
Supplement to “Informational Content of Factor Structures in
Simultaneous Binary Response Models”

Shakeeb Khan

Boston College

Arnaud Maurel

Duke University, NBER and IZA

Yichong Zhang

Singapore Management University

March 2022

Abstract

This paper gathers the supplementary material to the main paper. In Section S.A, we pro-
pose an estimator based on our constructive identification strategy and establish its asymptotic
properties. Section S.B contains a simulation study. In Section S.C, we establish the asymptotic
distribution for the rank estimator. In Section S.D, we consider the identification of the model
with two idiosyncratic shocks but no continuous repeated measurements of the common factor.
In Sections S.E and S.F, we prove Theorems S.D.1 and S.D.2, respectively. Section S.G discusses
the nonparametric factor model and Section S.H establishes the asymptotic properties for the
closed-form estimator.
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S.A Estimation and Asymptotic Properties

Our identification result is constructive in the sense that it motivates an estimator for the param-

eters of interest which we describe in detail here.

As we did in Section C, to simplify exposition, in the following we focus exclusively on the

parameters α0, γ0. Recall the choice probabilities P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x)

and its second derivative ∂2P
ij(x1, x), which can be estimated as we describe below. Another

function needed for our identification result is the density function of the unobserved term V ,

denoted by fV (·). This is also unknown, but from the structure of our model can be recovered

from the derivative with respect to the instrument X of E[Y2|X], and hence is estimable from

the data. Note that the proof of Theorem 2.1 shows that the sign of the index evaluated at two

different regressor values, which we denote here by (X1, X) and (X̃1, X̃) is determined by the choice
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probabilities via

∂2P
11(X1, X)/fV (X) + ∂2P

10(X̃1, X̃)/fV (X̃) ≥ 0 ⇐⇒ X1 + α− γX − (X̃1 − γX̃) ≥ 0.

This motivates us to use the maximum rank correlation estimator proposed by Han (1987).

Implementation requires further details to pay attention to. The unknown choice probabilities,

their derivatives, and the density of V will be estimated using nonparametric methods, and for this

we adopt locally linear methods as they are particularly well suited for estimating derivatives of

functions.

With functions and their derivatives estimated in the first stage of our procedure, the second

stage plugs in these estimated values into an objective function to be optimized. Specifically, letting

θ̂ denote (α̂, γ̂), our estimator is of the form:

θ̂ = arg max
θ
Qn(θ), Qn(θ) ≡

∑
i 6=j

ĝi,j(θ) (S.A.1)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We note that this estimator falls into the class of those which optimize a nonsmooth U-process

involving components estimated nonparametrically in a preliminary stage.1 Examples of other

estimators in this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010),

Jochmans (2013), Chen, Khan, and Tang (2016), and our approach to deriving the limiting dis-

tribution theory of our estimator will follow along the steps used in those papers. Our limiting

distribution theory for this estimator is based on the following regularity conditions:

RK1 θ0 lies in the interior of Θ, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

1An alternative estimation procedure could be based on the exact relationship in (2.7). Note the equality on the
left-hand side of (2.7) is a function of the data alone and not the unknown parameters. The right-hand side equality
can then be regarded as a moment condition to estimate the unknown parameters. We describe this estimator and
derive its asymptotic properties in the Online Supplement to the paper. While the two estimation approaches will
have similar asymptotic properties (root-n consistent, asymptotically normal), we prefer the rank estimator in (S.A.1)
which involves fewer tuning parameters. Furthermore rank type estimators in general are more robust to certain types
of misspecification, as pointed out in Khan and Tamer (2018).
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function which is twice continuously differentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P i,j(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are continuously

differentiable of order p2.

RK4 (First stage kernel function conditions) K(·), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of order p2.

RK5 (Rate condition on first stage bandwidth sequence) The first stage bandwidth sequence Hn

used in the nonparametric estimator of the choice probability functions and their derivatives

satisfies
√
nHp2−1

n → 0 and n−1/4H−1
n → 0.

The smoothness condition in Assumption RK4 and Assumption RK5 is due to the fact that we

need to nonparametrically estimate ∂2P
ij(X1, X) with sufficiently faster convergence rate. This will

require a stronger smoothness condition than that required for standard nonparametric estimation.

Assumption RK5 ensures that the bias of the first stage estimator of the derivative function con-

verges at the parametric rate and the RMSE of this estimator (with two regressors) is fourth-root

consistent, so results for two step estimation in Newey and McFadden (1994) can be applied.

Based on these conditions, we have the following theorem, whose proof is in Section S.C of the

Supplementary Appendix which characterizes the rate of convergence and asymptotic distribution

of the proposed estimator:

Theorem S.A.1. Under Assumptions RK1-RK5,

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (S.A.2)

where the forms of the Hessian term V and outer score term ∆ are described in detail in Section

S.C of the Supplementary Appendix.

S.B Finite Sample Properties

In this section we explore the finite sample properties of the proposed estimation procedure via a

simulation study. We will also see how sensitive the performance of the proposed estimator is to the

factor structure assumption. As a base comparison, we also report results for the estimator proposed

in Vytlacil and Yildiz (2007) to see how sensitive it is to their second instrument restriction.

Our data are simulated from base models of the form

Y1 = 1{X1 + α0Y2 − U ≥ 0} (S.B.1)

Y2 = 1{X − V > 0}, (S.B.2)
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where X1 is binary with success probability 0.6, X has marginal distribution N (0, 1), X1 and X

are mutually independent, (X1, X) ⊥ (V,Π), U = γ0V + Π. (V,Π) are distributed independently of

each other, where Π is distributed following a standard normal distribution, and V is distributed

either standard normal, Laplace, or T (3). The parameters (α0, γ0) = (−0.25, 1.2) or (0.5, 1.2).

SinceX1 is discrete, Vytlacil and Yildiz’s (2007) identification condition does not hold. However,

the identification condition in this paper becomes

|α| ≤ length of the support of X,

which holds.

For each choice of sample size n = 100, 200, 400, 800, 1, 600, we simulate 280 samples and report

the bias, standard deviation (std), root mean squared error (RMSE), and median absolute deviation

(MAD) for both Vytlacil and Yildiz’s (2007) estimator (VY) and ours (KMZ). For implementation,

we use the second order local polynomial along with Gaussian kernels to nonparametrically estimate

the ∂2P
11(x1, x) and ∂2P

10(x1, x). The bandwidth we use is h1 = σxN
−1/7 where σx is the standard

deviation of X. fV (x) is nonparametrically estimated using a local linear estimator with the tuning

parameter h2 = σxN
−1/6.

As results from the table indicate, the finite sample performance of our estimator generally

agrees with the asymptotic theory. The RMSE for the estimator proposed here is decreasing as the

sample size increases, as one could expect given the consistency property of our estimator. Besides,

the decay rate of the RMSE and MAD is about
√

2 when n ≥ 400 as sample sizes doubles, in line

with the parametric rate of convergence of our estimator.

