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Abstract

In this paper, we provide new semiparametric identification results for a

general class of learning model in which outcomes of interest depend on i)

predictable heterogeneity, ii) initially unpredictable heterogeneity that may be

revealed over time, and iii) transitory uncertainty. We consider a common en-

vironment where the researcher only has access to longitudinal data on choices

and outcomes. We establish point-identification of the outcome equation pa-

rameters and the distribution of the three types of unobservables, under the

standard assumption that unpredictable heterogeneity and uncertainty are nor-

mally distributed. We also show that a pure learning model remains identified

without making any distributional assumption. We then derive and study the

asymptotic properties of a sieve MLE estimator for the model parameters, and

devise a highly tractable profile likelihood based estimation procedure. Monte

Carlo simulation results indicate that our estimator exhibits good finite-sample

properties.
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1 Introduction

Learning models, in which agents have imperfect information about their environ-

ment and update their beliefs over time, are widely used in economics. These models

have received particular interest in various subfields in empirical microeconomics, in-

cluding industrial organization and health (Coscelli and Shum, 2004; Crawford and

Shum, 2005; Aguirregabiria and Jeon, 2020) as well as in labor economics and eco-

nomics of education (Miller, 1984; Stange, 2012; Arcidiacono et al., 2016). Since the

seminal work of Erdem and Keane (1996), learning models have also been popular

in the marketing literature (see Ching et al., 2013, for a survey). However, while

learning models are often structurally estimated, relatively little is known about the

identification of this important class of models.

In this paper we provide new semiparametric identification results for a general class

of learning models. Importantly, we consider an environment where the researcher

has access to longitudinal data on choices and realized outcomes only. As such, our

results are widely applicable, including in common environments where one does not

have access to elicited beliefs data or selection-free measurements. Specifically, we

rely throughout our analysis on a potential outcome model of the following form:

Yit(d) = αt(d) + Z⊺
itβt(d) + λk,iFkt(d) + λ⊺

u,iFut(d) + ϵit(d), (1)

where Zit is a vector of explanatory variables, θ := (α(d), βt(d), Fkt(d), Fut(d)) are

unknown parameters, λi = (λk,i, λ
⊺
u,i)

⊺ denotes a vector of latent individual effects, and

ϵit(d) is an idiosyncratic shock. While these types of interactive fixed effects models

have been the object of much interest in the econometrics literature, a key distinctive

feature of our setup is the existence of two different types of individual effects, namely

λk,i, which are supposed to be initially known by the agent, and λu,i, which are initially

unknown, but may be learned over time. We complement this outcome model with

a very flexible choice model, in which agent i’s assignment in period t can depend

arbitrarily on contemporaneous and lagged explanatory variables, assignments and
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outcomes. The choice model encompasses most of the decision models that have been

estimated in the learning literature.

We first show that the model is point-identified under two alternative sets of con-

ditions. Our first and main identification result applies to a version of the learning

where, consistent with most of the empirical Bayesian learning models, we assume

that the idiosyncratic shocks from the outcome equations (ϵit(d)), as well as the un-

known heterogeneity component (λu,i), are normally distributed. The distribution of

the known heterogeneity component (λk,i) is left unspecified. We then also show that a

pure learning model with only one type of permanent unobserved heterogeneity (λu,i)

actually remains point-identified without making any distributional assumption.

We then propose to estimate the model parameters θ via sieve maximum likelihood

estimation. We focus on a particular class of functionals of θ, which includes as special

cases economically relevant quantities, such as the predictable and unpredictable

outcome variances. These variances can in turn be used to evaluate the relative

importance of, e.g., uncertainty vs. heterogeneity in the overall lifecycle earnings

variability, a question that has been the object of much interest in labor economics

(Cunha et al., 2005). We show that, under mild regularity conditions, the resulting

estimators are root-n consistent and asymptotically normal. Importantly for practical

purposes, the estimator only involves a modest computational cost.

Our paper fits into a growing literature that examines the identification of dynamic

discrete choice models in the presence of unobserved heterogeneity (Heckman and

Navarro, 2007; Kasahara and Shimotsu, 2009; Arcidiacono and Miller, 2011; Hu and

Shum, 2012; Sasaki, 2015; Bunting, 2022). Unlike these papers, we focus on a learning

framework in which a portion of the permanent individual unobserved heterogeneity

is initially unknown to the agents, so that decisions may depend on the unknown com-

ponent (λu,i) only through the sequence of past outcomes. This asymmetry property

plays an important role in our ability to address the deconvolution problem associated

with the coexistence of both types of unobserved heterogeneity.
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Also relevant for us is recent work by Pastorino (2022) and Gong (2019) which both

consider the identification of specific types of learning models. Beyond the fact that

Pastorino restricts her analysis to the specific context of workers’ and firms’ learning,

there are two important differences relative to our paper. First, ability in that paper

is restricted to be discrete, whereas we allow for both continuous and multivariate

abilities. Second, and importantly, the outcomes which forms the basis of learning

is assumed to depend on the learned ability only. In our setting, these outcomes

may depend on both known and learned abilities. Our framework also differs from

Gong (2019) in important ways. Notably, while we remain agnostic about how choices

depend on agents’ beliefs about the distribution of λu, Gong assumes that assignment

depends on prior ability mean only. Gong further imposes significant restrictions on

the updating rule, while we remain agnostic about how agents update their beliefs

about λu.

As the outcome equation in our model involves interactions between unobserved

individual- and time-specific effects, our paper also fits into the literature that deals

with the identification and estimation of panel data models with interactive fixed ef-

fects (Bai, 2009; Gobillon and Magnac, 2016; Freyberger, 2018). Our analysis is most

closely related to Freyberger (2018). A fundamental distinction though comes from

the fact that Freyberger considers a selection-free environment. On the other hand,

choices, along with the underlying selection issues, play a central role in our analysis.

The remainder of the paper is organized as follows. Section 2 presents the set-up of

the model. Section 3 contains our main identification results, both for the normal

case and for the case of a distribution-free pure learning model. We discuss in Section

4 the estimation and inference on the parameters of interest. Section 5 discusses

the implementation of our estimator, while we study in Section 6 its finite-sample

performances. Finally, Section 7 concludes. The Appendix gathers all the proofs.

Notation: Supp(A) indicates the support of random variable A. FA indicates the

distribution function of random variable A. For any sequence (a1, a2, . . . , aS) and s ≤
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S, we let as = (a1, a2, . . . , as). Upper case letters represent random variables, lower

case represent realized values. A ⊥⊥ B | C indicates that A and B are statistically

independent conditional upon C.

2 Set-up

In this paper we consider a model where potential outcomes have an interactive fixed

effect structure:

Yit(d) = αt(d) + Z⊺
itβt(d) + λk,iFkt(d) + λ⊺

u,iFut(d) + ϵit(d), (2)

where d represents individual i’s realized assignment in period t, Yit(d) is a scalar

outcome variable, Zit a vector of explanatory variables, (α(d), βt(d), Fkt(d), Fut(d))

are unknown structural parameters, λi = (λk,i, λ
⊺
u,i)

⊺ is the latent individual effect

and ϵit(d) is an unobserved random variable. For example Yit(d) may represent wages

in occupation d, which depend on multiple dimensions of unobserved abilities λi,

which might differ in importance across occupations.

Importantly, we allow for two types of latent individual effects: λk,i that is known

by the agent, and λu,i that is initially unknown but (possibly) learned over time.

For example, a worker i’s log-wage in occupation d at time t, Yit(d), may depend on

their occupation specific productivity λk,iFkt(d)+λ⊺
u,iFut(d), part of which the worker

becomes more certain of as they accumulate more experience.

The only restriction placed on an individual’s assignment in period t is that it does

not directly depend on the unknown component of latent heterogeneity. Specifically

we assume that

Dit ⊥⊥ λu,i | Zt
i , Y

t−1
i , Dt−1

i , λk,i. (3)

The above conditional independence condition highlights the asymmetry between the

two types of latent effect: assignment may directly depend on the known component

of the latent effect λk,i, but not on the unknown component of the latent effect λu,i.

5



By allowing the assignment rule to depend arbitrarily on lagged variables, we remain

agnostic about how assignments depend on agents’ beliefs over λu,i, as well as about

how agents form their beliefs about λu,i. For example, Dit may represent the outcome

of a worker-firm matching process, which depends on the common prior probability

distribution over the worker’s latent abilities (Pastorino, 2022). To take another ex-

ample, Dit may be the college major choice, which depends on the student’s belief

about their abilities in various fields of study (Arcidiacono et al., 2016). In one ex-

treme, the beliefs of a rational Bayesian agent coincide with the objective distribution

of λu,i conditional upon their information set at time t, which may include all realized

variables and model parameters. In the other extreme, an agent’s assignment may not

depend on beliefs over the distribution of λu,i. In addition to these two extremes, the

flexible assignment rule allow for myopic or uninformative beliefs. Importantly, agent

beliefs may be heterogeneous — for example, some agents may be rational Bayesian

updaters, while others may be myopic.

Given the assignment rule, we define the conditional choice probability (CCP) func-

tion as

h̄t(d
t, zt, yt−1, vk) ≡Pr(Dit = d | Zt

i = zt, Y t−1
i = yt−1, Dt−1

i = dt−1, λk,i = vk).

These CCPs play a central role in our identification analysis. In applications it is

common to impose structure on the assignment rule. For example, in a model of

school choice and labor supply, Arcidiacono et al. (2016) assume that

Dit = arg max
d̃∈Supp(Dt)

{
vt(d̃, Zit, λk,i, Xit) + ηit(d̃))

}
,

where vt is known up to a finite dimensional parameter, Xit are sufficient statistics

for the conditional distribution of λu,i at time t, and ηit follows a known distribu-

tion. In what follows, we focus on point identification of the (latent) CCP functions

h̄ = (h̄1, h̄2, . . . , h̄T ) and the outcome equation parameters, from which standard ar-

guments can be applied to identify the primitives (see, e.g., Magnac and Thesmar,

2002).
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3 Identification results

This section considers identification of the model of Section 2. We provide two sets

of sufficient conditions for point identification. One set of conditions (Theorem 1)

assume that ϵit belongs to the Gaussian family. The second set of conditions (Theorem

2) does not require parametric assumptions on the distribution of ϵit, but does assume

all components of the individual effect are initially unknown by the agent.

3.1 Known and unknown heterogeneity

This section provides sufficient conditions for identification of the model in Section 2.

The first assumption imposes that any correlation in the unobservables over time and

across assignments is due to the latent effect λ. It also imposes that the transition of

the control variables Zt does not depend on unobservables.

Assumption KL1. Equation (2) holds. Further, for any d ∈ Supp(Dt)

Fϵt(d)DtZt|Y t−1Dt−1Zt−1λ = Fϵt(d)FDt|Y t−1Dt−1Ztλk
FZt|Y t−1Dt−1Zt−1 .

Assumption KL2 imposes that the learned individual effect is drawn from a multivari-

ate normal distribution, and that the random shock in the outcome equation, which

forms the basis to update beliefs over λu,i, is also normal.

Assumption KL2. (λu | Z1 = z1, λk = vk) ∼ N (0,Σu(z1, vk)) and ϵt(d) ∼

N(0, σt(d)
2).

This assumption leads to a specific functional form for the posterior distribution,

namely the Gaussian conjugate distribution. We summarize this in Lemma 1.

