous for xj . We

first explore

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0]

for each i, j inside the double summation:

1

n(n− 1)

∑
i 6=j

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0] (F.15)

An immediate technical difficulty that arises with the above term is the presence of a nonpara-
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metric estimator inside the indicator function above. A simple approach to deal with this would

be to replace the indicator function with a smoothed indicator function in a fashion analogous to

Horowitz (1992), under appropriate conditions on the kernel function and smoothing parameter.

Such an approach is not necessary as long as the nonparametric estimator m̂1(xi) is asymptotically

normal, and asymptotically centered at m1(xi), which will be the case with our proposed kernel

estimator of the probability function and its derivative. In either approach (smoothed indicator or

not) we can show that (F.15) can be represented as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) ((m̂1(xi)−m1(xi)) + (m̂2(xj)−m2(xj))) I[∆x′ijθ ≥ 0]+op(n
−1) (F.16)

where φ(0) denotes the standard normal pdf evaluated at 0, fmij (0) denotes the density function of

m1(xi) +m2(xj) evaluated at 0, and the op(n
−1) term is uniform in θ lying in op(1) neighborhoods

of θ0. Therefore, uniformly for θ in an op(1) neighborhood of θ0, this remainder term converges to

0 at the rate of convergence of the first stage nonparametric estimator, which under Assumptions

RK3, RK4, RK5, is op(n
−1/4). Thus by repeated application of Theorem F.1, we can conclude that

the estimator is root-n consistent. To show that the estimator is also asymptotically normal, we

will first derive a linear representation for the term:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)(m̂1(xi)−m1(xi))I[∆x′ijθ ≥ 0] (F.17)

As this term is linear in the nonparametric estimator m̂1(xi), the desired linear representation

follows from arguments used in Khan (2001). One slight difference here compared to Khan (2001)

is that here our nonparametric estimators and estimands are each ratios of derivatives. Nonetheless,

after linearizing these ratios as done in, e.g. Newey and McFadden (1994). Specifically, we have

that F.17 can be expressed as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
1

m1den(xi)
(m̂1num(xi)−m1num(xi))I[∆x′ijθ ≥ 0] (F.18)

− 1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
m1num(xi)

m1den(xi)2
(m̂1den(xi)−m1den(xi))I[∆x′ijθ ≥ 0] (F.19)

where m̂1num(xi) denotes the numerator {∂2P̂
11(X1,i, Xi)}, the estimator of m1num(xi) which de-

notes {∂2P
11(X1,i, Xi)}, and m̂1den(xi) denotes the denominator f̂V (Xi), the estimator of m1den(xi)

which denotes fV (Xi).

Plugging in the definitions of the kernel estimators of m̂1num(xi), and m̂1den(xi), results in a

third order process. Using arguments in Khan (2001) and Powell, Stock, and Stoker (1989) we can

express the third order U process as a second order U process plus an asymptotically negligible
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remainder term. This is of the form:

1

n

n∑
i=1

φ(0)
`(xi)

m1den(xi)
(y1i −m1num(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(F.20)

where `(xi) ≡
−f ′X(xi)

fX(xi)
. We note that the function E

[
fmij (0)I[∆x′ijθ ≥ 0]|xi

]
, which we denote

here by H(xi, θ) is a smooth function in θ. We will use this feature to expand H(xi, θ) around

H(xi, θ0). Analogous arguments can be used to attain a linear representation of (F.19), which is of

the form:

1

n

n∑
i=1

φ(0)
`2(x1i)m1num(xi)

m1den(xi)2
(y2i −m1den(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(F.21)

where `2(x1i) ≡
−f ′X1

(x1i)

fX(x1i)
. Grouping (F.20) and (F.21) we have

1

n

n∑
i=1

φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
H(xi, θ)

(F.22)

Note that by Assumptions RK2, RK3, H(xi, θ) is smooth in θ implying the expansion

H(xi, θ) = H(xi, θ0) +∇θH(xi, θ0)′(θ − θ0)