Vytlacil and Yildiz’s (2007) estimator, which does not exploit the factor structure, demonstrates

inconsistency for certain parameter values, as indicated by the bias and median bias not shrinking

with the sample size. In addition, the RMSE and MAD do not appear to decline at all, which also

suggests that Vytlacil and Yildiz’s (2007) estimator is inconsistent in these designs.2

Table 1: Normal V , α = 0.5

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.026 0.665 0.660 -0.246 0.658 0.500 0.032 0.634 0.560 -0.293 0.658 0.500 0.010 0.676 0.665 -0.225 0.662 0.500
200 0.004 0.591 0.475 -0.329 0.633 0.500 -0.015 0.568 0.400 -0.336 0.612 0.500 -0.003 0.616 0.495 -0.279 0.629 0.500
400 0.005 0.483 0.365 -0.341 0.573 0.500 0.030 0.459 0.310 -0.323 0.559 0.500 0.018 0.542 0.405 -0.314 0.589 0.500
800 0.065 0.456 0.300 -0.348 0.544 0.500 0.096 0.391 0.250 -0.357 0.511 0.500 0.046 0.462 0.295 -0.346 0.552 0.500

1,600 0.040 0.321 0.195 -0.413 0.503 0.500 0.017 0.294 0.190 -0.450 0.506 0.500 0.034 0.371 0.240 -0.368 0.506 0.500

2Because X1 is binary, Vytlacil and Yildiz’s (2007) estimator can only take 3 possible values: 0, -1 or 1. In
particular, when α = 0.5, in most of the replications, the estimator takes values 0 or 1. When α = −0.25, in most of
the replications, the estimator takes value -1. In both of these cases, the MAD remains constant over the different
sample sizes.
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Table 2: Normal V , α = −0.25

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.088 0.650 0.555 -0.466 0.710 0.750 0.092 0.614 0.530 -0.358 0.650 0.750 0.004 0.619 0.505 -0.430 0.681 0.750
200 -0.035 0.599 0.420 -0.446 0.681 0.750 0.012 0.552 0.385 -0.485 0.689 0.750 -0.008 0.583 0.425 -0.463 0.687 0.750
400 -0.016 0.467 0.325 -0.487 0.668 0.750 -0.010 0.388 0.200 -0.552 0.686 0.750 -0.003 0.496 0.340 -0.489 0.675 0.750
800 -0.028 0.324 0.165 -0.591 0.697 0.750 0.006 0.279 0.180 -0.599 0.701 0.750 0.032 0.399 0.230 -0.533 0.682 0.750

1,600 -0.006 0.244 0.150 -0.654 0.718 0.750 -0.028 0.204 0.130 -0.714 0.738 0.750 -0.021 0.279 0.190 -0.629 0.710 0.750

In the following designs we also consider three DGPs (DGPs 1–3) such that the one-factor model

does not hold but the identification assumption in Vytlacil and Yildiz (2007) does. In this case, our

simulation results show that while, as expected, the estimator VY is still valid, our estimator still

performs reasonably well. Interestingly, this offers suggestive evidence that our estimator is robust

to some degree of misspecification. As such, these results complement previous work highlighting

the robustness of rank type estimators to misspecification - see Khan and Tamer (2018). In DGP

4, the identification assumptions in both Vytlacil and Yildiz (2007) and our paper hold. In this

case, we found that our estimator has similar performance as that proposed by Vytlacil and Yildiz

(2007).

The outcome and selection equations are the same as (S.B.1) and (S.B.2), respectively. Then,

DGP 1 : (X1, X) is jointly standard normally distributed. Let (e1, e2) jointly Laplace distributed

with mean zero and variance-covariance matrix Σ =

(
1 −0.5

−0.5 1

)
, e3 and e4 are uniformly

distributed on (0, 1), independent of each other, and independent of (e1, e2), V = e1 +e3−0.5,

U = e2 + e4 − 0.5, and α = −0.25.

DGP 2 : (X1, X) are the same as above, U = e1 + e2 − 0.5, and V = e1 + e3 − 0.5, where e1

is standard normally distributed, (e2, e3) are uniformly distributed on (0, 1), (e1, e2, e3) are

mutually independent, and α = −0.25.

DGP 3 : (X1, X) are the same as above, V = exp(e1+e2−0.5)−1
4 , U = exp(e1+e3−0.5)−1

4 , (e1, e2, e3) are

defined as above, and α = −0.5.

DGP 4 : (X1, X) are the same as above, V is Laplace distributed with mean zero and standard

derivation 0.5, U = V +V ′−0.5, where V ′ is uniform distributed on (0, 1) and is independent

of V , and α = −0.25.

For DGPs 1, 2, and 4, when computing ∂2P
11(x1, x) and ∂2P

10(x1, x), we use bandwidths h1 =

σx1N
−1/7 and h = σxN

−1/7 for variables X1 and X, respectively, where σx1 and σx are the standard

errors of X1 and X, respectively. To estimate the density fV (x), we use bandwidth h2 = σxN
−1/6.

For DGP 3, we use h1 = h2 = h = σx1N
−1/5. In all simulations, we use 280 replications.
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Table 3: Alternative DGPs

DGP 1 DGP 2

kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.065 0.678 0.600 -0.055 0.666 0.535 -0.058 0.621 0.505 -0.05 0.621 0.470
200 -0.118 0.543 0.370 -0.080 0.497 0.320 -0.122 0.523 0.350 -0.097 0.495 0.350
400 -0.117 0.413 0.280 -0.071 0.378 0.245 -0.062 0.335 0.215 -0.033 0.316 0.220
800 -0.102 0.287 0.170 -0.062 0.243 0.160 -0.031 0.242 0.150 -0.008 0.215 0.150

1,600 -0.071 0.193 0.140 -0.035 0.155 0.100 -0.038 0.167 0.100 -0.031 0.158 0.100

DGP 3 DGP 4

100 -0.012 0.583 0.480 -0.015 0.565 0.430 -0.057 0.401 0.240 -0.066 0.422 0.240
200 -0.061 0.425 0.275 -0.068 0.399 0.270 -0.041 0.282 0.180 -0.049 0.263 0.145
400 -0.041 0.259 0.170 -0.042 0.237 0.155 -0.062 0.184 0.135 -0.047 0.186 0.120
800 -0.061 0.219 0.140 -0.047 0.182 0.120 -0.029 0.119 0.080 -0.034 0.115 0.070

1,600 -0.038 0.130 0.080 -0.035 0.119 0.080 -0.024 0.090 0.060 -0.022 0.086 0.070

In the first three DGPs, we see that VY’s estimator has better performance in terms of both bias

and MSE. On the other hand, although the models do not have a factor structure, our estimator

still performs reasonably well. In the last DGP, support conditions in both Vytlacil and Yildiz

(2007) and our paper hold. Table 3 shows that our and Vytlacil and Yildiz’s (2007) estimators

have similar performance in terms of bias and MSE. Although our estimator is expected to be more

efficient as we use the factor structure in estimation, it is not. We conjecture that it is because our

estimator does not necessarily use all the information, or in other words, achieve the semiparametric

efficiency bound. To establish the semiparametric efficient estimator in the model with and without

the factor structure is an interesting yet challenging task. We leave it as a topic for future research.

S.C Proof of Theorem S.A.1

Recall we defined our two step rank estimator as follows: Letting θ̂ denote (α̂, γ̂), our estimator is

of the form:

θ̂ = arg max
θ
Q̂n(θ) ≡

∑
i 6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],
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with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃)

We first show consistency of the rank estimator. To do so we first define the objective function

Qifn,2(θ), defined as

Qifn,2(θ) ≡
∑
i 6=j

gi,j(θ)

where

gi,j(θ) = [1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

Since gi,j is bounded by 1 ∀i, j, and our random sampling assumption, we have for each θ,

Qifn,2(θ)
p→ E[gi,j(θ)] ≡ Γ0(θ)

Furthermore, by Assumptions RK2, RK3 we can extend this result to converging uniformly over

θ ∈ Θ (see, e.g. Sherman (1994a), Sherman (1993).) Γ0(θ) is continuous in θ by Assumptions

RK2,RK3, and uniquely maximized at θ = θ0 by our identification result in Theorem 2.1. Along

with Assumption RK1, the infeasible estimator, defined as the maximizer of Qifn,2(θ) converges in

probability to θ0 by, for example Theorem 2.1 in Newey and McFadden (1994). To show consis-

tency of the feasible estimator, where we first estimate the choice probability functions and their

derivatives nonparametrically, we only now need to show the two objective functions converged to

each other uniformly in θ ∈ Θ. Consistency of the first stage estimators follows from Assumptions

RK3-RK5, see for example Henderson, Li, Parmeter, and Yao (2015). However, this does not

immediately imply convergence of the difference in feasible and infeasible objective functions since

the nonparametric estimators are inside indicator functions so the continuous mapping theorem

does immediately not apply. Nonetheless the desired result can still be attained in one of two ways.