Lemma 1. Define (Et,Σt) recursively as follows. First, (E1,Σ1) = (0,Σu(Z1, λk)).

Second,

Σt+1 =
(
Σ−1

t + Fut(Dt)Fut(Dt)
⊺σ−2

t (Dt)
)−1

Et+1 = Σt+1

(
Σ−1

t Et + Fut(Dt)
Yit − αt(Dt)− Z⊺

itβt(Dt)− λk,iFkt(Dt)

σ2
t (Dt)

)
.
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Then, under Assumption KL2, λu | (Dt−1, Y t−1, Zt, λk) ∼ N(Et,Σt).

Since λu conditional upon (Y t−1, Dt−1, Zt, λk) is normal with mean Et and variance-

covariance matrix Σt, it follows that (Et,Σt) are sufficient statistics for λu,i at

time t. Notice (Et,Σt) are a deterministic function of (Dt−1, Y t−1, Zt, λk) and

θ1 =
(
(αt, βt, Fkt, Fut, σt)

T
t=1,Σu

)
∈ Θ1. Furthermore, we can express (Et,Σt) non-

recursively as:

Σt+1 =

(
Σ−1

u (Z1, λk) +
t∑

s=1

Fus(Ds)Fus(Ds)
⊺σ−2

s (Ds)

)−1

Et+1 =Σt+1

(
t∑

s=1

Fus
Yis − αs(Ds)− Z⊺

isβs(Ds)− λk,iFks(Ds)

σ2
s(Ds)

)

Suppose λu ∈ Rp. The remaining assumptions are as follows.

Assumption KL3. (A) For some d1, α1(d1) = 0, Fk1(d1) = 1. (B) For some

(d1, d2, . . . , dp), (Fu1(d1)Fu2(d2) . . . Fup(dp)) = Ip×p.

Assumption KL4. (A) Θ1 is a compact set. (B) Supp(λk) is a compact set. (C)

For each t, F ⊺
ut(dt)ΣtFut(dt) + σ2

t (dt) ̸= 0, σt(dt) ̸= 0 and Σu(z1, vk) is non-singular.

(D) dFλk|Y t−1,Zt,Dt(vk; y
t−1, zt, dt) > 0 for all for all t and vk in the support of λk. (E)

For each t, the variance-covariance matrix of (1n, Zit) is non-singular.

Assumption KL5. (A) For each dt there are sequences dt−1, d̃t−1 such that

Fut(dt)
⊺Σt

∑t−1
s=1

(
Fus(ds)

Fks(ds)
σ2
s(ds)

− Fus(d̃s)
Fks(d̃s)

σ2
s(d̃s)

)
̸= 0. (B) For all dt, Fkt(dt) ̸= 0.

(C) For all dt, Fkt(dt) − Fut(dt)
⊺Σt

∑t−1
s=1 Fus(ds)

Fks(ds)
σ2
s(ds)

̸= 0. (D) For each (d2, d1),

Fu2(d2)
⊺Σ2(λu,i)Fu1(d1)

Fk1(d1)

σ2
1(d1)

̸= 0 (E) There are sets {d2,i : i = 1, 2, . . . , k},

{d̃2,i : i = 1, 2, . . . , k} which are subsets of Supp(D2) and satisfy

(Fu2(d2,1)Fu2(d2,2) . . . Fu2(d2,k))
−⊺ vec(Fk2(d2,1), . . . , Fk2(d2,k))

̸=
(
Fu2(d̃2,1)Fu2(d̃2,2) . . . Fu2(d̃2,k)

)−⊺
vec(Fk2(d̃2,1), . . . , Fk2(d̃2,k)).

(F) Any p× p submatrix of (Fu1(d1)Fu2(d2) . . . FuT (dT )) has full rank.
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Assumption KL3 is a normalization on the finite dimensional parameters. This type

of assumption is standard in interactive fixed effect models (Freyberger, 2018), since

no scale assumption is placed on the distribution of the unknown fixed effects. For ex-

ample, it may be possible to replace Assumption KL3(A) by a zero mean assumption

on the latent individual effect λi. Assumption KL3(B) is required since the latent

effect is inherently scale free: multiplying the latent effect by a scalar and dividing

the coefficient by the same scalar are observationally equivalent.

Assumption KL4 places support restrictions on various objects of the model. Part (A)

states the finite dimensional parameters belong to a compact set. Part (B) imposes

that λk,i has compact support. This would be satisfied if the distribution of λk,i has

discrete support, although this applies, of course, to a broader set of distributions.

Part (C) requires that the distribution of (Yit(d)|Zit, λk,i, Dt = d) is non-degenerate.

Part (D) is a ‘rectangular’ support assumption on λk,i. It states that given each

history (Y t−1, Dt−1, Zt) there are some vk in the support of λk,i that are assigned to

Dt = dt. This will be satisfied by any standard dynamic discrete choice model, due to

the large support assumption on the random utility shocks. Finally, part (E) imposes

sufficient variation in Zt.

Assumption KL5 is a regularity condition that ensures that the latent individual ef-

fect λi alters outcomes sufficiently differently across time and assignments. In broad

terms, it rules out “knife-edge” cases where the cumulative effect of different elements

of the individual effect perfectly offset each other. This type of assumption is similarly

required in latent factor models without selection or learning (Freyberger, 2018, As-

sumption L4) to rule out degeneracies. In this sense, Assumption KL5 can be viewed

as a generalization of a standard assumption in linear factor models to models with

selection and learning. Part (A) requires that the aggregate effect of λk,i on outcomes

for choice dt is different for at least two histories (dt−1, d̃t−1). Part (B) assumes that

the direct effect of λk,i is non-zero in each period for each assignment. Part (C) states
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the aggregate effect of λk,i on outcomes must be non-zero—that is, that the direct

effect Fkt(dt) is not perfectly offset by the effect mediated through previous choices.

Part (D) ensures that there is a non-zero effect of previous choices in t = 2. Finally,

Part (E) requires that in t = 2 the relative effect of known and unknown λi changes

across choices. In the case that λu,i ∈ R, it reduces to Fk2(d2)
Fu2(d2)

̸= Fk2(d̃2)

Fu2(d̃2)
—that the ratio

of factor loadings is non-constant across assignments. Notice that it implies that, at

least in t = 2, the set of assignments must contain at least p+1 elements for λu,i ∈ Rp.

Define Fλk
(vk, z1) to be the distribution function of λk conditional upon

the initial exogenous covariates. Then the model parameters are θ =(
(αt, βt, Fkt, Fut, σt)

T
t=1,Σu, h̄, Fλk

)
∈ Θ. We are now in a position to state our main

identification result.

Theorem 1. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T = 2p + 1

and that Assumptions KL1-KL5 hold. Then θ is point identified.

The proof to this theorem relies on the normality of the error term ϵit(d). The first

step is to show that Yt is normally distributed conditional upon lagged outcomes Y t−1,

assignmentsDt, covariates Zt and the known component of the latent individual effect

λk. This implies that that Yt conditional upon (Y t−1, Dt, Zt) is a mixture distribution

parameterized by λk. Then under the compact support and non-degeneracy assump-

tions KL4(A)-(C), one can apply a result from Bruni and Koch (1985) to identify

the aforementioned mixture distribution up to an affine transformation of λk. Next,

the normalization and regularity assumptions (Assumptions KL3-KL5) are used to

pin down the affine transformation, leading to identification of the joint distribu-

tion of (Y T , DT , ZT , λk). Knowledge of this distribution identifies the components

of the model related to the known component of the latent individual effect, namely(
(αt, βt, Fkt)

T
t=1, h̄, Fλk

)
. Thus it remains to disentangle the effect of the learned com-

ponent (i.e. λu) and uncertainty (i.e. ϵt(d)) in order to identify
(
(Fut, σt)

T
t=1,Σu

)
.

To do so, we show that the joint distribution of (Y T , DT , ZT ) conditional upon λk,
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suitability weighted by the assignment probabilities, is a normal-weighted mixture of

normals. This observation leads to identification
(
(Fut, σt)

T
t=1,Σu

)
from the second

moments of the reweighted distribution.

Remark 1 (Compact support assumption). Assumption KL4(B) imposes that the

known component of the latent individual effect has bounded support. In applications,

it is common to assume λk,i has finite support with known cardinality. Assumption

KL4(B) relaxes this assumption in the sense that the number of support points of

λk,i need not be known a priori.

Remark 2 (Normality of unknown factor). As summarized in Lemma 1, an important

advantage of the normality assumptions (Assumption KL2) is the resulting conju-

gate prior with a tractable closed form. For this reason, these assumptions are very

common in the applied literature. In our identification result, the most important im-

plication of these assumptions is to enable identification of the (latent) distribution of

Yit |
(
λk, Y

t−1
i , Dt

i , Z
t
i

)
from variation in Yit only. First, the normality assumptions on

ϵt and λu lead to normality of Yit |
(
λk, Y

t−1
i , Dt

i , Z
t
i

)
by standard Bayesian arguments.

For each fixed (Y t−1
i , Dt

i , Z
t
i ) = (yt−1, dt, zt) this is a mixture of normal distributions

weighted by the (continuous) distribution of λk conditional upon (Y t−1
i , Dt

i , Z
t
i ). Then

classical continuous mixture of normals arguments yield identification.

This discussion also highlights why we restrict λk,i to be a scalar random variable.

Namely, that identification of its distribution is coming from variation in the scalar

outcome variable Yit. If a vector of outcomes were available—that is, if Yit was vector-

valued—then our arguments would easily extend to multivariate λk,i.

Remark 3 (Invariance to normalization). The normalization assumption (Assumption

KL3) is a true normalization in the sense that particular meaningful economic param-

eters are invariant to the assumption. In particular, we can show that average and

quantile structural functions are identified without the normalization assumption. To

formalize this notion, define Ckt(d) ≡ λ⊺
kFkt(d), Cut(d) ≡ λ⊺

uFut(d) and let Qα [X] be
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the α-quantile of the random variable X. Let z ∈ Supp(Zit) and define the quantile

structural functions

s1,t(z, α) =αt(d) + z⊺βt(d) +Qα[Ckt(d) + Cut(d) + ϵt(d)],

s2,t(z, α1, α2, α3) =αt(d) + z⊺βt(d) +Qα1 [Ckt(d)] +Qα2 [Cut(d)] +Qα3 [ϵt(d)],

and the average structural function as s3,t(z) = αt(d) +Z⊺
itβt(d) +

∫
edFCkt+Cut+ϵt(e).

In Appendix A.1 we prove the following corollary:

Corollary 1. Suppose the Assumptions KL1, KL4 and KL5 and that (λu | Z1 =

z1, λk = vk) ∼ N (µu,Σu(z1, vk)) and ϵt(d) ∼ N(ct(d), σt(d)
2). Furthermore, suppose

for some (d1, d2, . . . , dp), Fk1(d1) ̸= 0 and Fp = (Fu1(d1)Fu2(d2) . . . Fup(dp)) is full

rank. Then s1,t, s2,t and s3,t are identified on the support of Zt.

3.2 Pure learning model

This section considers a special case of the model of Section 2, in which all components

of the latent individual effect are initially unknown to the decision making agent.