Thus we can express (F.22) as the which we note is a mean 0 sum

1

n

n∑
i=1

ψ1rnki(θ − θ0) (F.23)

where

ψ1rnki = φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
∇θH(xi, θ0)

(F.24)

We can use identical arguments to attain a linear representation for the U− process:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) (m̂2(xj)−m2(xj)) I[∆x′ijθ ≥ 0] (F.25)

where m̂2(xj) is also a ratio of nonparametric estimators where here the numerator is m̂2n(xj) de-

noting {∂2P̂
10(X1,j , Xj)}, the estimator of m2n(x2) which denotes {∂2P

10(X1,j , Xj)}, and m̂2d(xj)

denotes the denominator f̂V (Xj), the estimator of m1den(xj) which denotes fV (Xj).
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and by using identical arguments it too can be represented as a mean 0 sum denoted here by

1

n

n∑
i=1

ψ2rnki (F.26)

where ψ2rnki is defined as:

Finally after grouping the two terms and expandingH(xi, θ) aroundH(xi, θ0) we get that (F.16)

can be represented as:

1

n

n∑
i=1

(ψ1rnki + ψ2rnki)
′(θ − θ0) + op(n

−1) (F.27)

Combining our results, from Theorem F.2, we have that

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (F.28)

where

V = ∇θθG(θ0) (F.29)

and

∆ = E
[
(ψ1rnki + ψ2rnki)(ψ1rnki + ψ2rnki)

′] (F.30)

G Model with Two Idiosyncratic Shocks

In this section, we focus on the identification of (α0, γ0) in the “condensed” model that X1 =

Z ′1λ0 + Z ′3β0 is observed and

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.
(G.31)

with the understanding that (λ0, β0) can be identified jointly with α0 and γ0, as shown in Theorems

2.1 and 3.1. We further impose U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually

independent. First we consider the case γ0 = 1 and X1 is binary, because even in this context,

for the baseline case with one idiosyncratic shock, we can identify α0. But identification of α0

becomes more difficult in this model without the help of repeated measurements, as established in

the following theorem.

Theorem G.1. Suppose (G.31) holds, γ0 is known to be one, X1 is binary, and W has a bounded
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support [−b,−a] such that 0.5 > b− a and 1− (b− a) > α0 > b− a, then α0 is not point identified.

This nonidentification result motivates imposing additional structure on W , and we consider

the following model

C1 U = γ0W + η1 and V = σ0W + η2.

C2 W is standard normally distributed.

C3 W , η1 and η2 are mutually independent.

C4 X has full support.

C5 Denote the density of η2 as fη2 , then fη2 does not have a Gaussian component in the sense

that

fη2 ∈ G = {g is a density on < s.t. : g = g′ ∗ φσ for some density g′ implies that σ = 0},

where φσ is the density for a normal distribution with zero mean and σ2 variance.

Assumption C5 effectively assumes that the distribution of η2 has tail properties different from

those of a normal distribution. This type of assumption is made in the deconvolution literature as

it is necessary for identification of the target density when the error distribution is not completely

known- see, e.g., Butucea and Matias (2005).3 The importance of non-normality in factor models

goes back to Geary (1942) and Reiersol (1950), who have shown that factor loadings are identified

in a linear measurement error model if the factor is not Gaussian. In our case, note V = σ0W + η2

where W is standard normal and the density of V is identified from data. Here we want to identify

σ0 and the density of η2. If η2 has a Gaussian component, then

η2 = η′2 + σ̃W̃ ,

where W̃ is a standard normal random variable that is independent of η′2 and W and σ̃ > 0. It

implies

V = (σ0W + σ̃W̃ ) + η′2,

where η′2 does not have a Gaussian component. In addition, note that (σ0W + σ̃W̃ ) =
√
σ2

0 + σ̃2G,

for some standard normal random variable G. Therefore, without Assumption B5, σ0 is not

identified.

Theorem G.2. If Assumptions C1–C5 hold, then σ0, γ0 and α0 are identified.