One would be to replace indicator functions with smooth distribution functions in a fashion analo-

gous to Horowitz (1992). This would have the disadvantage of introducing tuning parameters, but

another approach would be to replace the indicator functions with their conditional expectations,

and note that the conditional expectations are smooth functions using Assumption RK2, RK3.

To see why, let m̂(xi) be a nonparametric estimator of a function m(xi), which is assumed to be

smooth. We evaluate the plim of

I[m̂(xi) > 0]− I[m(xi) > 0] = I[m̂(xi) > 0,m(xi) < 0]− I[m̂(xi) < 0,m(xi) > 0]
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we show that the first term converges in probability to 0 as identical arguments can be used for the

second term. Let ε > 0 be given; P (I[m̂(xi) > 0,m(xi) < 0] > ε) ≤ E[I[m̂(xi) > 0,m(xi) < 0]/ε

by Markov’s inequality. But the expectation in the numerator on the right hand side is

P (m̂(xi) > 0,m(xi) < 0) = P (m̂(xi) > 0,m(xi) ≤ −δn) + P (m̂(xi) > 0,m(xi) ∈ (−δn, 0))

where δn is a sequence of positive numbers converging to 0, at a slow rate, e.g.(log n−1). The first

term on the right hand side is bounded above by

P (|m̂(xi)−m(xi)| > δn) ≤ P (‖m̂(·)−m(·)‖ > δn)

where the notation ‖m̂(·) − m(·)‖ above denotes the sup norm over xi. The right hand side

probability above will be sufficiently small for n large enough by the rate of convergence of the

nonparametric estimator. The second term, P (m̂(xi) > 0,m(xi) ∈ (−δn, 0)), is bounded above by

P (m(xi) ∈ (−δn, 0)) which by the smoothness of m(xi) converges to 0, and hence can be made

arbitrarily small. �

To derive the rate of convergence and limiting distribution theory for the feasible estimator

where we first estimate choice probability functions and their derivatives nonparametrically, we

expand the nonparametric estimators around true functions that are inside the indicator function in

Qn2. Then we can follow the approach in Sherman (1994b). Having already established consistency

of the estimator, we will first establish root-n consistency and then asymptotic normality. For

root-n consistency we will apply Theorem 1 of Sherman (1994b) and so here we change notation

to deliberately stay as close as possible to his. We will actually apply this theorem twice, first

establishing a slower than root-n consistency result and then root-n consistency. Keeping our

notation deliberately as close as possible to Sherman(1994b), here replacing our second stage rank

objective function Q̂2,n(θ) with Ĝn(θ), our infeasible objective function Qifn,2(θ) with Gn(θ), and

denoting our limiting objective function, previously denoted by Γ0(θ), by G(θ). We have the

following theorem:

Theorem S.C.1. (From Theorem 1 in Sherman (1994b)).

If δn and εn are sequences of positive numbers converging to 0, and

1. θ̂ − θ0 = op(δn)

2. There exists a neighborhood of θ0 and a constant κ > 0 such that G(θ)− G(θ0) ≥ κ‖θ − θ0‖2

for all θ in this neighborhood.

3. Uniformly over Op(δn) neighborhoods of θ0

Ĝn(θ) = G(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(εn)
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then θ̂ − θ0 = Op(max(ε1/2, n−1/2)).

Once we use this theorem to establish the rate of convergence of our rank estimator, we can

attain limiting distribution theory, which will follow from the following theorem:

Theorem S.C.2. (From Theorem 2 in Sherman (1994b)). Suppose θ̂ is
√
n-consistent for θ0, an

interior point of Θ. Suppose also that uniformly over Op(n
−1/2) neighborhoods of θ0,

Ĝn(θ) =
1

2
(θ − θ0)′V (θ − θ0) +

1√
n

(θ − θ0)′Wn + op(1/n) (S.C.1)

where V is a negative definite matrix, and Wn converges in distribution to a N(0,∆) random vector.

Then

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (S.C.2)

We first turn attention to applying Theorem S.C.1 to derive the rate of convergence of our

estimator. Having already established consistency of our rank estimator, we turn attention to

the second condition in Theorem S.C.1. To show the second condition, we will first derive an

expansion for G(θ) around G(θ0). We denote that even though Gn(θ) is not differentiable in θ, G(θ)

is sufficiently smooth for Taylor expansions to apply as the expectation operator is a smoothing

operator and the smoothness conditions in Assumptions RK2, RK3. Taking a second order

expansion of G(θ) around G(θ0), we obtain

G(θ) = G(θ0) +∇βG(θ0)′(θ − θ0) +
1

2
(θ − θ0)′∇θθG(θ∗)(θ − θ0) (S.C.3)

where ∇θ and ∇θθ denote first and second derivative operators and θ∗ denotes an intermediate

value. We note that the first two terms of the right hand side of the above equation are 0, the first

by how we defined the objective function, and the second by our identification result in Theorem

2.1. Define

V ≡ ∇θθG(θ0) (S.C.4)

and V is positive definite by Assumption A3, so we have

(θ − θ0)′∇θθG(θ0)(θ − θ0) > 0 (S.C.5)

∇θθG(θ) is also continuous at θ = θ0 by Assumptions RK2 and RK3, so there exists a neighborhood

of θ0 such that for all θ in this neighborhood, we have

(θ − θ0)′∇θθG(θ)(θ − θ0) > 0 (S.C.6)
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which suffices for the second condition to hold.

To show the third condition in Theorem S.C.1, we next establish the form of the remainder

term when we replace nonparametric estimators with the true functions they are estimating.

Specifically we wish to evaluate the difference between

[1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (S.C.7)

+ 1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (S.C.8)

and

[1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (S.C.9)

+ 1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (S.C.10)

To establish a representation for this difference, we first simplify notation we write the expressions

as:

I[m̂1(xi) + m̂2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (S.C.11)

+ I[m̂1(xi) + m̂2(xj) < 0]I[∆x′ijθ < 0] (S.C.12)

and

I[m1(xi) +m2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (S.C.13)

+ I[m1(xi) +m2(xj) < 0]I[∆x′ijθ < 0] (S.C.14)

respectively, where here xi denotes the separate components of x1i, xi, and analogous for xj . We

first explore

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0]

for each i, j inside the double summation:

1

n(n− 1)

∑
i 6=j

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0] (S.C.15)

An immediate technical difficulty that arises with the above term is the presence of a nonpara-

metric estimator inside the indicator function above. A simple approach to deal with this would

be to replace the indicator function with a smoothed indicator function in a fashion analogous to

Horowitz (1992), under appropriate conditions on the kernel function and smoothing parameter.

