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Abstract

We examine how informational frictions impact schooling and work outcomes. We
estimate a dynamic structural model where individuals face uncertainty about their
ability and productivity, which respectively determine their schooling utility and work
wages. We account for heterogeneity in college types and majors, as well as occupa-
tional search frictions and work hours. Individuals learn from grades and wages in a
correlated manner, and may change their choices as a result. We find that removing
informational frictions would barely affect overall college graduation rates, but would
substantially increase the college and white-collar wage premiums, while reducing the

college graduation gap by family income.
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1 Introduction

About 40% of the students entering four-year college in the United States do not earn a
bachelor’s degree within six years (National Center for Education Statistics, 2021b). To the
extent that there is a large wage premium to receiving a four-year college degree (Heckman,
Layne-Farrar, and Todd, 1996; Heckman, Lochner, and Todd, 2006; Goldin and Katz, 2008;
Bound and Turner, 2011; Ashworth et al., 2021), this suggests that imperfect information
and learning may be important to the decision to leave college. The aim of this study is
to quantify the role of information frictions associated with own academic ability and labor
market productivity in determining students’ outcomes and sorting in the labor market.

To this end, we characterize the impact of imperfect information on college enrollment,
attrition, and re-entry by estimating a dynamic model of schooling and work decisions in
the spirit of Keane and Wolpin (1997, 2000) with the crucial distinction that such decisions
are allowed to depend on the arrival of new information about the abilities of individuals
both in school and in the workplace. After graduating from high school, individuals decide
in each period whether to attend college and/or work part-time, full-time or engage in home
production. Should the individual attend college, he must also choose between attending
a two-year college, a four-year college in a science major, or a four-year college in a non-
science major. Moreover, he can decide to work in the blue-collar or (if he receives an
offer) in the white-collar sector. Upon college graduation, which is probabilistic from the
individual standpoint, the options available are reduced to working part-time or full-time
in one of the two sectors or engaging in home production. Importantly, individuals are
allowed to have imperfect information about their abilities and enter each year with beliefs
regarding their different kinds of schooling abilities as well as their skills in the workplace. At
the end of each year, individuals update their beliefs given their grades for their particular
schooling option (if they attended school) or their wages (if they worked). We account for
the multidimensional nature of ability in our model and allow the different kinds of schooling
and workplace abilities to be arbitrarily correlated, implying that signals in one sector may
be informative about abilities in another sector.

We estimate a richer model than previously possible by making use of recent innovations
in the computation of dynamic models of correlated learning. Following James (2011), we (4)
integrate out over actual abilities as opposed to the signals, and (ii) use the EM algorithm
where at the maximization step ability is treated as known, resulting in a correlated learning
model that is computationally feasible. Using results from Arcidiacono and Miller (2011),

estimation continues to be computationally simple even in the presence of unobserved het-



erogeneity that is known to the individual. Using this approach in our current context makes
the estimation of our correlated learning model both feasible and fast. Importantly, it also
allows us to easily take into account heterogeneity in schooling investments by distinguishing
between two- and four-year colleges, as well as science and non-science majors for four-year
colleges.

We use the estimates of our model to quantify the importance of informational frictions
in explaining college enrollment decisions, the observed transitions between college and work,
and to evaluate the impact of imperfect information on ability sorting. We find that a sizable
share of the dispersion in college grades and wages is accounted for by the ability components
that are initially unknown to the individuals. Focusing on the ability components which are
unknown to the individuals at the time of high school graduation, we find that schooling
abilities are highly correlated across college types and majors (namely 2-year college, 4-year
college science major, 4-year college non-science major). We also show that the correlation
in productivity in the blue-collar and white-collar sectors is large, stressing the importance
of allowing for correlated learning in this context. On the other hand, our estimation results
indicate that schooling abilities are only weakly correlated with productivity in both sectors,
thus indicating that grades earned in college actually reveal little new information about
future labor market performance, once we account for background characteristics and college
readiness. The lack of learning about work abilities prior to college graduation results in
college graduates that are somewhat well sorted on the basis of college abilities but not on
work abilities.