3In fact, based on the results in Butucea and Matias (2005), W can belong to a more general class of known
distributions. Furthermore, we note that if σ0 is known, then Assumption C5 is not necessary.
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Note that this identification result does not require any variation from X1, which is in spirit

close to the one-factor model in our paper and is different from the identification result in Vytlacil

and Yildiz (2007). We also note that this result does not contradict the counterexample in the

paper. In the counterexample, we only assume that we know the support of W is bounded. Here

we assume that the full density of W , and thus, the support of W is known.

H Proof of Theorem A.1

Denote P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x). Then

P 11(x1, x) =

∫ x

−∞
FU (x1 + α0|V = v)f(v)dv

P 10(x̃1, x) =

∫ +∞

x
FU (x̃1|V = v)f(v)dv.

(H.32)

Taking derivatives w.r.t. the second argument of the the LHS function, we have

∂2P
11(x1, x) = FU (x1 + α0|V = x)f(x)

∂2P
10(x̃1, x) = −FU (x̃1|V = x)f(x).

If |α0| ≤ b− a, then there exists a pair (x1, x̃1) such that x1 + α0 = x̃1. This pair can be identified

by checking the equation below:

∂2P
11(x1, x)/f(x) + ∂2P

10(x̃1, x)/f(x) = 0.

This concludes the sufficient part.

When α0 < a− b, for any α < α0, we can define

Ũ = U + α− α0 if U ≤ b+ α0

Ũ = U if U > b+ α0
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Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ b+ α0|V = v) + P (Ũ ≤ x1 + α,U > b+ α0|V = v)

= P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ b+ α0|V = v) + P (Ũ ≤ x1, U > b+ α0|V = v)

= P (U ≤ b+ α0, U ≤ x1 + α0 − α|V = v) + P (b+ α0 < U ≤ x1|V = v)

= P (U ≤ b+ α0|V = v) + P (b+ α0 < U ≤ x1|V = v)

= P (U ≤ x1|V = v),

where the third equality holds because, since α0 < a − b and α < α0, b + α0 ≤ x1 + α0 − α for

x1 ∈ [a, b]. Let GU,V and GŨ ,V be the joint distribution of (U, V ) and (Ũ , V ) respectively. Then

the above calculation with (H.32) imply that (α0, GU,V ) and (α,GŨ ,V ) produce the identical pair

(P 11(x1, x), P 10(x1, x)). In addition, the distribution of V is unchanged so that P (Y2 = 1|X = x)

is identified from data. Therefore, (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.

Similarly, when α0 > b− a, for any α > α0, we can define

Ũ = U + α− α0 if U > a+ α0

Ũ = U if U ≤ a+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α0|V = v) + P (Ũ ≤ x1 + α,U > a+ α0|V = v)

= P (U ≤ a+ α0|V = v) + P (a+ α0 < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α0|V = v) + P (Ũ ≤ x1, U > a+ α0|V = v)

= P (U ≤ x1|V = v),

where we use the facts that x1 ≤ a + α0 and x1 − a < α for x1 ∈ [a, b]. So again, (α0, GU,V ) and

(α,GŨ ,V ) are observationally equivalent.

I Proof of Theorem A.2

The sign of α0 is identified by the data. In the following, we focus on deriving the results when

α0 > b−a. By the proof of Theorem A.1, we have already shown that all α > α0 is in the identified

23



set. Now we consider b−a+α0
2 ≤ α < α0.

Ũ = U + α− α0 if U > a+ α

Ũ = U if U ≤ a+ α

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α|V = v) + P (Ũ ≤ x1 + α,U > a+ α|V = v)

= P (U ≤ a+ α|V = v) + P (a+ α < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α|V = v) + P (Ũ ≤ x1, U > a+ α|V = v)

= P (U ≤ x1|V = v) + P (U ≤ x1 + α0 − α,U > a+ α|V = v).

= P (U ≤ x1|V = v).