Such an approach is not necessary as long as the nonparametric estimator m̂1(xi) is asymptotically
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normal, and asymptotically centered at m1(xi), which will be the case with our proposed kernel

estimator of the probability function and its derivative. In either approach (smoothed indicator or

not) we can show that (S.C.15) can be represented as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) ((m̂1(xi)−m1(xi)) + (m̂2(xj)−m2(xj))) I[∆x′ijθ ≥ 0] + op(n
−1)

(S.C.16)

where φ(0) denotes the standard normal pdf evaluated at 0, fmij (0) denotes the density function of

m1(xi) +m2(xj) evaluated at 0, and the op(n
−1) term is uniform in θ lying in op(1) neighborhoods

of θ0. Therefore, uniformly for θ in an op(1) neighborhood of θ0, this remainder term converges to

0 at the rate of convergence of the first stage nonparametric estimator, which under Assumptions

RK3, RK4, RK5, is op(n
−1/4). Thus by repeated application of Theorem S.C.1, we can conclude

that the estimator is root-n consistent. To show that the estimator is also asymptotically normal,

we will first derive a linear representation for the term:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)(m̂1(xi)−m1(xi))I[∆x′ijθ ≥ 0] (S.C.17)

As this term is linear in the nonparametric estimator m̂1(xi), the desired linear representation

follows from arguments used in Khan (2001). One slight difference here compared to Khan (2001)

is that here our nonparametric estimators and estimands are each ratios of derivatives. Nonetheless,

after linearizing these ratios as done in, e.g. Newey and McFadden (1994). Specifically, we have

that S.C.17 can be expressed as:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
1

m1den(xi)
(m̂1num(xi)−m1num(xi))I[∆x′ijθ ≥ 0] (S.C.18)

− 1

n(n− 1)

∑
i 6=j

φ(0)fmij (0)
m1num(xi)

m1den(xi)2
(m̂1den(xi)−m1den(xi))I[∆x′ijθ ≥ 0] (S.C.19)

where m̂1num(xi) denotes the numerator {∂2P̂
11(X1,i, Xi)}, the estimator of m1num(xi) which de-

notes {∂2P
11(X1,i, Xi)}, and m̂1den(xi) denotes the denominator f̂V (Xi), the estimator of m1den(xi)

which denotes fV (Xi).

Plugging in the definitions of the kernel estimators of m̂1num(xi), and m̂1den(xi), results in a

third order process. Using arguments in Khan (2001) and Powell, Stock, and Stoker (1989) we can

express the third order U process as a second order U process plus an asymptotically negligible

11



remainder term. This is of the form:

1

n

n∑
i=1

φ(0)
`(xi)

m1den(xi)
(y1i −m1num(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(S.C.20)

where `(xi) ≡
−f ′X(xi)

fX(xi)
. We note that the function E

[
fmij (0)I[∆x′ijθ ≥ 0]|xi

]
, which we denote

here by H(xi, θ) is a smooth function in θ. We will use this feature to expand H(xi, θ) around

H(xi, θ0). Analogous arguments can be used to attain a linear representation of (S.C.19), which is

of the form:

1

n

n∑
i=1

φ(0)
`2(x1i)m1num(xi)

m1den(xi)2
(y2i −m1den(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(S.C.21)

where `2(x1i) ≡
−f ′X1

(x1i)

fX(x1i)
. Grouping (S.C.20) and (S.C.21) we have

1

n

n∑
i=1

φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
H(xi, θ)

(S.C.22)

Note that by Assumptions RK2, RK3, H(xi, θ) is smooth in θ implying the expansion

H(xi, θ) = H(xi, θ0) +∇θH(xi, θ0)′(θ − θ0)

Thus we can express (S.C.22) as the which we note is a mean 0 sum

1

n

n∑
i=1

ψ1rnki(θ − θ0) (S.C.23)

where

ψ1rnki = φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
∇θH(xi, θ0)

(S.C.24)

We can use identical arguments to attain a linear representation for the U− process:

1

n(n− 1)

∑
i 6=j

φ(0)fmij (0) (m̂2(xj)−m2(xj)) I[∆x′ijθ ≥ 0] (S.C.25)

where m̂2(xj) is also a ratio of nonparametric estimators where here the numerator is m̂2n(xj) de-

noting {∂2P̂
10(X1,j , Xj)}, the estimator of m2n(x2) which denotes {∂2P

10(X1,j , Xj)}, and m̂2d(xj)

denotes the denominator f̂V (Xj), the estimator of m1den(xj) which denotes fV (Xj).

12



and by using identical arguments it too can be represented as a mean 0 sum denoted here by

1

n

n∑
i=1

ψ2rnki (S.C.26)

where ψ2rnki is defined as:

Finally after grouping the two terms and expanding H(xi, θ) around H(xi, θ0) we get that

(S.C.16) can be represented as:

1

n

n∑
i=1

(ψ1rnki + ψ2rnki)
′(θ − θ0) + op(n

−1) (S.C.27)

Combining our results, from Theorem S.C.2, we have that

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (S.C.28)

where

V = ∇θθG(θ0) (S.C.29)

and

∆ = E
[
(ψ1rnki + ψ2rnki)(ψ1rnki + ψ2rnki)

′] (S.C.30)

S.D Model with Two Idiosyncratic Shocks

In this section, we focus on the identification of (α0, γ0) in the “condensed” model that X1 =

Z ′1λ0 + Z ′3β0 is observed and

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.
(S.D.31)

with the understanding that (λ0, β0) can be identified jointly with α0 and γ0, as shown in Theorems

2.1 and 3.1. We further impose U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually

independent. First we consider the case γ0 = 1 and X1 is binary, because even in this context,

for the baseline case with one idiosyncratic shock, we can identify α0. But identification of α0

becomes more difficult in this model without the help of repeated measurements, as established in

the following theorem.

Theorem S.D.1. Suppose (S.D.31) holds, γ0 is known to be one, X1 is binary, and W has a
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bounded support [−b,−a] such that 0.5 > b− a and 1− (b− a) > α0 > b− a, then α0 is not point

identified.

This nonidentification result motivates imposing additional structure on W , and we consider

the following model

C1 U = γ0W + η1 and V = σ0W + η2.

C2 W is standard normally distributed.

C3 W , η1 and η2 are mutually independent.

C4 X has full support.

C5 Denote the density of η2 as fη2 , then fη2 does not have a Gaussian component in the sense

that

fη2 ∈ G = {g is a density on < s.t. : g = g′ ∗ φσ for some density g′ implies that σ = 0},

where φσ is the density for a normal distribution with zero mean and σ2 variance.

Assumption C5 effectively assumes that the distribution of η2 has tail properties different from

those of a normal distribution. This type of assumption is made in the deconvolution literature as

it is necessary for identification of the target density when the error distribution is not completely

known- see, e.g., Butucea and Matias (2005).3 The importance of non-normality in factor models

goes back to Geary (1942) and Reiersol (1950), who have shown that factor loadings are identified

in a linear measurement error model if the factor is not Gaussian. In our case, note V = σ0W + η2

where W is standard normal and the density of V is identified from data. Here we want to identify

σ0 and the density of η2. If η2 has a Gaussian component, then

η2 = η′2 + σ̃W̃ ,

where W̃ is a standard normal random variable that is independent of η′2 and W and σ̃ > 0. It

implies

V = (σ0W + σ̃W̃ ) + η′2,

where η′2 does not have a Gaussian component. In addition, note that (σ0W + σ̃W̃ ) =
√
σ2

0 + σ̃2G,

for some standard normal random variable G. Therefore, without Assumption B5, σ0 is not

identified.

3In fact, based on the results in Butucea and Matias (2005), W can belong to a more general class of known
distributions. Furthermore, we note that if σ0 is known, then Assumption C5 is not necessary.
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Theorem S.D.2. If Assumptions C1–C5 hold, then σ0, γ0 and α0 are identified.