We then simulate our model under a counterfactual scenario where all individuals have
perfect information on their abilities by the end of high school. The goal of the simulation
is to understand how information affects schooling choices, ability sorting patterns, and the
earnings gap between college and non-college graduates in the different work sectors. We find
that the share of four-year college graduates is virtually unchanged relative to the baseline,
though this masks significant decreases in the share dropping out of college and significant
increases in the share who never attend college. It also masks a substantial reduction in
the gap in college graduation rates between individuals from high- and low-income families.
The mechanism for this convergence is differences in beliefs about the suitability of college
between low- and high-income individuals. Many low-income individuals have priors that
college is not a good match. Providing information reveals that some of them indeed are a

good match, increasing their college graduation rates. The reverse holds true for high-income

1See the surveys by Altonji, Arcidiacono, and Maurel (2016) and Altonji, Blom, and Meghir (2012), who
discuss the importance of heterogeneity in human capital investments.



individuals; many high-income individuals have priors that college is a good match, with full
information revealing that, for some, it is not. The slow revelation of information in the
baseline leads to higher graduation rates for individuals from high-income families because
of switching costs and having already accumulated some years of college experience.

Simulations further reveal that ability sorting would be much stronger in the perfect
information scenario. While there is significant sorting on college abilities for college gradu-
ates, this sorting becomes even stronger in the counterfactual. But a new source of sorting
also emerges. Namely, because the premium for being a college graduate—and, in particular,
a science graduate—is especially high in the white-collar sector, those with high white-collar
abilities are more likely to obtain college degrees, especially in the sciences. With individuals
in the counterfactual now sorting into college based in part on white-collar abilities, the wage
gap between college graduates and non-college graduates at age 28 more than doubles, and
the wage gap between white-collar and blue-collar workers almost triples.

Our analysis builds on seminal research by Manski and Wise (1983) and Manski (1989),
which argues that college entry can be seen as an experiment that may not lead to a college
degree. According to these authors, an important determinant of college attrition lies in the
fact that, after entering college, students get new information and thus learn about their
abilities. More recently, several other papers in the literature on college completion stress
the importance of learning about schooling ability to account for college attrition (see, e.g.,
Altonji, 1993; Arcidiacono, 2004; Heckman and Urzuia, 2009; Hendricks and Leukhina, 2017;
Larroucau and Rios, 2022). Of particular relevance to us are the articles by Stinebrickner and
Stinebrickner (2012, 2014), who provide direct evidence, using subjective expectations data
from Berea College (Kentucky), that learning about schooling ability is a major determinant
of the college dropout decision.?

Much of the learning literature assumes that the labor market is an absorbing state,
implying that the decision to leave college is irreversible (Stange, 2012; Stinebrickner and
Stinebrickner, 2012, 2014; Trachter, 2015).> In this paper we relax this assumption, which
is important to predict the substantial college re-entry rates of 40% among those who left
college for at least a short period of time in the NLSY97. By quantifying the importance
of learning on schooling abilities as well as labor market productivities, and evaluating the

joint informational value of schooling and labor market outcomes, our paper brings together

2See also Hastings et al. (2016) who provide evidence using a large-scale survey conducted in Chile that
individual beliefs about earnings and costs of higher education at the time of college entry are associated
with dropout outcomes.

3In a different context, Pugatch (2018) provides evidence that the option to re-enroll in high school in
South Africa is an important determinant of the decision to leave school and enter the labor market.



the literatures on schooling choices, and on occupational choices under imperfect informa-
tion (see, e.g., Miller, 1984; James, 2011; Antonovics and Golan, 2012; Papageorgiou, 2014;
Sanders, 2014). Beyond the educational choice context, our paper also fits within the rich
empirical literature on dynamic learning models, which, since the seminal work of Erdem
and Keane (1996), have often been estimated in marketing. A key additional challenge that
arises in the schooling context is that we do not observe individuals making the same choice
multiple times, which makes it more difficult to identify the role of learning.

The remainder of the paper is organized as follows. Section 2 presents the data and
provides descriptive evidence suggestive of learning. Section 3 describes a dynamic model
of schooling and work decisions, where individuals have imperfect information about their
schooling ability and labor market productivity, and update their beliefs through the obser-
vation of grades and wages. Section 4 discusses the identification of the model, with Section
5 detailing the estimation procedure. Section 6 presents our estimation results. Section 7
studies the role of informational frictions on educational and labor market outcomes. Finally,

Section 8 concludes. All tables are collected at the end of the paper.