Here note that the last equality is because x1 +α0−α ≤ b+α0−α ≤ a+α if α ≥ b−a+α0
2 . Denote

α(1) = b−a+α0
2 . Then we have shown that there exists U (1)(α) which only depends on α such that

for any x1 ∈ [a, b], any v and any α0 > α ≥ α(1)

P (U (1)(α) ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α) ≤ x1|V = v) = P (U ≤ x1|V = v).

In particular, there exists U (1)(α(1)) such that

P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

Now repeating the above construction but replacing U with U (1) and α0 with α(1), we have for

any α(1) > α ≥ α(2) ≡ b−a+α(1)

2 , there exists U (2)(α) such that for any x1 ∈ [a, b], any v and any

α(1) > α ≥ α(2),

P (U (2)(α) ≤ x1 + α(2)|V = v) = P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (2)(α) ≤ x1|V = v) = P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

This concludes that any α such that α0 > α ≥ α(2) is in the identified set. In general, by repeating

the procedure k times, we have that any α such that

α0 > α ≥ α(k) = (1− 1

2k
)(b− a) +

α0

2k
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is in the identified set. For any α > b−a, there exists some finite k such that α > (1− 1
2k

)(b−a)+ α0

2k
.

This concludes the result that α > b− a is in the identified set.

Finally, since if α > b−a, ∂2P
11(x1, x)+∂2P

10(x̃1, x) > 0 for all pairs of (x1, x) and (x̃1, x) while,

if α ≤ b−a, at least there exists one pair (x1, x) and (x̃1, x) such that ∂2P
11(x1, x)+∂2P

10(x̃1, x) ≤ 0.

This implies α ≤ b−a is not in the identified set. Therefore, the sharp identified set when α0 > b−a
is (b− a,∞).

When α0 < a− b, a symmetric argument implies that the identified set is (−∞, a− b).

J Proof of Theorem G.1

Our first result for this model illustrates how identification can become more difficult. In our first

result for this model, we show when −W has a bounded support, say [a, b], then α0 is not identified

if α0 > b− a. To establish this, consider an impostor α such that α < α0. In addition, we consider

the case where α0 − α + b < α0 + a and α + b < a + 1. Such α exists because of the fact that

1− (b− a) > α0 > b− a. Let ∆ = α0 − α and (W̃ , η̃1, η̃2) be mutually independent such that W̃ is

distributed as W −∆, η̃2 is distributed as η2 −∆, and

Fη̃1(e) =



Fη1(e) on e ≤ a,

Fη1(a) on η1 ∈ (a, a+ ∆],

Fη1(e−∆) on e ∈ (a+ ∆, b+ ∆],

α0+a−e
α0+a−b−∆Fη1(b) + e−b−∆

α0+a−b−∆Fη1(α0 + a) on e ∈ (b+ ∆, α0 + a],

Fη1(e) on e ∈ (α0 + a, α0 + b),

Fη1(α0 + b) + e−α0−b
a+1+∆−α0−b(Fη1(a+ 1)− Fη1(α0 + b)) on e ∈ (α0 + b, a+ 1 + ∆],

Fη1(e−∆) on e ∈ (a+ ∆ + 1, b+ ∆ + 1],

Fη1(b+ 1) + e−(b+∆+1)
a+α0−b−∆ (Fη1(a+ α0 + 1)− Fη1(b+ 1)) on e ∈ (b+ ∆ + 1, a+ α0 + 1],

Fη1(e) on e > a+ α0 + 1.

Then, because −w̃ = ∆− w ∈ [a+ ∆, b+ ∆] and x1 = 0, 1,

P (Y1 = 1, Y2 = 0|X = x,X1 = x1) =

∫
Fη1(x1 − w)(1− Fη2(x− w))fW (w)dw

=

∫
Fη̃1(x1 − w̃)(1− Fη̃2(x− w̃))fw̃(w̃)dw̃.
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Similarly, because α−w̃ = α0−w ∈ [α0+a, α0+b] and for e ∈ (α0+a, α0+b]∪(1+α0+a, 1+α0+b],

Fη̃1(e) = Fη1(e), we have

P (Y1 = 1, Y2 = 1|X = x,X1 = x1) =

∫
Fη1(x1 + α0 − w)Fη2(x− w)fW (w)dw

=

∫
Fη1(x1 + α− (w + α− α0))Fη2(x− w)fW (w)dw

=

∫
Fη̃1(x1 + α− w̃)Fη̃2(x− w̃)fw̃(w̃)dw̃.