Note that this identification result does not require any variation from X1, which is in spirit

close to the one-factor model in our paper and is different from the identification result in Vytlacil

and Yildiz (2007). We also note that this result does not contradict the counterexample in the

paper. In the counterexample, we only assume that we know the support of W is bounded. Here

we assume that the full density of W , and thus, the support of W is known.

S.E Proof of Theorem S.D.1

Our first result for this model illustrates how identification can become more difficult. In our first

result for this model, we show when −W has a bounded support, say [a, b], then α0 is not identified

if α0 > b− a. To establish this, consider an impostor α such that α < α0. In addition, we consider

the case where α0 − α + b < α0 + a and α + b < a + 1. Such α exists because of the fact that

1− (b− a) > α0 > b− a. Let ∆ = α0 − α and (W̃ , η̃1, η̃2) be mutually independent such that W̃ is

distributed as W −∆, η̃2 is distributed as η2 −∆, and

Fη̃1(e) =



Fη1(e) on e ≤ a,

Fη1(a) on η1 ∈ (a, a+ ∆],

Fη1(e−∆) on e ∈ (a+ ∆, b+ ∆],

α0+a−e
α0+a−b−∆Fη1(b) + e−b−∆

α0+a−b−∆Fη1(α0 + a) on e ∈ (b+ ∆, α0 + a],

Fη1(e) on e ∈ (α0 + a, α0 + b),

Fη1(α0 + b) + e−α0−b
a+1+∆−α0−b(Fη1(a+ 1)− Fη1(α0 + b)) on e ∈ (α0 + b, a+ 1 + ∆],

Fη1(e−∆) on e ∈ (a+ ∆ + 1, b+ ∆ + 1],

Fη1(b+ 1) + e−(b+∆+1)
a+α0−b−∆ (Fη1(a+ α0 + 1)− Fη1(b+ 1)) on e ∈ (b+ ∆ + 1, a+ α0 + 1],

Fη1(e) on e > a+ α0 + 1.

Then, because −w̃ = ∆− w ∈ [a+ ∆, b+ ∆] and x1 = 0, 1,

P (Y1 = 1, Y2 = 0|X = x,X1 = x1) =

∫
Fη1(x1 − w)(1− Fη2(x− w))fW (w)dw

=

∫
Fη̃1(x1 − w̃)(1− Fη̃2(x− w̃))fw̃(w̃)dw̃.

Similarly, because α−w̃ = α0−w ∈ [α0+a, α0+b] and for e ∈ (α0+a, α0+b]∪(1+α0+a, 1+α0+b],

Fη̃1(e) = Fη1(e), we have

P (Y1 = 1, Y2 = 1|X = x,X1 = x1) =

∫
Fη1(x1 + α0 − w)Fη2(x− w)fW (w)dw

15



=

∫
Fη1(x1 + α− (w + α− α0))Fη2(x− w)fW (w)dw

=

∫
Fη̃1(x1 + α− w̃)Fη̃2(x− w̃)fw̃(w̃)dw̃.

This implies α0 is not identified from the impostor α.

S.F Proof of Theorem S.D.2

We first show that both σ0 and the density of η2 are identified. Note X has full support. This

implies the density of V denoted as fV (·) is identified via

fV (v) = ∂vE(Y2|X = v).

In addition, we have

fV (·) = fη2 ∗ φσ0(·),

where ∗ denotes the convolution operator. Suppose fη2(·) and σ0 are not identified so that there

exist f ′η2(·) and σ′ such that

fV (·) = f ′η2 ∗ φσ′(·).

Without loss of generality, we assume σ′ ≥ σ0, otherwise, we can just relabel fη2(·) and f ′η2(·).
Then we have

fη2(·) = f ′η2 ∗ φ(σ′2−σ2
0).

By Assumption B5, we have σ
′

= σ0, which implies fη2(·) = f ′η2(·).

In the following, we proceed given that fη2(·) and σ0 are known. Recall Fη1(·) as the CDF of

η1. Then,

P 11(x1, x) =P (Y1 = 1, Y2 = 1|X1 = x1, X = x) =

∫
Fη1(x1 + α0 − γ0w)Fη2(x− σ0w)fW (w)dw

and

P 10(x1, x) =P (Y1 = 1, Y2 = 0|X1 = x1, X = x) =

∫
Fη1(x1 − γ0w)(1− Fη2(x− σ0w))fW (w)dw.
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Taking derivatives of P 11(x1, x) and P 10(x1, x) w.r.t. x, we have

∂xP
11(x1, x) =

∫
Fη1(x1 + α0 − γ0w)fη2(x− σ0w)fW (w)dw (S.F.32)

and

−∂xP 10(x1, x) =

∫
Fη1(x1 − γ0w)fη2(x− σ0w)fW (w)dw. (S.F.33)

Applying Fourier transform on both sides of (S.F.32) and (S.F.33), we have

F(∂xP
11(x1, ·)) = Fσ0(Fη1(x1 + α0 − γ0·)fW (·))F(fη2(·)) (S.F.34)

and

F(−∂xP 10(x1, ·)) = Fσ0(Fη1(x1 − γ0·)fW (·))F(fη2(·)), (S.F.35)

where for a generic function g(w),

Fσ0(g(·))(t) =
1√
2π

∫
exp(−2πitσ0w)g(w)dw.

Then, by (S.F.34), we can identify Fη1(x1 + α0 − ·) by

Fη1(x1 + α0 − γ0·) = F−1
σ0

(
F(∂xP

11(x1, ·))
F(fη2(·))

)
(·)/fW (·).

Similarly, we can identify

Fη1(x1 − γ0·) = F−1
σ0

(
F(−∂xP 10(x1, ·))
F(fη2(·))

)
(·)/fW (·),

where for a generic function g(w),

F−1
σ0 (g(·))(t) =

σ0√
2π

∫
exp(2πitσ0w)g(w)dw.

By finding the two pairs ((x1, w), (x′1, w
′)) and ((x̃1, w̃), (x̃′1, w̃

′)) such that w − w′ 6= w̃ − w̃′,

Fη1(x1 + α0 − γ0w) = Fη1(x′1 − γ0w
′), and Fη1(x̃1 + α0 − γ0w̃) = Fη1(x̃′1 − γ0w̃

′)

we can identify both α0 and γ0 as the solution of the following linear system:

α0 + γ0(w′ − w) = x′1 − x1 α0 + γ0(w̃′ − w̃) = x̃′1 − x̃1.
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S.G Nonparametric Factor Structure

In this section we describe an estimator for the case where we have a nonparametric factor structure.

Recall for this model we had the following relationship between unobservable variables:

U = g0(V ) + Π̃ (S.G.36)

where we assumed that Π̃ ⊥ V .

Our goal in this more general setup is to identify and estimate both α0 and g0. Our identification

is based on the condition that

x1 + α0 − g0(x) = x̃1 − g0(x̃).

if and only if

∂2P
11(x1, x)/fV (x) + ∂2P

10(x̃1, x̃)/fV (x̃) = 0.

Using the same i, j pair notation as before, this gives us, in the nonparametric case,

X1i −X1j = α0 + (g0(Xi)− g0(Xj)) (S.G.37)

Note the above equation has a “semi parametric form”, loosely related to the model considered

in, for example, Robinson (1988). However, we point out crucial differences between what we

have above and the standard semi linear model. Here we are trying to identify the intercept α0

which is usually not identified in the semi linear model as it cannot be separately identified from

the nonparametric function. However, note above on the right hand side, we do not just have

a nonparametric function of Xi, Xj , but the difference of two identical and additively separable

functions g0(·). In fact it is this differencing of these functions which enables us to separately

identify α0. Furthermore, as will now see when turning to our estimator of α0, the structure of

the nonparametric component, specifically additive separability of two identical functions of Xi, Xj

respectively, can easily be incorporated into our approximation of each of them. From a theoretical

perspective separable functions have the advantage of effectively being a one dimensional problem,

as there are no interaction terms to have to deal with. It is well known that nonparametric

estimation of separable functions do not suffer from the “curse of dimensionality”. See, for example

Newey (1994).