That is, λi = λu,i. Without needing to distinguish initially known and unknown

heterogeneity, a stronger identification result is achieved. In particular, no parametric

restrictions on the distribution of the unobservables are required.

Suppose λ ∈ Rp. The required assumptions are as follows:

Assumption L1. ϵ1, . . . , ϵT , ν1, . . . , νT , λ are mutually independent conditional upon

Z.

Assumption L2. (A) The joint PDF of Y, λ conditional upon Z is bounded and

continuous, as are all marginal and conditional densities. (B) λ | Z has full support.

(C) The characteristic function of ϵt(d) is non-vanishing, E[ϵt|Z, λ] = 0.

Assumption L1 weakens Assumptions KL1 and KL2 by relaxing the restriction that

Zt be first-order Markov. Assumption L2 places a full support assumption on Yit(d),

which is implied by Assumption KL2.
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Assumption L3. For some choice sequence (dt : t = 1, 2, . . . , p), (A)

(F1(d1) . . . Fp(dp)) = Ip×p and (B) αt(dt) = 0 for each t = 1, 2, . . . , p.

Assumption L4. (A) fY t−1,Zt,Dt(yt−1, zt, dt) > 0 for all t. (B) The variance-

covariance matrix of λ | Z is full rank.

Assumption L3 are normalization assumptions, which are standard in interactive fixed

effect models. An alternative normalization could be placed on the expectation of λ

conditional upon Z. Assumption L4 (A) is similar to Assumption KL4. It requires

that for each history (yt−1, dt−1, zt), some units are assigned to Dt = dt for each dt ∈

Supp(Dt). This assumption is satisfied in many standard parametric discrete choice

models (see, e.g., Keane and Wolpin, 1997). At the cost of notational burden, this

assumption could be weakened to hold for certain sequences of choices. In particular,

that for each dt ∈ Supp(Dt), there is a finite sequence of choice sequences whose first

element is the choice sequence of Assumption L3(1), whose adjacent elements are

equal on at least p points of their domain, and whose final element maps t to dt.

Assumption L5. Any p × p sub-matrix of F (d) = (F1(d1)F2(d2) . . . FT (dT )) is full

rank.

Assumption L5 is a standard assumption in the interactive fixed effect literature

(Freyberger, 2018). Similar to the more general Assumption KL5, it rules out de-

generacies by ensuring that the outcome in each period Yt(dt) depends on a distinct

linear combination of λu,i.

We now define the conditional choice probability function

h̄t(d
t, zt, yt−1) ≡Pr(Dit = dt | Zt

i = zt, Y t−1
i = yt−1, Dt−1

i = dt−1),

and let h̄ =
(
h̄1, h̄2, . . . , h̄T

)
. Compared to Section 3.1, there is no latent variable

that enters h̄. Therefore, h̄ is identified directly from the data. As in Section 3.1,

we place very little structure on the learning process of decision making agents. This

highlights that the core identification results do not rely on structure imposed on
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the belief formation process. However it is worth emphasizing that, should there

be such structure, our identification results would enable identification of the belief

formation process. To illustrate this, consider the case that the decision making

agents are rational Bayesians and that the sufficient statistics for λu at time t are a

known function of the information set and the model parameters. That is, that there

is a known function g such that the sufficient statistics equal g(Y t−1
i , Dt−1

i , Zt−1
i , θ),

where θ are the model parameters. In this case, identification of θ is sufficient for

identification of the beliefs.

To state the main result of this section, let θ1 =
(
(αt, βt, Ft, )

T
t=1

)
and define Fλ(vk, z1)

to be the distribution function of λ conditional upon the initial exogenous covariates.

Finally, define fϵ|Z,λ =
{
fϵt(d)|Z,λ : d ∈ Supp(Dt), t = 1, . . . , T

}
. Then, the structural

parameter is θ =
(
θ1, Fλ, fϵ|Z,λ, h̄

)
. The following theorem states that the preceding

conditions are sufficient for point identification of θ.

Theorem 2. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T = 2p + 1

and that Assumptions L1-L5 hold. Then θ is point identified.

The key insight that enables identification of this model is that this is a model of selec-

tion on observables. That is, although assignment probabilities depend on unobserved

beliefs over λi, they do not depend on the unobserved factor λi itself. It follows that

one can control for beliefs at time t by conditioning upon prior outcomes, choices and

covariates. This in turn allows us to express the joint distribution of (Y t, Dt, Zt),

suitably weighted by the assignment probabilities, as a mixture model over the po-

tential outcomes Y t(dt) conditional upon the latent factor λ and exogenous covariates

Z. From here the arguments of Freyberger (2018) yield identification of the mixture

and component distributions.

Remark 4 (Auxiliary selection-free measurements). In some cases, additional unse-

lected noisy measurements of known abilities are available. See, for instance, Cunha

et al. (2005) and Heckman and Navarro (2007). With this additional data, sufficient
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conditions for identification of the distribution of the latent effect are well known in

the literature (Hu and Schennach, 2008; Cunha et al., 2010). If the sufficient con-

ditions are satisfied conditional on each (Yt, Dt, Xt)
T
t=1, then the joint distribution of(

(Yt, Dt, Zt)
T
t=1, λk

)
is identified from the additional outcome variables. From here,

one can redefine Zt = (Zt, λk) and the conditions of Theorem 2 are sufficient for

distribution-free identification of the model with known and unknown heterogeneity.

4 Estimation

We propose to estimate the model parameters via sieve maximum likelihood. Let

Wi = (Dit, Zit, Yit)
T
t=1 and θ∗ ∈ Θ be the true value of the parameters. We focus

in the following on the model of Section 3.1, although similar conditions could be

presented for the model of Section 3.2. The log-likelihood contribution of Wi = w is

ℓ(w; θ) = log

∫ T∏
t=1

(
1

σt (dt)
ϕ1

(
yt − αt (dt)− βt (dt)

T zt − Fut (dt) vu − Fkt (dt) vk
σt (dt)

)

× h̄t(d
t, zt, yt−1, vk)

)
×

T−1∏
t=1

gt(zt+1 | zt, yt, dt)

× 1√
|Σu (z1, vk)|

ϕp

(
Σ

− 1
2

u (z1, vk) vu

)
× dFλk

(vk; z1) dvu

where ϕs is the probability distribution function of the standard multivariate normal

distribution with s components, gt is the Markov kernel for zt+1. There are four

components of the likelihood function: the outcomes, the assignment probabilities,

the Markov kernel of the covariates, and the distribution of latent factors (λu, λk).

To estimate θ, let Θn be a finite dimensional sieve space that serves as an approxi-

mation to Θ. The sieve maximum-likelihood estimator for θ∗ is defined as

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n) (4)

The following result states that under standard conditions (stated in the Appendix)

θ̂ is consistent for θ∗.
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Theorem 3. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T ≥ 2p + 1

and that Assumptions KL1-KL5 and Assumptions E1-E6 hold. Then θ̂ as defined in

Equation (4) is consistent for θ∗.

In practice, researchers are often interested in particular low-dimensional functions

of the model parameters. We begin by introducing the general class of functionals

we consider for estimation, before turning to an illustration in the context of

variance decomposition a la Cunha et al. (2005). We let It ⊆ ×T
s=t+1Supp(Ds),

ω = {ωi : i ∈ It} be a user chosen subset of future choices and weights which could

depend on θ. Then define the function f1 which maps (θ, w, vk) to R as

f1

(
E

[∑
i∈It

ωiYti(i) | W t = w, λk = vk

]
,Var

[∑
i∈It

ωiYti(i) | W t = w, λk = vk

])
, (5)

where ti denotes the time period to which i ∈ It belongs. Now let dµ(w, vk) be a

user chosen measure on Supp(Wt) × Supp(λk). We define the functional of θ, which

we propose to estimate by plug-in sieve MLE, as

f(θ) =

∫
f1(θ, w, vk)dFW t,λk

(w, vk).

Notice the measure dFW t,λ also depends on θ.

This class of functionals encompass several economically meaningful objects, and can

be used in particular to decompose earnings variance between predictable and unpre-

dictable components. This question has attracted much interest in labor economics,

where a growing literature aims to quantify the relative importance of uncertainty

and unobserved heterogeneity in lifetime earnings (see, e.g. Cunha et al., 2005; Cunha

and Heckman, 2008, 2016; Gong et al., 2019).

We illustrate this application with a simple model where agents make an one-time

educational decision in period t = t0, which determines their sector of employment
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for their entire career. For a discount value ρ, the present value of lifetime earnings

is:

Ỹt0(d) =
T∑

t=t0

Yt(d)

(1 + ρ)t−t0

where the predictable component of the present value of lifetime earnings is given by,

denoting by It0 the agent’s information set at time t = t0:

E(Ỹt0(d)|It0)

where we assume that It0 = {λk,W
t0} with W t = (Y t−1, Dt−1, Zt). The variance of

the predictable and unpredictableTioarss2 components of Ỹt0(d) are then given by:

σ2
k,t0

(d) =

∫ (
E(Ỹt0(d)|It0)− E(Ỹt0(d))

)2

dFλk,W
t0 (x

∗
k, w

t0)

σ2
u,t0

(d) =

∫
Var(Ỹt0(d)|It0)dFλk,W

t0 (x
∗
k, w

t0)

The share of predictable relative to unpredictable earnings variance evolves over time

as agents learn and update their beliefs about λu.

Theorem 4 shows that, under mild regularity conditions, the plug-in sieve MLE esti-

mator for the functional f(θ) is root-n consistent and asymptotically normal.

Theorem 4. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T ≥ 2p + 1

and that Assumptions KL1-KL5 and Assumptions E1-E13 hold.Then
√
nf(θ̂)−f(θ∗)

∥v∗n∥
→
d

N (0, 1)

Note that Theorem 4 allows for the possibility that the sieve variance v∗n may diverge–

that is, that f is an irregular functional. In either case, consistent estimators are

readily available for the sieve variance (Chen and Liao, 2014, Section 3).

5 Implementation

To implement the sieve maximum likelihood estimation developed in the previous

section, first notice that we can write the likelihood as follows:
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ℓ(w; θ) = log

∫
1

|2πV (w, vk; θ)|T/2
ϕ
(
m(w, vk; θ)

TV (w, vk; θ)
−1m(w, vk; θ)

)
×

T∏
t=1

h̄t(d
t, zt, yt−1, vk)×

T−1∏
t=1

gt(zt+1 | zt, yt, dt)dFλk
(vk; z1)

where m(w, vk; θ) and V (w, vk; θ) are the T -dimensional vector and T ×T matrix giv-

ing the expected mean and variance of Y T conditional on (DT , ZT , λk) = (dT , zT , vk).

They are defined as follows. m(w, vk; θ) = (m1(w, vk; θ), . . . ,mT (w, vk; θ))
T , where,

mt(w, vk; θ) = αt(dt) + β⊺
t zt + Fk(dt)vk,

and,

V (w, vk; θ) = Fu(w)
TΣuFu(w) + diag(d1, . . . , dT )

where Fu(w) is the p× T ,

Fu(w) =
[
Fu1(dt) · · ·FuT (dT )

]
There are three non-parametric objects in the likelihood function, h̄, g, and Fλk

.