This implies α0 is not identified from the impostor α.

K Proof of Theorem G.2

We first show that both σ0 and the density of η2 are identified. Note X has full support. This

implies the density of V denoted as fV (·) is identified via

fV (v) = ∂vE(Y2|X = v).

In addition, we have

fV (·) = fη2 ∗ φσ0(·),

where ∗ denotes the convolution operator. Suppose fη2(·) and σ0 are not identified so that there

exist f ′η2(·) and σ′ such that

fV (·) = f ′η2 ∗ φσ′(·).

Without loss of generality, we assume σ′ ≥ σ0, otherwise, we can just relabel fη2(·) and f ′η2(·).
Then we have

fη2(·) = f ′η2 ∗ φ(σ′2−σ2
0).

By Assumption B5, we have σ
′

= σ0, which implies fη2(·) = f ′η2(·).

In the following, we proceed given that fη2(·) and σ0 are known. Recall Fη1(·) as the CDF of

η1. Then,

P 11(x1, x) =P (Y1 = 1, Y2 = 1|X1 = x1, X = x) =

∫
Fη1(x1 + α0 − γ0w)Fη2(x− σ0w)fW (w)dw
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and

P 10(x1, x) =P (Y1 = 1, Y2 = 0|X1 = x1, X = x) =

∫
Fη1(x1 − γ0w)(1− Fη2(x− σ0w))fW (w)dw.

Taking derivatives of P 11(x1, x) and P 10(x1, x) w.r.t. x, we have

∂xP
11(x1, x) =

∫
Fη1(x1 + α0 − γ0w)fη2(x− σ0w)fW (w)dw (K.33)

and

−∂xP 10(x1, x) =

∫
Fη1(x1 − γ0w)fη2(x− σ0w)fW (w)dw. (K.34)

Applying Fourier transform on both sides of (K.33) and (K.34), we have

F(∂xP
11(x1, ·)) = Fσ0(Fη1(x1 + α0 − γ0·)fW (·))F(fη2(·)) (K.35)

and

F(−∂xP 10(x1, ·)) = Fσ0(Fη1(x1 − γ0·)fW (·))F(fη2(·)), (K.36)

where for a generic function g(w),

Fσ0(g(·))(t) =
1√
2π

∫
exp(−2πitσ0w)g(w)dw.

Then, by (K.35), we can identify Fη1(x1 + α0 − ·) by

Fη1(x1 + α0 − γ0·) = F−1
σ0

(
F(∂xP

11(x1, ·))
F(fη2(·))

)
(·)/fW (·).

Similarly, we can identify

Fη1(x1 − γ0·) = F−1
σ0

(
F(−∂xP 10(x1, ·))
F(fη2(·))

)
(·)/fW (·),

where for a generic function g(w),

F−1
σ0 (g(·))(t) =

σ0√
2π

∫
exp(2πitσ0w)g(w)dw.

By finding the two pairs ((x1, w), (x′1, w
′)) and ((x̃1, w̃), (x̃′1, w̃

′)) such that w − w′ 6= w̃ − w̃′,

Fη1(x1 + α0 − γ0w) = Fη1(x′1 − γ0w
′), and Fη1(x̃1 + α0 − γ0w̃) = Fη1(x̃′1 − γ0w̃

′)
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we can identify both α0 and γ0 as the solution of the following linear system:

α0 + γ0(w′ − w) = x′1 − x1 α0 + γ0(w̃′ − w̃) = x̃′1 − x̃1.
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