To motivate our estimator of α0 in this nonparametric factor structure model, we consider
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modifying methods used to estimate the semi linear model, which is usually expressed as

yi = x′iβ0 + g(zi) + εi

where yi denotes the observed dependent variable, xi, zi are observed regressors, g(·) is an unknown

nuisance function, εi is an unobserved disturbance term, and β0 is the unknown regression coefficient

vector which is the parameter of interest. There is a very extensive literature in both econometrics

and statistics on estimation and inference methods for this model- see for example Powell (1994)

for some references.

One popular way to estimate this model is to use an expansion of basis functions, for example

polynomials or splines to approximate g(·), and from a random sample of n observations of (yi, xi, zi)

regress yi on xi, b(zi) where b(zi) denotes the set of basis functions used to approximate g(·). As

an illustrative example, assuming zi were scalar, if one were to use polynomials as basis functions,

one would estimate the approximate model,

yi = x′iβ0 + γ1zi + +γ2z
2
i + γ3z

3
i + ....γknz

kn
i + uin

where kn is a positive integer smaller than the sample size n, and γ1, γ2, ...γkn are additional

unknown parameters. This has been done by regressing yi on xi, zi, z
2
i , ...z

kn
i , and our estimated

coefficient of xi would be the estimator of β0. The validity of this approach has been shown in, for

example, Donald and Newey (1994). Now for our problem at hand, incorporating a nonparametric

factor structure, we propose a kernel weighted least squares estimator. The weights are as they

were before, assigning great weights to pairs of observations where the sum of derivatives of ratios

of choice probabilities are closer to 0.

The dependent variable is identical to as before, the set of n choose 2 pairs X1i−X1j . The regressors

now reflect the series approximation of g0(Xi)− g0(Xj):

g0(Xi)− g0(Xj) ≈ γ1(Xi −Xj) + γ2(X2
i −X2

j ) + γ3(X3
i −X3

j ) + ...γkn(Xkn
i −X

kn
j )

So now our estimator would be to regress X1i − X1j on 1, (Xi − Xj), (X
2
i − X2

j ), ...(Xkn
i − X

kn
j ),

using the same weights ω̂ij so the estimator of α0, denoted by α̂NP , would be the coefficient

on 1. Specifying the asymptotic properties of this estimator would require additional regularity

conditions, notably the rate at which the sequence of integers kn increases with the sample size n.

We again only outline these regularity conditions here, and only to establish consistency. Since

the estimator and proof strategy is very similar to that for the closed form estimator in the online

supplement to this paper, here we only state the additional one needed for the nonparametric model

in this section.

Assumption BFC (Basis function conditions) The basis function approximation of the unknown
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factor structure function satisfies the following conditions:

BFC.1 The number of basis functions, kn, satisfies kn →∞ and kn/n→ 0.

BFC.2 For every kn, the smallest eigenvalue of the matrix

E[PknP
′
kn ]

is bounded away from 0 uniformly in kn, where

Pkn ≡ (1, Xi −Xjf,X
2
i −X2

j , ...X
kn
i −X

kn
j )′

Theorem S.G.1. Under Assumptions I,K, H, S, PS, FK, FH, BFC,

α̂NP
p→ α0 (S.G.38)

S.H Distribution Theory for Closed Form Estimator

Many of the basic arguments follow those used in Chen and Khan (2008) and Chen et al. (2016).

Recall what the key identification condition that motivated the weighted least squares estimator:

For pairs of observations (x1, x) and (x̃1, x̃) in Supp(X1, X),

x1 + α0 − γ0x = x̃1 − γ0x̃.

if and only if

∂2P
11(x1, x)/fV (x) + ∂2P

10(x̃1, x̃)/fV (x̃) = 0.

where recall ∂2 denotes the partial derivative with respect to the second argument. Note that even

though the random variable V is unobserved, the density function fV (·) above can be recovered

from the data from the partial derivative of the choice probability in the treatment equation with

respect to the regressor in the treatment equation. Thus the above equation involves the sum of

two ratios of derivatives of choice probabilities.

Recall θ0 ≡ (α0, γ0). Our estimator of θ0 is based on pair of observations from the data set. We will

denote the random variables of interest with capital letters, for example Xi, X1i, and realizations

of them with lower letters, for example xi, x1i. To denote distinct random variables in the sample

when they form pairs, we will use the subscripts i, j.

Note from above, we can express the equation where the pairs receive positive weights (those whose

derivatives of choice probabilities summed up to 0) as

x1i − x1j = α0 + θ0(xi − xj) (S.H.39)
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So this motivates regressing the scalar random variable x1i− x1j on the two by one random vector

xij ≡ (1, xi−xj). We can now see that if sufficient such pairs of observations, where the sum of the

ratio of derivative of probabilities could be found to equal 0, θ0 could be recovered as the unique

solution to the system of equations corresponding to the pairs, as long as the matrix involving

the terms xij satisfied a full rank condition. Such an approach is infeasible for two reasons. The

first reason is that the probability functions, their derivatives, and hence the ratio of derivatives

are unknown. The second reason is that even if these functions were known, if the probability

functions are not discrete valued, such “matches” will occur with probability zero.

The first problem can be remedied by replacing the true probability function values with their

nonparametric estimates. In the theory here we used a kernel estimator with kernel function

K(·) and bandwidth Hn, whose properties are discussed below. The second problem can be dealt

with through the use of “kernel weights” as has been frequently employed in the semiparametric

literature.

Specifically, assuming that the ratio of derivatives of conditional probability functions were known,

we use the following weighting function for pairs of observations; to illustrate let P k,l,r, k =

0, 1, l = 0, 1 denotes the ratio of derivatives of choice probabilities. So, for example, P 1,1,r =

∂2P
11(X1, X)/fV (X) , where ∂2 denotes the partial derivative with respect to the second argu-

ment. Let p1r
i , p

0r
j denote the ith, jth realizations of P 1,1,r, P 1,0,r respectively; then

ωij =
1

hn
k

(
p1r
i + p0r

j

hn

)
(S.H.40)

In (S.H.40) hn is a bandwidth sequence, which converges to zero as the sample sizes increases,

ensuring that in the limit, only pairs of observations with probability functions summing up to an

arbitrarily small number receive positive weight. k(·) is the kernel function, which is symmetric

around 0, and assumed to have compact support, integrate to 1, and satisfy certain smoothness

conditions discussed later on.

With the weighting matrix defined, a natural estimate of it, ω̂ij follows from replacing the true prob-

ability function values with their nonparametric, e.g. kernel, estimates. This suggests a weighted

least squares estimator of θ0 ≡ (α0, γ0), regressing x1i − x1j on xij , with weights ω̂ij .

Specifically, we propose the following two stage procedure. The first stage is the kernel estimator

of the ratio of derivatives of probability functions, and the second stage estimator is defined as:

θ̂ = (
∑
i 6=j

τiτjω̂ijxijx
′
ij)
−1(
∑
i 6=j
−τiτjω̂ijxij∆x1ij) (S.H.41)

where ∆x1ij ≡ x1i − x1j , xij ≡ (1, xi − xj) and τi ≡ τ(x1i, xi) is a trimming function to remove

observations where regressors take values near the boundary of its support.
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We will outline the asymptotic properties of this estimator. Here we use similar arguments to this

used in Chen and Khan (2008) and keep our notation as close as possible to that used in that

paper. To simplify characterizing the asymptotic properties of this estimator and the regularity

conditions we impose, we first define the following functions of P k,l,r for k = l = 1, k = 1, l = 0 at

their ith and jth realized values, denoted by p1r
i , p

0r
j

1. f
Pk,l,r
0

= f
Pk,l,r
0

(P k,l,r0i ), where f
Pk,l,r
0

(·) denotes the density function of P k,l,r0i .