The choice of sieve spaces for h̄ and g are typically context specific. For Fλk
, we

propose using the sieve estimator discussed in Koenker and Mizera (2014) and closely

related to the estimator in Fox et al. (2016). In particular, for each n, fix a grid of

support points for λk, Sn = {v̄1n, . . . , v̄qnn}, for some finite qn. Then, we can use the

sieve space for Fλk
:

Fn =

{
v 7→

qn∑
s=1

ωs1{v ≤ v̄sn}

∣∣∣∣∣
qn∑
s

ωs = 1

}

We can show that if qn → ∞ the space of distribution functions is dense in {Fn}n.

Koenker and Mizera (2014) note that fixing the other parameters, maximizing {ωs :

s ≤ qn} is a convex optimization problem that can solved efficiently and reliably
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using standard software for convex optimization. In practice, we use the algorithm

proposed in Kim et al. (2020), which is specialized for this setting, and implemented

in the R package “mixsqp”.

Given the efficiency of solving this problem, it is useful to define the profile likelihood

function. Partition θ into {Fλk
} and θ1 = θ1 = θ \ {Fλk

}, then:

n∑
i=1

ℓ(w; θ1) = max
Fλk

n∑
i=1

ℓ(w; θ1, Fλk
)

To solve the original maximum likelihood problem, therefore, we simply maximize

the profile likelihood function over θ1. Separating the maximization problem into

this inner and outer maximization significantly reduces the dimensionality of the

problem, while allowing λk to have a very flexible distribution. Importantly, the inner

maximization problem over Fλk
can be solved very quickly and efficiently despite the

potentially high dimensionality of {ωs : s ≤ qn}.

6 Monte Carlo Simulations

In this section, we present results from Monte Carlo simulations which illustrate the

finite-sample performances of the proposed estimator.

The data generating process (DGP) used in our simulations has both known and

unknown heterogeneity, no covariates, and supp(λu,i) = R. With this specification,

the potential outcomes equation is:

Yt(d) = αt(d) + Fut(d)λu(d) + Fkt(d)λk + Ut(d)

Recall that under the assumptions of Theorem 1, the marginal distribution of λk,

Fλk
, and the CCP function, h̄, are point identified without further functional form

assumptions or assumptions on the primitive choice process generating h̄. We adopt

a specification in which agents choose an option to maximize utility in each period.
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The utility that individual i derives from choice d in period t is,

vt(d, λk,i, Y
t−1
i , Dt−1

i ) = ρE(Yt(d)|λk,i, Y
t−1
i , Dt−1

i ) + ργ1(Dt,i = 2)λk,i + νi,t(d)

where {νi,t(d) : t = 1, 2, 3, d = 1, 2} are mutually independent with an Extreme Value

Type 1 distribution. This assumption embeds several features that are common

in learning models: (1) there is positive selection on the expected outcome, and

(2) individuals have rational expectations and use their past outcomes and choices

to form their expectations about future outcomes. Since λk enters linearly in the

utility and in the conditional expectation term, this specification also allows agents

to have permanent unobserved heterogeneity which affects both their choices and

their learning process.

A common approach to estimating models of this form is to assume that λk has a

discrete distribution, typically with a small number of support points. The conditions

of Theorem 1, however, impose the much weaker condition that the support of λk

is compact. To illustrate the performance of our estimator when λk is not drawn

from a low-dimensional discrete distribution, we use a mixture of Gaussian random

variables with three components where the mean and variance are both allowed to be

mixture-component specific. The resulting distribution is then truncated to satisfy

the assumption that λk has compact support.

We perform a Monte Carlo experiment, estimating the model with 400 simulations

and sample sizes of 250, 500, 1, 000, 2, 000 and 4, 000. We use the sieve MLE estimator

described in Section 5, with the number of support points in the estimated distribu-

tions growing at a rate of n1/3, from 62 to 158. This is a pretty high dimensional

problem. With n = 4, 000, the inner convex optimization problem has 4, 000 con-

straints and 158 parameters, and the outer non-convex optimization problem has 20

parameters. Importantly though, using the computational approach described earlier,

the MLE problem can be solved in under 3 minutes using a 4-core CPU. Computation

times ranged from approximately 30 seconds to 180 seconds depending on sample size.
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Table 1: Bias and Variance (×1, 000) of Finite Parameter Estimators

N = 250 N = 500 N = 1000 N = 2000 N = 4000

sq bias var sq bias var sq bias var sq bias var sq bias var

α1(2) 0.746 6.953 0.056 2.311 0.017 0.763 0.006 0.276 0.001 0.134

α2(1) 0.037 6.060 0.000 2.274 0.001 0.752 0.000 0.265 0.000 0.112

α2(2) 0.001 8.545 0.001 2.617 0.008 0.849 0.001 0.321 0.001 0.118

α3(1) 0.007 5.236 0.002 2.291 0.002 0.762 0.001 0.293 0.000 0.122

α3(2) 0.052 8.169 0.010 2.950 0.006 0.950 0.002 0.312 0.003 0.120

Fu1(2) 0.011 10.801 0.044 3.707 0.019 1.307 0.010 0.381 0.004 0.158

Fu2(1) 0.019 6.508 0.023 3.056 0.001 1.067 0.000 0.363 0.000 0.158

Fu2(2) 0.183 13.906 0.159 4.276 0.039 1.287 0.016 0.368 0.008 0.152

Fu3(1) 0.132 5.932 0.093 3.077 0.068 1.035 0.019 0.362 0.002 0.120

Fu3(2) 0.879 13.157 0.299 5.717 0.096 1.504 0.027 0.496 0.013 0.190

Fk1(1) 0.006 5.126 0.000 2.262 0.006 0.871 0.008 0.301 0.003 0.118

Fk2(1) 0.125 5.589 0.053 2.600 0.021 0.960 0.008 0.305 0.003 0.122

Fk2(2) 0.943 7.306 0.080 2.860 0.031 0.929 0.008 0.284 0.002 0.135

Fk3(1) 0.001 6.225 0.001 2.528 0.002 0.786 0.000 0.289 0.000 0.115

Fk3(2) 0.587 6.793 0.043 2.650 0.000 0.818 0.002 0.323 0.001 0.136

γ 0.016 2.773 0.000 1.308 0.000 0.403 0.000 0.138 0.000 0.057

σ2(1) 0.037 0.341 0.011 0.144 0.003 0.057 0.001 0.018 0.000 0.007

σ2(2) 0.064 0.599 0.024 0.249 0.005 0.066 0.001 0.020 0.000 0.008

σ2
u 0.019 2.853 0.004 1.049 0.002 0.317 0.000 0.097 0.000 0.043

ρ 0.035 14.565 0.004 6.103 0.002 1.855 0.001 0.697 0.000 0.308

All calculations are based on 400 Monte Carlo simulations of the DGP described in the main text.

Squared bias and variance of finite parameter estimates are multiplied times 1, 000

Starting with the finite parameters, {αt, Fut, Fkt, γ, σ, ρ}, Table 1 shows squared bias

and variance of the parameter estimates under the simulated distribution. (Note

that all values in Table 1 are multiplied by 1, 000.) For each of the parameters, the

bias tends to be small even for small sample sizes. In particular, the squared bias

tends to be negligible relative to the variance. Besides, the variance declines at a rate

consistent with
√
n convergence of the mean squared error.

To present results for the nonparametric estimator of the distribution of known un-

observed heterogeneity Fλk
, we focus on the quantiles of Fλk

. Let qα(F ) be the α

quantile of a random variable with the distribution F . For each value of α ∈ [0, 1],
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Figure 1: Quantiles of Estimator of λk: 95% Coverage Intervals
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Note: The red line shows the true distribution of λk. The blue lines show the mean, and

the 5th and 95th percentiles of the simulated distribution of the estimate of qα(Fλk
).

we calculate the mean and the 5th and 95th percentile of the simulated distribution

of the estimator of qα(Fλk
). The results are illustrated in Figure 1. The red line is

the CDF of the true distribution of λk, while the blue lines that closely follow the

red line are the mean of the simulated distribution of the quantile estimators for each

sample size. Darker blue lines represent larger sample sizes. The blue lines above and

below the CDF are the 5th and 95th percentiles of the simulated distribution of the

quantile estimators.

The results indicate that the bias of the quantile estimators are negligible even at
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Table 2: Bias and Variance (×1, 000) of Variance Decomposition Estimators

N = 250 N = 500 N = 1000 N = 2000 N = 4000

sq bias var sq bias var sq bias var sq bias var sq bias var

σ̃u,1(1) 0.028 3.550 0.049 1.712 0.006 0.652 0.000 0.242 0.001 0.109

σ̃u,2(1) 0.050 6.383 0.022 4.431 0.015 1.675 0.023 0.573 0.009 0.251

σ̃u,3(1) 0.000 6.660 0.001 3.824 0.017 1.192 0.007 0.432 0.002 0.160

σ̃k,1(1) 0.111 3.514 0.029 1.231 0.008 0.389 0.002 0.114 0.000 0.048

σ̃k,2(1) 0.074 2.697 0.007 1.167 0.003 0.443 0.010 0.144 0.014 0.067

σ̃k,3(1) 0.076 1.082 0.011 0.466 0.002 0.173 0.000 0.067 0.004 0.026

All calculations are based on 400 Monte Carlo simulations of the DGP described in the main text.

Squared bias and variance of finite parameter estimates are multiplied times 1, 000

small sample sizes. The estimator broadly captures the shape of the true distribution

of λk, and also appears to converge toward the true distribution as the sample size

grows. We do not provide a formal result on the rate of convergence of this parameter,

but we expect this nonparametric estimator to converge at rate a slower than
√
n.

At a sample size of n = 4, 000, the simulated distribution of this estimator is still

relatively disperse.

The results in Table 1 confirms that despite the slower convergence of the nonpara-

metric estimator of Fλk
, the finite parameters converge at the usual parametric rate.

Theorem 4 shows that the parametric convergence rate is attained for a broader class

of linear functionals of the model parameters, including the parameters that decom-

pose variance in potential outcomes into uncertainty and known heterogeneity. We

now turn to assessing the performance of estimators of this kind of parameter. For

simplicity, we focus here on the variance of potential outcomes in one period rather

than a sum of potential outcomes. In particular, we consider the following parame-

ters, which are single-period analogues of the parameters (σ2
k,t0

(d), σ2
u,t0

(d)) as defined
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in Section 4,

σ̃2
k,t(d) =

∫ (
E(Yt(d)|It)− E(Ỹt(d))

)2

dFλk,W
t0 (x

∗
k, w

t),

σ̃2
u,t(d) =

∫
Var(Yt(d)|It)dFλk,W t(x∗

k, w
t).

Table 2 reports the squared bias and variance of the parameter estimates for each

of these two parameters for t = 1, 2, 3 and d = 1. These results are similar to the

results for the finite parameters of the model. The bias tends to be small relative

to the variance, and the variance declines at a rate consistent with
√
n consistency.

Consistent with Theorem 4, these results indicate that this class of parameters can be

estimated at a parametric rate, even though they are functionals of all the parameters,

including Fλk
, which is estimated nonparametrically.

To explore the magnitude of the estimation error of these parameters, Figure 2 shows

the estimates of the variance decomposition for d = 1. The vertical bars in Figure

2 show the 5th and 95th percentiles of the simulated distributions of the estimators.