2 Data

We use data from the National Longitudinal Survey of Youth 1997 (NLSY97). The NLSY97
is a longitudinal, nationally representative survey of 8,984 American youth who were born
between January 1, 1980 and December 31, 1984. Respondents were first interviewed in
1997 and have continued to be interviewed annually on topics such as family background
characteristics (e.g., parental education, family income, race), labor market information (e.g.,
compensation, labor supply, occupation), as well as education (e.g., educational experiences,
high school and college GPAs, SAT scores, field of study). Our estimation sample relies on
the first 17 rounds of the survey, where we restrict the analysis to men who have graduated
high school. After imposing some additional data restrictions, the final sample includes

22,398 person-year observations for 2,300 men.?

2.1 Descriptive Statistics

Table 1 presents background characteristics conditional on the first college option chosen.

Individuals who attend college at some point and start at a four-year institution have, on

4Appendix A provides details on how we construct our key variables and final estimation sample.



average, higher SAT test scores, with science majors having higher scores than non-science
majors, even for the verbal section. The same pattern holds for high school grades. Those
who begin in a two-year college have worse academic credentials than those who start in a
four-year college, but significantly stronger academic backgrounds than those who do not
attend college at all. Those who begin in a four-year institution have higher parental income
and parental education, with those who begin in a two-year college being stronger on these
measures than those who never choose a college option. Similarly, Table 2 presents summary
statistics but focuses instead on occupation (i.e., blue-collar vs. white-collar) conditional
on college graduation status. The sample corresponds to individual-year observations. As
expected, individuals in the white-collar sector have higher SAT scores, high school GPA,
and family income (when a teenager) than those in blue-collar occupations once conditioning
on graduation outcomes.® Overall, these compositional differences between two- and four-
year colleges (and between majors in four-year colleges) and blue-collar and white-collar
occupations highlight the importance of distinguishing between educational and occupational
sectors when modeling choices.

We next examine rates of college completion by initial college type. Table 3 provides
frequencies related to three measures of interest: (i) continuous enrollment (in either two-
or four-year college) until graduation from a four-year college; (i7) stopping out (i.e., leaving
college before graduating from a four-year college and returning to school at some point);
and (i7i) dropping out (i.e., permanently leaving college before four-year graduation). These
summary statistics show that stopping out is quite prevalent in our sample: approximately
25% left and returned to college at some later point. Similarly, dropout rates are large with
almost 36% of students never earning a bachelor’s degree.® Another empirical regularity
that emerges from this table is that student behavior varies substantially depending on
initial college and major. For example, dropping out and stopping out are more common
in two-year colleges than in four-year colleges, with four-year science majors having the
lowest proportions of dropping out and stopping out. Overall, the frequencies in Table 3
provide two main takeaways regarding modeling considerations. First, dropping out is not

an absorbing state: more than 40% of the students who left college at some point returned in

5 Appendix Table A2 reports the most common occupations by sector.

6These figures match the national ones, but official statistics do not track stopout because it requires
longitudinal data on enrollment gaps. Official statistics track degree completion within a set time (six
years), which in our sample equals 45% (62% for those starting in four-year college; not reported in the
table). This 62% figure exceeds the graduation rate for men starting four-year college in the early 2000s
(57%) reported by National Center for Education Statistics (2021a). This difference stems from Table 3
having a longer time horizon than six years.



a later period.” Therefore, college re-entry might matter for understanding how information
frictions affect completion. Second, there is important heterogeneity in completion outcomes
depending on the type of college (i.e., two-year vs. four-year) and major. Therefore, a

realistic model should allow for flexible schooling options.

2.2 Descriptive Investigation of Learning

The large dropout and stopout rates suggest that students are likely learning about their
abilities while in college. To assess the relevance of this possible mechanism, we provide
descriptive evidence consistent with the idea that students are discovering something new
about themselves, as opposed to merely reflecting something they already knew at the time
of enrollment.