2. µτi = E
[
τi|P k,l,r0i

]
3. µτxi = E

[
τiX̃i|P k,l,r0i

]
4. µτxxi = E

[
τiX̃iX̃

′
i|P

k,l,r
0i

]
µ1(p1r

i , p
0r
j ) ≡ E[xijx

′
ij |p1r

i , p
0r
j ] where xi denotes the 2×1 vector (1, xi), µ0(p0r

j ) ≡ E[xj |p0r
j ], where

xj denotes the 2× 1 vector (1, xj), f1(·) denotes the density function of the random variable P 1,1,r,

f0(·) denotes the density function of the random variable P 1,0,r.

Our derivation of the asymptotic properties of this estimator are based on the following assump-

tions4:

Assumption I (Identification) The 2× 2 matrix:

M1 = E
[
µ1(p1r

i ,−p1r
i )′f0(−p1r

i )
]

has full rank.

Assumption K (Second stage kernel function) The kernel function k(·) used in the second stage

(to match the sum of ratios of derivatives to 0) is assumed to have the following properties:

K.1 k(·) is twice continuously differentiable, has compact support and integrates to 1.

K.2 k(·) is symmetric about 0.

K.3 k(·) is an eighth order kernel:∫
ulk(u)du = 0 for l = 1, 2, 3, 4, 5, 6, 7∫
u8k(u)du 6= 0

4For notational convenience here we suppress the presence of the trimming function.
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Assumption H (Second stage bandwidth sequence) The bandwidth sequence hn used in the sec-

ond stage is of the form:

hn = cn−δ

where c is some constant and δ ∈ ( 1
16 ,

1
12).

Assumption S (Order of Smoothness of Density and Conditional Expectation Functions)

S.1 The functions P k,l,r are eighth order continuously differentiable with derivatives that are

bounded on the support of τi.

S.2 The functions f
Pk,l,r
0

(·) (the density function of the random variable P k,l,r) and E[xi|P k,l,r =

·], where xi denotes the 2×1 vector (1, xi) have order of differentiability of 8, with eight

order partial derivatives that are bounded on the support of τi.

The final set of assumptions involve restrictions for the first stage kernel estimator of the ratio

of derivatives. This involves smoothness conditions on the choice probabilities P k,l,r0i , smoothness

and moment conditions on the kernel function, and rate conditions on the first stage bandwidth

sequence.

Assumption PS (Order of smoothness of probability functions and regressor density functions)

The functions P k,l,r(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are

continuously differentiable of order p2, where p2 > 5.

Assumption FK (First stage kernel function conditions) K(·), used to estimate the choice prob-

abilities and their derivatives is an even function, integrating to 1 and is of order p2 satisfying

p2 > 5.

Assumption FH (Rate condition on first stage bandwidth sequence) The first stage bandwidth

sequence Hn is of the form:

Hn = c2n
−γ/k

where c2 is some constant and γ satisfies:

γ ∈
(

2

p2

(
1

3
+ δ

)
,
1

3
− 2δ

)
where δ is regulated by Assumption H.
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Theorem S.H.1. Let

ψi = ψ1i + ψ2i + ψ3i + ψ4i (S.H.42)

where ψji j = 1−4 are each mean 0 random variables defined in equations S.H.53,S.H.57,S.H.60,S.H.62,

respectively, then under Assumptions I,K,H,S,PS,FK,FH,

√
n(θ̂ − θ0)⇒ N(0,M−1

1 V1M
−1
1 ) (S.H.43)

where

V1 = E[ψiψ
′
i] (S.H.44)

Proof: Let xij ≡ (1, (xi − xj)),∆x1ij ≡ x1i − x1j . Then we can express:

θ̂ − θ0 =

 1

n(n− 1)

∑
i 6=j

ŵijxijx
′
ij

−1

1

n(n− 1)

∑
i 6=j

ŵijxij(∆x1ij − x′ijθ0)

We will first derive a plim for the denominator term and the a linear representation for the numera-

tor. For the denominator term here we aim to establish that the double sum 1
n(n−1)

∑
i 6=j ŵijxijx

′
ij

converges in probability to the 2 × 2 matrix M1. To do so, note by Assumption K.1 we can ex-

pand ŵij around wij . The remainder term involves the difference between the nonparametrically

estimated derivative functions and the true derivative functions. By Assumptions K,H, S this

remainder term is uniformly (over the support of the trimming function τ(·)) op(1)- see e.g. Hen-

derson et al. (2015). It thus suffices to establish the probability limit of 1
n(n−1)

∑
i 6=j wijxijx

′
ij . To

do so we first wish to determine the functional form of its expectation. For notational ease here we

let p1r
i , p

0r
j denote ith and jth realized values of P 1,1,r, P 1,0,r respectively, and p̂1r

i , p̂
0r
j denote their

nonparametric estimators. Following the same arguments as in Chen and Khan (2008), Chen et al.

(2016), we can write the expectation of wijxijx
′
ij as∫

k((p1r
i + p0r

j )/hn)/hnµ1(p1r
i , p

0r
j ))f1(p1r

i )f0(p0r
j )dp1r

i dp
0r
j

where µ1(p1r
i , p

0r
j ) ≡ E[xijx

′
ij |p1r

i , p
0r
j ], f1(·) denotes the density function of the random variable

P 1,1,r, f0(·) denotes the density function of the random variable P 1,0,r. Changing variables u =

(p1r
i + p0r

j )/hn and taking limits as hn → 0, yields that the above integral is∫
µ1(p1r

i ,−p1r
i )f1(p1r

i )f0(−p1r
i )dp1r

i = E
[
µ1(p1r

i ,−p1r
i )f0(−p1r

i )
]
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which is M1. We next turn attention to the numerator term. This term is of the form:

1

n(n− 1)

∑
i 6=j

ŵijxij(∆x1ij − x′ijθ0)

Again, we expand ŵij around wij . The lead term in this expansion is of the form:

1

n(n− 1)

∑
i 6=j

wijxij(∆x1ij − x′ijθ0)

Note that because p1r
i + p0r

j = 0 ⇒ ∆x1ij = x′ijθ0) from our identification result, it follows from

Assumptions K,H that the lead term is op(n
−1/2). The linear term in the expansion is of the form

1

n(n− 1)

∑
i 6=j

w′ij((p̂
1r
i − p1r

i ) + (p̂0r
j − p0r

j ))xij(∆x1ij − x′ijθ0) (S.H.45)

We will first focus on the term

1

n(n− 1)

∑
i 6=j

w′ij(p̂
1r
i − p1r

i )xij(∆x1ij − x′ijθ0) (S.H.46)

Recall p̂1r
i denotes a ratio of non parametrically estimated terms and p1r

i denotes the ratio of

derivatives. Denote these estimated and true ratios as f̂−1
vi p̂

1
i , f−1

vi p
1
i respectively. Linearizing this

ratio, the first term is of the form f−1
vi (p̂1

i − p1
i ). So we wish first to evaluate a representation for

1

n(n− 1)

∑
i 6=j

w′ijf
−1
vi (p̂1

i − p1
i )xij(∆x1ij − x′ijθ0) (S.H.47)