The pattern over time in the variance decomposition reflects the learning dynamics

in the model: uncertainty declines over time so the unknown component of variance

declines relative to the known component. In particular, with a sample size of 2, 000,

the estimation error is small compared to the magnitude of these dynamics.
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Figure 2: Variance Decomposition Estimators, N = 2, 000
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Note: The red crosses show the true parameters. Vertical bars show the

range between the 5th and 95th percentiles of the simulated distributions

of the estimators. The dashed line shows the trajectory of variance in

potential outcomes that is unknown to individuals when they choose an

option. The solid line shows the remaining variance in potential out-

comes, which is known to individuals.
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7 Conclusion

We provide new identification results for a general class of learning models, that

encompasses many of the models that have been considered in the applied literature.

We consider an environment where the researcher has access to panel data on choices

and realized outcomes only. As such, our results are widely applicable, including

in frequent environments where one does not have access to elicited beliefs data or

auxiliary selection-free measurements. We show that the model is point-identified

under two alternative sets of conditions. Our first set of conditions applies to a version

of the learning where we assume that the idiosyncratic shocks from the outcome

equations are normally distributed, a restriction that is very commonly imposed in

empirical Bayesian learning models. We also show that normality can be relaxed in

the case of a pure learning model, and establish identification for this class of models.

We then derive a sieve MLE estimator for the model parameters and a particular

class of functionals, which includes as a leading special cases the predictable and

unpredictable outcome variances. Notably, these variances can in turn be used to

evaluate the relative importance of uncertainty versus heterogeneity in lifecycle earn-

ings variability (Cunha et al., 2005). Under mild regularity conditions, the resulting

estimators are root-n consistent and asymptotically normal. Importantly for practical

purpose, the profile likelihood based estimation procedure proposed in this paper can

be implemented at a modest computational cost.
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A Identification proofs and auxiliary results

A.1 Proofs for Section 3.1

Proof of Lemma 1. We proceed inductively. First, by Assumption KL2 and the def-

inition of (E1,Σ1), λu|(Z1 = z1, λk = vk) ∼ N (E1,Σ1). Second, for t > 1 suppose

λu|(Y t−2, Dt−2, Zt−1) ∼ N (Et−1,Σt−1) and consider the following argument:

fλu|Y t−1Dt−1Ztλk
(vu; y

t−1, dt−1, zt, vk)

∝(1) fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)fYt−1Dt−1Zt|Y t−2Dt−2Zt−1λ(yt−1, dt−1, zt; y
t−2, dt−2, zt−1, v)

=fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)fZt|Y t−1Dt−1Zt−1λ(zt; y
t−1, dt−1, zt−1, v)

× fYt−1(dt−1)|Y t−2Dt−1Zt−1λ(yt−1; y
t−2, dt−1, zt−1, v)fDt−1|Y t−2Dt−2Zt−1λ(dt−1; y

t−2, dt−2, zt−1, v)

∝(2) fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)fYt−1(dt−1)|Zt−1λ(yt−1; zt−1, v)

∝(3) exp

(
−1

2
(vu − Et)

⊺Σ−1
t (vu − Et)

)
ϕ

(
yt − αt(dt)− z⊺t βt(dt) + vkFkt(dt)− v⊺uFut(dt)

σt(dt)

)
=exp

(
−1

2
(vu − Et)

⊺Σ−1
t (vu − Et)

)
× 1√

2π
exp

(
−1

2

(
vu − Fut(dt) (Fut(dt)

⊺Fut(dt))
+ (yt − αt(dt)− z⊺t βt(dt) + vkFkt(dt))

)⊺
× Fut(dt)Fut(dt)

⊺

σ2
t (dt)

(
vu − Fut(dt) (Fut(dt)

⊺Fut(dt))
+ (yt − αt(dt)− z⊺t βt(dt) + vkFkt(dt))

))
∝(4) exp

(
−1

2
(vu − Et+1)

⊺Σ−1
t+1(vu − Et+1)

)

Display (1) follows from Bayes’ theorem. Display (2) holds since Assumption

KL1 has the following three implications: first (Zt ⊥⊥ λ | Zt−1, Y t−1, Dt−1); sec-

ond (ϵt−1(dt−1) ⊥⊥ Zt−1, Y t−2, Dt−1, λ) ⇒ (ϵt−1(dt−1) ⊥⊥ Zt−2, Y t−2, Dt−1 | Zt−1, λ) ⇒

(Yt−1(dt−1) ⊥⊥ Zt−2, Y t−2, Dt−1 | Zt−1, λ); third (Dt−1 ⊥⊥ λu | Zt−1, Y t−2, Dt−2, λk) .

Display (3) holds from the induction assumption and Assumptions KL1 and KL2.

Display (4) follows from the definitions in Lemma 1.

Lemma 2. Let Assumptions KL1 and KL2 hold. Then Yt conditional upon
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(Dt, Y t−1, Zt, λk) = (dt, yt−1, zt, vk) is distributed

N
(
αt(dt) + z⊺t βt(dt) + λkFkt(dt) + E⊺

t Fut(dt), Fut(dt)
⊺ΣtFut(dt) + σ2

t (dt)
)

Proof of Lemma 2. We show that the distribution of Yt conditional upon

(Dt, Y t−1, Zt, λk) is distributed according to

N
(
αt(Dt) + β(Dt)

′Zt + Fkt(Dt)λk + Fut(Dt)
⊺Et, Fut(Dt)

⊺ΣtFut(Dt) + σ2
t (Dt)

)
.

First consider t = 1. In this case

fY1|D1Z1λk
(y1; d1, z1, vk)

= fY1(d1)|D1Z1λk
(y1; d1, z1, vk)

=

∫
fY1(d1)λu|D1Z1λk

(y1, vu; d1, z1, vk)dvu

=

∫
fY1(d1)|D1Z1λ(y1; d1, z1, v)fλu|D1Z1λk

(vu; d1, z1, vk)dvu

=(1)

∫
fY1(d1)|Z1λ(y1; z1, v)fλu|Z1λk

(vu; z1, vk)dvu

=(2)

∫
1

σ1(d1)
ϕ

(
y1 − α1(d1)− z⊺1β1(d1)− vkFk1(d1)− vuFu1(d1)

σ1(d1)

)
× (2π)p/2detΣ

−1/2
1 exp

(
−1/2(vu − E1)

⊺Σ−1
1 (vu − E1)

)
dvu

=
1√

Fu1(d1)⊺Σ1Fu1(d1) + σ2
1(d1)

ϕ

(
y1 − α1(d1)− z⊺1β1(d1)− vkFk1(d1)− E⊺

1Fu1(d1)√
Fu1(d1)⊺Σ1Fu1(d1) + σ2

1(d1)

)

Equality (1) holds since Assumption KL1 implies (Y1(d1) ⊥⊥ D1 | Z1, λ) and

(D1 ⊥⊥ λu | λk, Z1), as argued in the proof to Lemma 1. Equality (2) holds because

Assumption KL1 and KL2 imply ϵ1(d) | (Z1, λ) ∼ N(0, σ1(d)
2) in addition to As-

sumption 4. Notice that (E1,Σ1) = (0,Σu(vk, z1)).
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Now consider t > 1. By Lemma 1, λu | (Dt−1, Y t−1, Zt−1, λk) is distributed N (Et,Σt).

fYt|DtY t−1Ztλk
(yt; d

t, yt−1, zt, vk)

= fYt(dt)|DtY t−1Ztλk
(yt; d

t, yt−1, zt, vk)

=

∫
fYt(dt)λu|DtY t−1Ztλk

(yt, vu; d
t, yt−1, zt, vk)dvu

=

∫
fYt(dt)|DtY t−1Ztλ(yt; d

t, yt−1, zt, v)fλu|DtY t−1Ztλk
(vu; d

t, yt−1, zt, vk)dvu

=(1)

∫
fYt(dt)|Ztλ(yt; zt, v)fλu|Dt−1Y t−1Ztλk

(vu; d
t−1, yt−1, zt, vk)dvu

=(2)
1

σt(dt)

∫
ϕ

(
yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt)− vuFut(dt)

σt(dt)

)
× (2π)p/2detΣ

−1/2
t exp

(
−1/2(vu − Et)

⊺Σ−1
t (vu − Et)

)
dvu

=
1√

Fut(dt)⊺ΣtFut(dt) + σ2
t (dt)

ϕ

(
yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt)− E⊺

t Fut(dt)√
F ⊺
ut(dt)ΣtFut(dt) + σ2

t (dt)

)
Equality (1) holds because Assumption KL1 implies (Yt(dt) ⊥⊥ Zt−1, Dt, Y t−1 | Zt, λ)

and (Dt ⊥⊥ λu | λk, Z
t, Y t−1, Dt−1), as argued in the proof to Lemma 1. Equality (2)

holds because Assumption KL1 and KL2 imply ϵt(d) | (Zt, λ) ∼ N(0, σt(d)
2).

Proof of Theorem 1. The proof is in three parts. First, we show that (Yt |

Dt, Y t−1, Zt, λk) is normally distributed and apply Bruni and Koch (1985, Theo-

rem 3) to identify its distribution up to an affine transformation of λk. The second

part uses the normalization (Assumption KL3) to show that the affine transforma-

tion is the identity function. The final part uses identification of the distribution of

(Y t, Dt, Zt, λk) to identify the distribution of (Y t, Dt, Zt, λ).

Part 1: Identification of fY tDtZtλk
(yt, dt, zt, π(vk)) for an unknown affine

function π

In Lemma 2, we show that (Yt | Dt, Y t−1, Zt, λk) is distributed according to

N
(
αt(Dt) + β(Dt)

′Zt + Fkt(Dt)λk + Fut(Dt)
⊺Et, Fut(Dt)

⊺ΣtFut(Dt) + σ2
t (Dt)

)
.
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It follows that

fYt|DtY t−1Zt(yt; d
t, yt−1, zt) =∫

fYt|DtY t−1Ztλk
(yt; d

t, yt−1, zt, vk)dFλk|DtY t−1Zt(vk; d
t, yt−1, zt)dvk

is a Gaussian mixture. To identify the component and mixture distributions, we will

apply Bruni and Koch (1985, Theorem 3). First, define the set Λ as

{
(αt(dt) + β(dt)

′z1 + vkµ1(θ
t) + µ2(θ

t), σ(vk, θ
t)) : θt ∈ Θt

}
,

where θt = vec(αt, βt, F t
k, F

t
u, σ

t,Σu) and

µ1(θ
t) =

(
Fkt(dt)− F ⊺

ut(dt)Σt

t−1∑
s=1

Fus(ds)
Fks(ds)

σ2
s(ds)

)
,

µ2(θ
t) = Fut(dt)

⊺Σt

t−1∑
s=1

Fus(ds)
Yis − αs(ds)− Z⊺

isβs(ds)

σ2
s(ds)

,

σ(vk, θ
t) = Fut(dt)

⊺ΣtFut(dt) + σ2
t (dt).

For example, for t = 1, σ(vk, θ
1) = Fu1(d1)

⊺Σu(vk, z1)Fu1(d1) + σ2
1(d1) Notice that

Fkt(dt)λk + Fut(dt)
⊺Et = µ1(θ

t)λk + µ2(θ
t). Under Assumptions KL4(A,B,C) and

KL5(C), 4, Λ ⊂ Λ4 where Λ4 is defined in Bruni and Koch (1985, p. 1344). Thus

Bruni and Koch (1985, Theorem 3) applies and

(
(αt(dt) + β(dt)

′z1 + π(vk)µ1(θ
t) + µ2(θ

t), σ(π(vk), θ
t), dFλk|DtY t−1Zt(π(vk); d

t, yt−1, zt)
)

(6)

is identified with π an unknown non-constant affine function which may depend on

the history (dt, yt−1, zt).

To conclude Part 1, we show that if π = I for each history (ds, ys−1, zs)

s = 1, 2, . . . , t, then fY t,Dt,Zt,λk
(yt, dt, zt, vk) is point identified. That is,

(αt(dt), βt(dt), µ1(θ
t), µ2(θ

t), σ(vk, θ
t), dFλk|DtY t−1Zt(vk; d

t, yt−1, zt)) is point identi-

fied. For t = 1, as (µ1(θ
1), µ2(θ

1)) = (Fk1(d1), 0) identification fol-

lows immediately from equation (6) and Assumption KL4(E). Now suppose
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(αs(ds), βs(ds), µ1(θ
s), µ2(θ

s), σ(vk, θ
s), dFλk|DsY s−1Zs(vk; d

s, ys−1, zs)) is point identi-

fied for each s < t. From equation (6) and π = I,

(
(αt(dt) + β(dt)

′z1 + vkµ1(θ
t) + µ2(θ

t), σ(vk, θ
t), dFλk|DtY t−1Zt(vk; d

t, yt−1, zt)
)

is identified for every (dt, yt−1, zt). µ1(θ
t) is identified from variation in vk. Assump-

tion KL4(E) implies identification of

(
αt(dt) + µ2(θ

t), β(dt)
)
.

Then µ2(θ
t) is identified from µ2(θ

t) =
∑t−1

s=1 (ys − αs(ds)− z⊺sβs(ds))
∂

∂ys
(αt(dt) + µ2(θ

t)),

from which follows identification of αt(dt).

Part 2: Showing π is the identity function

In this part we use the normalization assumption to prove the affine function π is

identity. First, we show π = I for the normalized choice d1, which provides identi-

fication of the support of λk. Second, we use knowledge of Supp(λk) to prove the

affine function must satisfy | ∂
∂v
π(v)| = 1 for any history (dt, yt−1, zt). Third, we use

restrictions on the panel dimension to conclude π = I for each history (dt, yt−1, zt).

Part 2.1: Identifying π for D1 = d1.

First, Let t = 1 and d1 as in Assumption KL3(A), then since µ1(θ
1) = Fk1(d1) and

µ2(θ
1) = 0, from Part 1 we have identified:

(
β(d1)

′z1 + π(vk), σ(θ1), dFλk|D1Z1(π(vk); d
1, z1)

)
,

with π(vk) = π0+π1vk. Since Fk1(d1) = 1, π1 = 1. We now show π0 = 0. First notice

that π0 does not depend on (d1, z1) since the support of λk | (D1 = d1, Z1 = z1) is the

same for each (d1, z1). Now suppose that for any z1, β(d1)
′z1 + π0 = β̃(d1)

′z1 + π̃0.

In particular for z̃1 ̸= z1, (β(d1) − β̃(d1))
′(z1 − z̃1) = 0. Since Var(Z1|D1 = d1) is

non-singular by Assumptions KL4(D,E), we conclude β(d1) − β̃(d1) = 0. This in

conjunction with α1(d1) = 0 gives π0 = π̃0 = 0.
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Part 2.2: Restricting π to have modulus derivative equal to one.

Fix (Y t, Dt, Zt) = (yt, dt, zt). From Part 1, we have identification of(
(αt(dt) + β(dt)

′z1 + π(vk)µ1(θ
t) + µ2(θ

t), σ(θt), dFλk|DtY t−1Zt(π(vk); d
t, yt−1, zt)

)
.

In this part we use the known support of λk to prove the modulus of the derivative

of π is unity. First, consider that by Assumption KL4(D),

Supp(λk) = dF−1
λk|DtY t−1Zt [R+] = (dFλk|DtY t−1Zt ◦ π)−1[R+]

where R+ = {x ∈ R : x > 0}. And since π is bijective,

(π ◦ dF−1
λk|DtY t−1Zt)[R+] = dF−1

λk|DtY t−1Zt [R+].

In particular

π(sup dF−1
λk|DtY t−1Zt [R+]) = sup dF−1

λk|DtY t−1Zt [R+]

π(inf dF−1
λk|DtY t−1Zt [R+]) = inf dF−1

λk|DtY t−1Zt [R+]

The only affine functions that satisfy these identities are π+(v) = v and π−(v) =

(v̄+ v)− v for v = inf dF−1
λk|DtY t−1Zt [R+] and v̄ = sup dF−1

λk|DtY t−1Zt [R+]. It remains to

show that π = π+.

Part 2.3: Concluding π = I.

For this part, it will be useful to define:

µ̃ts(d
t−1) = Σt

Fus(ds)

σ2
s(ds)

It will also be useful to denote µj(d
t) = µj(θ

t), to emphasize the dependence of µj

on dt. Then notice µ1(d
t) = Fkt(dt) − Fut(dt)

∑t−1
s=1 µ̃ts(d

t−1)Fks(ds) and µ2(d
t) =

Fut(dt)
⊺
∑t−1

s=1 µ̃ts(d
t−1) (Yis − αs(ds)− Z⊺

isβs(ds)).

The proof is inductive. First consider t = 1. From Assumption KL3(A), Fk1(d1) = 1.

For d̃1 ̸= d1, from Part 1 we have identified(
α1(d̃1) + β(d̃1)

′z1 + Fk1(d̃1)π(vk)
)
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And from Part 2.2, we conclude that Fk1(d̃1) is identified up to sign. For d2 = (d2, d1),

by Part 1 we identify(
α2(d2) + β(d2)

′z2 + π(vk)µ1(d
2) + µ2(d

2)
)
. (7)

From Part 2.2, we conclude that µ1(d
2) = Fk2(d2)−Fu2(d2)

⊺µ̃21(d
1)Fk1(d1) is identified

up to sign. And since µ2(d
2) = Fu2(d2)

⊺µ̃21(d
1)(y1 − α1(d1) − z⊺1β1(d1)) and µ1(d

2)

does not depend on y1, we can identify Fu2(d2)
⊺µ̃21(d

1) by taking the derivative of (7)

with respect to y1.

Repeating this argument for the choice sequence (d̃1, d2) yields identification of

(Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1
)Fk1(d̃1)) up to sign and Fu2(d2)

⊺µ̃21(d̃
1
).

Summarizing, we have identification of the set{
(−1)j1Fk1(d̃1), (−1)jd2 (Fk2(d2)− Fu2(d2)

⊺µ̃21(d
1)), (−1)j̃d2 (Fk2(d2)− Fu2(d2)

⊺µ̃21(d̃
1

)Fk1(d̃1))
}
,

with j = (j1, jd2 , j̃d2) ∈ {0, 1}3. We show only the correct choice of sign will satisfy

(−1)jd2 (Fk2(d2)− Fu2(d2)
⊺µ̃21(d

1)) + Fu2(d2)
⊺µ̃21(d

1

) =

(−1)j̃d2 (Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1

)Fk1(d̃1)) + Fu2(d2)
⊺µ̃21(d̃

1

)(−1)j1Fk1(d̃1).

First, suppose j̃d2 = 1. It is straightforward to show the following implications

(j1, jd2) = (0, 0) ⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1

)Fk1(d̃1) =(1) 0,

(j1, jd2) = (0, 1) ⇒ Fu2(d2)
⊺µ̃21(d̃

1

)Fk1(d̃1)− Fu2(d2)
⊺µ̃21(d

1

)Fk1(d1) =(2) 0,

(j1, jd2) = (1, 0) ⇒ Fk2(d2) =(3) 0,

(j1, jd2) = (1, 1) ⇒ Fu2(d2)
⊺µ̃21(d

1

)Fk1(d1) =(4) 0.

Equalities (1), (2), (3) and (4) contradict Assumptions KL5 (C), (A), (B) and (D)

respectively. Similarly,

(j1, jd2 , j̃d2) = (1, 0, 0) ⇒ Fu2(d2)
⊺µ̃21(d̃

1

)Fk1(d̃1)) = 0,

(j1, jd2 , j̃d2) = (0, 1, 0) ⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) = 0,

(j1, jd2 , j̃d2) = (1, 1, 0) ⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1

)Fk1(d̃1)− Fu2(d2)
⊺µ̃21(d

1

)Fk1(d1) = 0.
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The first two equalities contradict Assumptions KL5 (D) and (C) respectively. To

conclude, we show the third equality contradicts Assumption KL5(E). For each d ∈

{d2,i : i = 1, 2, . . . , k} ∪ {d̃2,i : i = 1, 2, . . . , k} from Assumption KL5(E), consider the

sequences (d1, d), (d̃1, d). The above argument applies and we identify{
(−1)jd(Fk2(d)− Fu2(d)

⊺µ̃21(d
1)Fk1(d1)), (−1)j̃d(Fk2(d)− Fu2(d)

⊺µ̃21(d̃
1

)Fk1(d̃1))
}
,

for
(
j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , k)

)
∈
{(

0, (0, 0, 0, 0)k
)
,
(
1, (1, 0, 1, 0)k

)}
. If(

j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , k)
)
=
(
1, (1, 0, 1, 0)k

)
, then

0 = vec (Fk2(d2,1), . . . , Fk2(d2,k))− (Fu2(d2,1) . . . Fu2(d2,k))
⊺
(
µ̃21(d̃

1

)Fk1(d̃1) + µ̃21(d
1

)Fk1(d1)
)

= vec
(
Fk2(d̃2,1), . . . , Fk2(d̃2,k)

)
−
(
Fu2(d̃2,1) . . . Fu2(d̃2,k)

)⊺ (
µ̃21(d̃

1

)Fk1(d̃1) + µ̃21(d
1

)Fk1(d1)
)
,

which contradicts Assumption KL5(E).

For the induction step, suppose π = I for each history (ds, ys−1, zs) s = 1, . . . , t−1 and

consider choice sequences dt−1 = (dt−2, dt−1) and d̃t−1 = (dt−2, d̃t−1) for dt−1 ̸= d̃t−1.

From part 1, we have identification of

(
αt(dt) + βt(dt)

′zt + µ1(d
t−2, d, dt)π(vk) + µ2(d

t−2, d, dt)
)
,

for d = dt−1, d̃t−1. By the previous arguments, we identify{
(−1)j1

(
Fkt(dt)− Fut(dt)

⊺
t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

)
, (−1)j2

(
Fkt(dt)− Fut(dt)

⊺
t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

)}

with (j1, j2) ∈ {0, 1}2 in addition to (Fut(dt)
∑t−1

s=1 µ̃ts(d
t−1)Fks(ds)),

Fut(dt)
∑t−1

s=1 µ̃ts(d̃
t−1)Fks(d̃s). As before we show that only that only (j1, j2) = (0, 0)

is consistent with the identity

(−1)j1

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

)
+ Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

= (−1)j2

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

)
+ Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)
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To see this, consider following implications:

(j1, j2) = (0, 1) ⇒

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

)
= 0,

(j1, j2) = (1, 0) ⇒

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

)
= 0,

(j1, j2) = (1, 1) ⇒ Fut(dt)
t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s) = 0

The first two equalities contradict Assumption KL5(C), and the final equality contra-

dicts Assumption KL5(A). Thus π is the identity function for the history (dt, yt−1, zt).