Denoting a kernel estimator of the probability function of the outcome variable as a function of

~x = (x1, x), by p̂(~x) =
∑

j y1jKH(~xj−~x)∑
j KH(~xj−~x) where K(·) is our kernel function, H our bandwidth, and

KH(·) ≡ 1
HK( ·H ), our estimator of the derivative of the probability function is

p̂1(~x) =

∑
k y1kK

′
H(~xk − ~x) 1

H

∑
kKH(~xk − ~x)−

∑
kK

′
H(~xk − ~x) 1

H

∑
k y1kKH(~xk − ~x)

(
∑

kKH(~xk − ~x))2

We plug in the first of the two terms in the above numerator into S.H.47 yielding

1
n(n−1)(n−2)

∑
i 6=j 6=k w

′
ijf
−1
vi (y1kK

′
H(~xk − ~xi) 1

H − p
1
i )xij(∆x1ij − x′ijθ0)

1
n

∑
kKH(~xk − ~xi)

In the above expression, we replace the denominator term with its plim5 , which is f ~X(xi), which

5The resulting remainder term, involving the difference between the denominator term and its plim, can shown
to be asymptotically negligible, as shown in Chen et al. (2016)
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gives the expression:

1

n(n− 1)(n− 2)

∑
i 6=j 6=k

(
y1kK

′
H(~xk − ~xi) 1

H

f ~X(~xi)
− p1

i

)
f−1
vi Γij (S.H.48)

where Γij = w′ijxij(∆x1ij − x′ijθ0). Evaluating a linear representation for the above third order U

statistic in S.H.48, we first evaluate the expectation of 1
f ~X

(~xi)
y1kK

′
H(~xk − ~xi) 1

H conditioning on ~xi.

This can be expressed after a change of variables as

1

f ~X(~xi)

∫
p(uH + ~xi)K

′(u)f ~X(uH + ~xi)du
1

H

Where here f ~X(·) denotes the density function of ~Xi. Next we can expand around uH = 0 inside

the integral. The lead term is 0 as K(·) vanishes at the boundary of its support. The linear term is

p1(~xi)f ~X(~xi) + p(~xi)f
′
~X

(~xi) using that
∫
uK ′(u)du = −1. Thus the conditional expectation of the

ratio
y1kK

′
H(~xk−~xi) 1

H
f ~X

(~xi)
is p1(~xi) + p(~xi)f

′
~X

(~xi)/f ~X(~xi). The first term, p1(~xi), cancels out with p1(~xi)

in S.H.48. Now, note the second term in S.H.46,
∑

kK
′
H(~xk−~x) 1

H

∑
k y1kKH(~xk−~x)

(
∑

kKH(~xk−~x))2
is by analogous

arguments f ′~X
(~xi)p(~xi)/f ~X(~xi) + op(n

−1/2). So combining these results one conclusion that can be

drawn is an average derivative type result (e.g. Powell et al. (1989)):

1

n

n∑
i=1

p̂1(~xi)− p1(~xi) =
1

n

n∑
i=1

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
+ op(n

−1/2) (S.H.49)

So plugging S.H.49 into S.H.48 yields:

1

n(n− 1)

∑
i 6=j

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
f−1
vi Γij + op(n

−1/2)

As an additional step we want a representation for Γij . By its definition,

1

n(n− 1)

∑
i 6=j

Γij =
1

n(n− 1)

∑
i 6=j

w′ijxij(∆x1ij−x′ijθ0) =
1

n(n− 1)

∑
i 6=j

1

h2
k′

(
p1r
i + p0r

j

h

)
ζ(~xi, ~xj)

(S.H.50)

where ζ(~xi, ~xj) ≡ xij(∆x1ij − x′ijθ0). To attain this representation, we evaluate the expectation of

the term inside the double summation. We express this as

1

h2

∫
k′

(
p1r
i + p0r

j

h

)
ζ̄(p1r

i , p
0r
j )f1(p1r

i )f0(p0r
j )dp1r

i dp
0r
j
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where recall f1(·) denotes the density function of the random variable P 1,1,r, f0(·) denotes the den-

sity function of the random variable P 1,0,r, and here, ζ̄(p1r
i , p

0r
j ) ≡ E[ζ(~xi, ~xj)|p1r

i , p
0r
j ] To evaluate

the above integral we construct the change of variables u =
p1ri +pr0j

h and expand inside the integral.

Before expanding the integral is of the form

1

h

∫
k′(u)ζ̄(p1r

i , uh− p1r
i )f1(p1r

i )f0(uh− p1r
i )dudp1r

i

After expanding, the lead term is 0 because the function k(·) vanishes on the boundary of its

support. The next term is of the form:∫ (
ζ̄2(p1r

i ,−p1r
i )f1(p1r

i )f0(−p1r
i ) + ζ(p1r

i ,−p1r
i )f1(p1r

i )f ′0(−p1r
i )
)
k′(u)ududp1r

i

From our identification result the above integral simplifies to −E[ζ̄2(p1r
i ,−p1r

i )f0(−p1r
i )] which we

will denote by Ξ1. So plugging this result into S.H.46 we have the following result:

1

n(n− 1)

∑
i 6=j

f−1
vi (p̂1

i − p1
i )Γij =

1

n

n∑
i=1

Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
+ op(n

−1/2) (S.H.51)

≡ 1

n

n∑
i=1

ψ1i + op(n
−1/2) (S.H.52)

where

ψ1i = Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p1(~xi)

}
(S.H.53)

We next turn attention to the second term in the linearization of the ratio. This is of the form :

1

n(n− 1)

∑
i 6=j

Γij
p1
i

f2
vi

(f̂vi − fvi) (S.H.54)

The term f̂vi is our kernel estimator of the derivative of the probability function in the treatment

equation: f̂vi = ∂
∂Xi

E[Y2i|Xi]. So we can use analogous arguments to attain a linear representation

for this U -statistic in (S.H.54) to conclude

1

n(n− 1)

∑
i 6=j

Γij
p1
i

f2
vi

(f̂vi − fvi) =
1

n

n∑
i=1

Ξ1f
−2
vi p

1
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
+ op(n

−1/2)(S.H.55)

≡ 1

n

n∑
i=1

ψ2i + op(n
−1/2) (S.H.56)
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where

ψ2i = Ξ1f
−2
vi p

1
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
(S.H.57)

Next we can turn attention to the the second term in (S.H.45),

1

n(n− 1)

∑
i 6=j

w′ij(p̂
0r
j − p0r

j )xij(∆x1ij − x′ijθ0) (S.H.58)

The term p̂0r
j − p0r involves the ratio of two derivatives. So we can proceed as before by linearizing

this ratio. This will yield the two expressions:

1

n

n∑
i=1

Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p0(~xi)

}
+ op(n

−1/2) ≡ 1

n

n∑
i=1

ψ3i + op(n
−1/2) (S.H.59)

where

ψ3i = Ξ1f
−1
vi

{
y1i

f ′~X
(~xi)

f ~X(~xi)
− p0(~xi)

}
(S.H.60)

and

1

n

n∑
i=1

Ξ1f
−2
vi p

0
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
+ op(n

−1/2) ≡ 1

n

n∑
i=1

ψ4i + op(n
−1/2) (S.H.61)

where

ψ4i = Ξ1f
−2
vi p

0
i

{
y2i
f ′X(xi)

fX(xi)
− fV (xi)

}
(S.H.62)

So collecting all results we can conclude that the estimator has the linear representation:

θ̂ − θ0 = M−1
1

1

n

n∑
i=1

ψi + op(n
−1/2) (S.H.63)

where ψi ≡ ψ1i + ψ2i + ψ3i + ψ4i.
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