Part 3: Identification of fY tDtZtλ(y
t, dt, zt, vk, vu)

From Parts 1 and 2, fY TDTZT |λk
is identified. First,

fY TDTZT |λk,Z1

(
yT , dT , zT ; vk, z1

)
=f

Y
dt
T ,...,Y

d1
1 DTZT |λk,Z1

(
yT , . . . , y1, d

T , zT ; vk, z1
)

=

∫
f
Y

dt
T ,...,Y

d1
1 DTλuZT |λk,Z1

(
yT , . . . , y1, d

T , vuz
T ; vk, z1

)
dvu

=

∫
f
Y

dT
T |λ,ZT

(yT ; v, zT ) fDT |Y T−1DT−1λkZT (dT ; y
T−1, dT−1, vk, z

T )fZT |YT−1DT−1ZT−1
(zT ; yT−1, dT−1, zT−1)

. . . f
Y

d1
1 |λZ1

(y1; v, z1) fD1|λkZ1(d1; vk, z1)fλu|λkZ1(vu; vk, z1)dvu.

This implies

fY TDTZT |λk,Z1

(
yT , dT , zT ; vk, z1

)
fD1|λkZ1(d1; vk, z1)

∏T
t=2 fDt|Y t−1Dt−1λkZt(dt; yt−1, dt−1, vk, zt)fZt|Yt−1Dt−1Zt−1(zt; yt−1, dt−1, zt−1)

=

∫ T∏
t=1

f
Y

dt
t |λ,Zt

(yt; v, zt) fλu|λkZ1(vu; vk, z1)dvu

This is a normal-weighted mixture of normals. In particular, the function is equal to

the pdf of a joint normal with mean

(αt(dt) + Z⊺
itβt(dt) + vkFkt(dt))

T
t=1

and covariance matrix

Fu(d)
⊺Σu(z1, vk)Fu(d) + diag

(
σ2
t (dt) : t = 1, . . . , T

)
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where Fu(d) = (Fu1(d1)Fu2(d2) . . . FuT (dT )). From Parts 1 and 2, the components

of the mean function are identified. The components of the covariance matrix are

identified under the normalization assumption (Assumption KL3(B)) and the rank

condition on Fu(d) (Assumption KL5(F)).

Proof of Corollary 1. Fix (d1, d2, . . . , dp) and define Fp = (Fu1(d1)Fu2(d2) . . . Fup(dp)),

λ̃u = F ⊺
p (λu − µu), ϵ̃t(d) = ϵt(d) − ct(d), λ̃k = b + Fk1(d1)λk where b = α1(d1) +

F1u(d1)
⊺µu + c1(d1). Finally, define F̃kt(dt) = Fk1(d1)

−1Fkt(dt) and F̃ut(dt) =

F−1
p Fut(dt).

and α̃t(d) = αt(d)− F̃kt(d)b+ Fut(d)
⊺µu + ct(d). We then have that

Yt(d) = α̃t(d) + βt(d)
⊺zt + λ̃⊺

uF̃ut(d) + λ̃kF̃kt(d) + ϵ̃t(d),

E[ϵ̃t(d)] = 0 and E[λ̃u | Z1 = z, λk = vk] = 0 so that the reparame-

terized model satisfies KL2. Also, F̃k1(d1) = 1, α̃1(d1) = 0 and F̃p ≡(
F̃u1(d1)F̃u2(d2) . . . F̃up(dp)

)
= Ip so the reparameterized model satisfies KL3. By

Theorem 1, θ̃ =
(
(α̃t, βt, F̃kt, F̃ut, σt)

T
t=1,Σu, h̃, Fλ̃k

)
is identified, which imply the

identification of the distribution of Cjt (j = k, u). Finally,

α̃t + z⊺βt +Qα[C̃kt + C̃ut + ϵ̃]

=αt − F̃ktb+ Futµu + ct + z⊺βt +Qα[C̃kt + C̃ut + ϵ̃]

=αt − F̃ktb+ Futµu + ct + z⊺βt +Qα[Ckt + F̃ktb+ Cut − F ⊺
utµu + ϵt − ct]

=αt + z⊺βt +Qα[Ckt + Cut + ϵt]

A.2 Proofs for Section 3.2

Proof. Throughout this proof, let fA|B denote the conditional PDF of a random

variable A | B, and fA denote the marginal PDF of random variable A. The

39



notation A ⊥⊥ B | C indicates that A is independent of B conditional upon

C. Also, let L = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|da < ∞} and

LA = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|fA(a)da < ∞} for a random

variable A.

Fix a choice sequence d = (d1, d2, . . . , dT ) whose first p elements satisfy Assumption

L3, and define W1 = (Y1, . . . , Yp), W2 = Yp+1 and W3 = (Yp+2, . . . , YT ). Now define

the following operators:

L123 : LW3 → L [L123m](w1) =

∫
fY D|Z(y, d; z)∏T

t=2 fDt|Y t−1Dt−1Z(dt; yt−1, dt−1, z)fD1|Z(d1; z)
m(w3)dw3

L13 : LW3 → L [L13m](w1) =

∫ ∫
fY TDT |Z(y

t, dt; z)∏T
t=2 fDt|Y t−1Dt−1Z(dt; yt−1, dt−1, z)fD1|Z(d1; z)

dyp+1m(w3)dw3

L1λ : L → L [L1λm](w1) =

∫ p∏
t=1

fYt(dt)|Zλ(yt; z, v)m(v)dv

Lλ3 : LW3 → L [Lλ1m](v) =

∫ T∏
t=p+2

fYt(dt)|Zλ(yt; z, v)fλ|Z(v)m(w1)dw1

Dλ : LΛ → LΛ [Dλm](v) = fYp+1(dp+1)|Zλ(yp+1; z, v)m(v)

The following derivation shows L123 = L1λDλLλ3. First,

fY D|Z(y, d; z) =

∫
fY Dλ|Z(y, d, v; z)dv

=

∫
fYT |DY T−1Zλ(yT ; d, y

T−1, z, v)fDT |Y T−1DT−1Zλ(dT ; y
T−1, dT−1, z, v)

× fYT−1|DT−1Y T−2Zλ(yT−1; d
T−1, yT−2, z, v) . . . fλ|Z(v; z)dλ

=

∫
fYT (dT )|DTY T−1Zλ(yT ; d

T , yT−1, z, v)fDT |Y T−1DT−1Zλ(dT ; y
T−1, dT−1, z, v)

× fYT−1(dT−1)|DT−1Y T−2Zλ(yT−1; d
T−1, yT−1, z, v) . . . fλ|Z(v; z)dλ

=

∫
fYT (dT )|Zλ(yT ; z, v)fDT |Y T−1DT−1Z(dT ; y

T−1, dT−1, z)

× fYT−1(DT−1)|Zλ(yT−1; z, v) . . . fλ|Z(v; z)dλ

The second equality holds by the law of total probability, the third holds by definition

of Yt(d). The final equality holds since Assumption L1 has the following two implica-
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tions: first, (ϵt ⊥⊥ ηt, ϵt−1, λ | Z) ⇒ (ϵt ⊥⊥ ηt, ϵt−1 | Z, λ) ⇒ (Yt ⊥⊥ Dt, Y t−1 | Z, λ); and

second, ηt ⊥⊥ ηt−1, ϵt−1λ | Z ⇒ (ηt ⊥⊥ Dt−1, Y t−1λ | Z) ⇒ (ηt ⊥⊥ λ | Z,Dt−1, Y t−1) ⇒

(Dt ⊥⊥ λ | Z,Dt−1, Y t−1). From this, it follows by Assumption L4(A) that

fY D|Z(y, d; z)∏T
t=2 fDt|Y t−1Dt−1Z(dt; yt−1, dt−1, z)fD1|Z(d1; z)

=

∫ T∏
t=1

fYt(dt)|Zλ(yt; z, v)fλ|Z(v; z)dv.

(8)

And therefore that

[L123m](w1) =

∫ (∫ T∏
t=1

fYt(dt)|Zλ(yt; z, v)fλ|Z(v; z)dv

)
m(w3)dw3

=

∫ p+1∏
t=1

fYt(dt)|Zλ(yt; z, v)

(∫ T∏
t=p+2

fYt(dt)|Zλ(yt; z, v)fλ|Z(v)m(w3)dw3

)
dv

=

∫ p∏
t=1

fYt(dt)|Zλ(yt; z, v)
(
fYp+1(dp+1)|Zλ(yp+1; z, v)[Lλ3m](v)

)
dv

=

∫ ∫ p∏
t=1

fYt(dt)|Zλ(yt; z, v)[DλLλ3m](v)dv

=[L1λDλLλ3m](w1)

and L123 = L1λDλLλ3. Similarly, L13 = L1λLλ3.

From here, under Assumptions L1, L2, L3, L4(B), and L5 imply the conditions of

Freyberger (2018, Theorem 1) are satisfied, so that fYt(dt)|Z,λ and fλ|Z . From Assump-

tions L2 (C) and L4 (C), αt(dt), βt(dt) and Ft(dt) are identified.

Next, given an arbitrary t and dt, define d̃ by replacing the tth element of d with

dt. Then let ρ be a permutation (1, 2, . . . , T ) 7→ (t1, t2, . . . , tT ) such that t 7→ t1 and

define V1 = (Yt1 , Yt2 , . . . , Ytp) and V2 = (Ytp+1 , Ytp+1 , . . . , YtT )

L̃21 : LV1 → L [L̃21m](v2) =

∫
fY D|Z(y, d; z)∏T

t=2 fDt|Y t−1Dt−1Z(dt; yt−1, dt−1, z)fD1|Z(d1; z)
m(v1)dv1

L̃2λ : L → L [L̃2λm](v2) =

∫ T∏
i=p+1

fYti (dti )|Zλ(yti ; z, v)fλ|Z(v)m(v)dv

L̃λ1 : LV1 → L [L̃λ1m](v) =

∫ p∏
i=1

fYti (dti )|Zλ(yti ; z, v)m(v1)dv1
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As before, L̃21 = L̃2λL̃λ1. The proceeding arguments imply L̃2λ is identified and in-

jective, and under Assumption L4(A) L̃21 is identified. It follows that L̃λ1 is identified

as L̃−1
2λ L̃21 = L̃λ1 yielding identification of αt(dt), βt(dt), Ft(dt), fϵ(dt)|Zλ.

B Estimation

B.1 Consistency of sieve MLE

In this section we introduce conditions for the sieve maximum likelihood estimator

(4) to be consistent for the true model parameters. We begin by imposing smoothness

restrictions on the unknown functions. To do so, given γ > 0, ω ≥ 0 and X a subset

of a Euclidean space, let Λλ(X ) denote a Hölder space equipped with the Hölder

norm ∥h∥Λγ (that is, for k the largest integer smaller than γ, Λλ(X ) is a space of

functions h : X → R having at least k continuous derivatives, the kth of which is

Hölder continuous with exponent γ − k). Then define a weighted Hölder ball with

radius c ∈ (0,∞) as Λγ,ω
c (X ) = {h ∈ Λγ(X ) : ∥h(·)[1 + ∥ · ∥2E]−ω∥Λγ ≤ c}, where ∥ · ∥E

is the Euclidean norm.

Without loss of generality, suppose the CCP function h̄t(d
t, zt, yt−1, vk) depends on

(dt, zt, yt−1) via some vector-valued function (dt, zt, yt−1) 7→ jt(d
t, zt, yt−1) where jt is

known up to
(
(αst, βst, Fkst, Fust, σst)

T
st=1,Σu

)
. This is without loss of generality since

jt may be identity. Other examples include rational learning where jt(d
t, zt, yt−1) ∈

Rp(p+3)/2 are sufficient statistics for λu given realized random variables at time t,

and a sort of myopia where jt(d
t, zt, yt−1) ∈ R3 depends only on (dt, zt, yt). Denote

Xit ≡ jt(D
t
i , Z

t
i , Y

t−1
i ) and

Ht = Λγ1,ω1
c (Supp(λk)× Supp(Xit)) ,

Fλ = Λγ2,ω2
c (Supp(λk)) .
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The use of a weighted Holder space allows us to enable the support of λk,i andXit to be

unbounded. Though not required for consistency, Assumption E7 places restrictions

on (γ1, γ2), the parameters that govern the smoothness of the unknown functions.

To simplify notation we make the following assumption which strengthens Assumption

KL1:

Assumption E1. For some Xit ∈ Rt, h̄(d
t, zt, yt−1, vk) = h̄(xi,t, zt, dt, vk) For any t,

FZt+1|YtDtZt = FZt+1|DtZt and Supp(Zt) is finite.

Assumption E1 reduces the dimension of the problem by assuming that the condi-

tional distribution of the state variable Zt is a parametric object. This is common in

applied settings, such as dynamic discrete choice models.

With this assumption define Gt to be the set of conditional distribution functions

(dt, zt) 7→ zt+1. Define k0 to be the cardinality of Supp(Zi1) and k1,t to be the

cardinality of Supp(Dit)×Supp(Zit). Notice that Θ = Θ1×G1×· · ·×GT−1×Hk1,1
1 ×

· · ·×Hk1,T
T ×Fk0

λ and we denote an element of Θ as θ = (θ1, g1, . . . , gT−1, h̄1, . . . , h̄T , fλ).

Let dL indicate the Levy metric. Define the following norms on Hk1,t
t and Fk0

λ as

follows:

∥h̄t∥∞,ω1 = sup
z∈Supp(Zit)
d∈Supp(Dit)

∥h̄t(d, z, ·, ·)[1 + ∥ · ∥2E]−ω1∥∞,

∥fλ∥∞,ω2 = sup
z∈Supp(Zi1)

∥fλ(z, ·)[1 + ∥ · ∥2E]−ω2∥∞,

where ∥ · ∥∞ is the uniform norm. Finally, define a metric d on Θ as

d(θ, θ̃) = ∥θ1 − θ̃1∥E +
T−1∑
t=1

∥gt − g̃t∥∞ +
T∑
t=1

∥h̄t − ˜̄ht∥∞,ω̃1 + ∥fλ − f̃λ∥∞,ω̃2 ,

for scalars ω̃1, ω̃2.

Let Hn,t and Fn,λ be sieve spaces for Ht and Fλ respectively. Then Θn = Θ1 × G1 ×

· · · × GT−1 ×Hk1,1
n,1 × . . .Hk1,T

n,T ×Fk0
n,λ and

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n)
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Assumption E2. θ∗ ∈ Θ and (Θ, d) is compact.

Let Wit = (Dit, Zit, Yit), so that W t
i is the period-t history of assignment, state vari-

ables and outcomes. Denote Wi = (Wit)
T
t=1.

Assumption E3. Wi = (Dit, Zit, Yit)
T
t=1 are iid.

Assumption E4. Θn ⊆ Θn+1 ⊆ Θ for each n ≥ 1, Θn are compact under d, and

limn→∞minθ∈Θn d(θ, θ0) = 0.

Assumption E5. E[ℓ(θ,Wi)] is continuous at θ = θ∗

Assumption E6.

(i) For each n, E[supθ∈Θn
|l(θ,Wi)|] is finite.

(ii) There is a non-zero s < ∞ and integrable random variable g(Wi) such that

∀ θ, θ̃ ∈ Θn, d(θ, θ̃) < δ ⇒ |l(θ,Wi)− ℓ(θ̃,Wi)| ≤ δsg(Wi).

(iii) For all δ > 0, logN(δ1/s,Θn, d) = o(n).

The identification assumptions imply θ∗ = argmaxθ∈Θ E[ℓ(θ,Wi)] and for all θ ∈

Θ \ {θ∗}, E[ℓ(θ∗,Wi)] ≥ E[ℓ(θ,Wi)]. By assuming compactness of Θ, we ensure that

θ∗ is a well-separated maximum of E[ℓ(θ,Wi)]. Assumption E3 is a standard sampling

assumption. Assumption E4 requires the sieve space Θn to be a good approximation

to Θ. Assumption E5 requires the population criterion to be continuous.

B.2 Plug-in sieve estimator

We assume a linear sieve space and limit its complexity.

Assumption E7. Let q be the length of the vector Xit. (1) For each t, Hn,t is

a linear sieve of length JHn and Fn,λ is a linear sieve of length Jλn. Furthermore,

JHn = O(n
1

2γ1/q+1 ) and Jλn = O(n
1

2γ2+1 ). (2) min{γ1/q, γ2} > 1/2.

Assumption E7 ensures the sieve spaces grow do not grow too quickly. To achieve this

rate of growth, the functions are assumed to have particular smoothness. Recall that
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identification requires q ≥ p, where p is the dimension of λk, the initially-unknown la-

tent factor. Part (2) of Assumption E7 requires that the CCP functions have adequate

smoothness to compensate for the dimensionality of λk. In applications, it is common

to assume a parametric model for h̄t, in which case the above curse-of-dimensionality

is avoided.

The following strengthens Assumption E4.

Assumption E8. (1) minθ∈Θn d(θ, θ
∗) = o(n−1/4). (2)

This assumption ensures the sieve space grows sufficiently fast.

Assume ℓ is pathwise differentiable and define an inner product on Θ as

⟨θ1 − θ∗, θ2 − θ∗⟩ = − ∂2

∂τ1∂τ2
E [ℓ (θ∗ + τ1 (θ1 − θ∗) +τ2 (θ2 − θ∗) ,W )] |τ1=0,τ2=0 , (9)

with the corresponding norm for θ ∈ Θ as

∥θ − θ∗∥2 ≡ − ∂2

∂τ 2
E [ℓ (θ∗ + τ (θ − θ∗) ,W )]

∣∣∣∣
τ=0

.

Assumption E9. There is C1 > 0 such that for all small ε > 0

sup
{θ∈Θn:∥θ−θ∗∥⩽ε}

Var (ℓ (θ,Wi)− ℓ (θ∗,Wi)) ⩽ C1ε
2

Assumption E10. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{θ∈Θn:∥θ−θ∗∥⩽δ}

|ℓ (θ,Wi)− ℓ (θ∗,Wi)| ⩽ δsU (Wi)

with E ([U (Wi)]
γ) ⩽ C2 for some γ ⩾ 2

The following theorem is now a consequence of Theorem 3.2 in Chen (2007) or The-

orem 1 in Shen and Wong (1994).

Theorem 5. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T ≥ 2p+1 and

that Assumptions KL1-KL5 and Assumptions E1-E10 hold.Then ∥θ̂−θ∗∥ = op(n
−1/4)
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Given the preceding result, we focus on a a shrinking neighborhood of θ∗. Let

N0 ≡
{
θ ∈ Θ: ∥θ − θ∗∥ = o(n−1/4), d(θ, θ∗) = o(1)

}
,

and Nn ≡ N0 ∩Θn. Define θ∗n = argminθ∈Nn
∥θ − θ∗∥. Let Vdenote the closed (under

∥ · ∥) linear span of N0 centered at θ∗, and define Vn the analogous closure of Nn.

Then we define a linear approximation to ℓ(θ,W )−ℓ(θ∗,W ) as the directional deriva-

tive of ℓ at (θ∗,W ) in the direction (θ − θ∗):

∂ℓ (θ∗,W )

∂θ
[θ − θ∗] ≡ ∂ℓ (θ∗ + τ(θ − θ∗),W )

∂τ

∣∣∣∣
τ=0

.

Likewise, let ∂f(θ∗)
∂θ

[v] = ∂f(θ∗+τv)
∂τ

∣∣∣
τ=0

for any v ∈ V denote the directional deriva-

tive of f .

Under the following regularity conditions (Assumption E10), V and Vn are Hilbert

spaces under the inner product defined in equation 9.

Assumption E10. Let T be an epsilon ball about 0 ∈ R. (1) for all θ ∈ N0

and W , the derivative ∂ℓ (θ∗ + τ(θ − θ∗),W ) /∂τ exists for all τ ∈ T ; (ii) for all

θ ∈ N0, E [ℓ (θ∗ + τ (θ − θ∗) ,W )] is finite for each τ ∈ T ; (3) for all θ ∈ N0,

E
[
supτ∈T

∣∣ ∂
∂τ
ℓ (Z, θ∗ + τ [θ − θ∗])

∣∣] < ∞.

Assumption E10 provides sufficient conditions for the set V to be a Hilbert space

under ⟨·, ·⟩. Define v∗n to be the Riesz representer of ∂f(θ∗)
∂θ

[·] on Vn, which exists

under Assumption E11(1).

Assumption E11. (1) v 7→ ∂f(θ∗)
∂θ

[v] is a linear functional. (2) If limn→∞ ∥v∗n∥ is

finite then ∥v∗n − v∗∥ × ∥θ∗n − θ∗∥ = o(n−1/2) where v∗ is the limit of v∗n. Otherwise∣∣∣∂f(θ∗)∂θ
[θ∗n − θ∗]

∣∣∣/∥v∗n∥ = o(n−1/2).

(3) sup
θ∈N0

∣∣∣f(θ)− f(θ∗)− ∂f(θ∗)
∂θ

[θ − θ∗]
∣∣∣

∥v∗n∥
= o(n−1/2).

Let u∗
n ≡ v∗n

∥v∗n∥
and εn = o

(
n−1/2

)
. Let µn{g(Z)} ≡ n−1

∑n
i=1 [g (Zi)− Eg (Zi)] denote

the centered empirical process indexed by the function g.
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Assumption E12. (1) µn{∂ℓ(θ∗,W )
∂θ

[v]} is linear in v ∈ V .

sup
θ∈Nn

µn

{
ℓ (θ ± εnu

∗
n,W )− ℓ(θ,W )− ∂ℓ (θ∗,W )

∂θ
[±εnu

∗
n]

}
= Op

(
ε2n
)

For some positive sequence ηn → 0,

sup
θ∈Nn

∣∣∣∣∣E [ℓ(θ,W )− ℓ (θ ± εnu
∗
n,W )]− ∥θ ± εnu

∗
n − θ∗∥2 − ∥θ − θ∗∥2

2
(1 +O (ηn))

∣∣∣∣∣ = O
(
ε2n
)

Assumption E13.
√
nµn

{
∂ℓ(θ∗,W )

∂θ
[u∗

n]
}
→d N(0, 1)

Theorem 4 is a direct application of Lemma 2.1 in Chen and Liao (2014) so its proof

is omitted.
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