The first two panels of Table 4 show how student decisions to stay in college vary by
their college grades. To the extent that college GPA works as a signal for students about
their abilities, then we should expect that those receiving lower grades (i.e., negative signals)
would be more likely to leave college. In this regard, Panels A and B of Table 4 show that
the students who stay in college (either four-year or two-year college) at period t + 1 do,
in fact, have significantly higher grades in period ¢ than those who were in school in ¢ but
not in ¢t + 1. While these differences may not necessarily reflect learning (lower grades may
result from worse family backgrounds and/or lower ability), they are consistent with the idea
that some of the students who leave college do so as a result of new information about their
ability.

In order to make further progress on the importance of learning, we next run a linear
regression of college grades on a set of academic and family background characteristics (in-
cluding race dummies, SAT scores, high school grades, parental education, age dummies,
birth year, and whether the individual was working part- or full-time), and compute the
residuals. Given that our goal is to further isolate learning from student background char-
acteristics, we compare the mean residual at ¢ for different educational choices at ¢t 4+ 1 in
panels C and D of Table 4. Despite the large set of controls included in the regression, we
still find that those with higher grade residuals are more likely to stay in school. Again,
while these patterns could still be partly driven by attriters having lower ability, of which
they are aware all along but are not measured in the data, they are also consistent with

learning about one’s ability once in college.

"This number is computed from the final column of Table 3. The stopout rate is divided by the sum of
the stopout and dropout rates, i.e. 24.86%/(24.86% + 35.94%) = 41.67%.



Finally, to illustrate learning in the labor market as a reason for stopouts to return to
college, we performed a similar analysis as in Table 4 but now using information on wages.
The first panel of Table 5 presents mean log wages for those who have left college, broken
out by next-period re-enrollment decision, while the second panel uses the mean difference
between actual and expected log wages instead of the mean log wage.Overall, this table shows
that those who decide to return to school earn lower wages than those who decide to stay in
the labor market. For example, those who leave college for the labor force and then choose
to return to school show a mean log wage of 2.190 while those who leave but do not later
return show a mean log wage of 2.362. This pattern persists even after controlling for a rich
set of individual, family background, schooling, and labor market experience variables (see
Panel B). While these empirical regularities can be consistent with multiple explanations,
the role of learning about labor market productivity in contributing to the decision to return
to college is potentially an important one.

In summary, our descriptive analysis suggests that individuals likely learn about their
own abilities when participating in different sectors. However, in order to fully isolate the
empirical relevance of learning, we next present a structural model of college and labor market
decisions where learning constitutes a key ingredient in determining college and labor market

outcomes.

3 Model

3.1 Overview

After graduating from high school, individuals in each period make a joint schooling and
work decision. For those who have not graduated from a four-year college, their schooling
options include whether to attend a two-year institution, a four-year institution as a science
major, or a four-year institution as a non-science major. In addition, individuals can also
choose whether to work either full-time or part-time in the blue-collar or white-collar sector,
these work options being available to the individuals regardless of the schooling choices.®
Individuals may always choose blue-collar work but face frictions in obtaining white-collar
work. Finally, home production (i.e., neither work nor attending college) is an available

option every period.”. After graduation, schooling options are no longer part of the choice

8Keane and Wolpin (2001) and Joensen (2009) estimate dynamic structural models of schooling and work
decisions and also allow for work while in college.
90verall, individuals can choose among 20 different options before graduation



set. Therefore, agents can only decide between home production and work in the blue-collar
or white-collar sectors with different levels of intensity (i.e., full-time or part-time).

Individuals only have imperfect information about their abilities which are characterized
by a multidimensional vector of five components. Namely, agents have different abilities for
each of the three schooling options (two-year, four-year science, and four-year non-science),
and two additional ones corresponding to the different types of labor markets (i.e., blue-collar
and white-collar occupations). Throughout the paper, we denote A; as the five-dimensional
ability vector, A; = (A, Aiss, Aiun, Aiw, A;p) (simply referred to as ability in the follow-
ing), the elements of which correspond to the ability in two-year college, four-year college
science major, four-year college non-science major, white-collar sector and blue-collar sector,
respectively.

Individuals update their beliefs by receiving signals that depend on their choices: en-
rolling in school provides signals through grades, and working provides signals through wages.
These signals then reveal different information regarding their abilities. Since the different
schooling abilities will likely be correlated in addition to being correlated with different labor
market abilities, grades in one of the schooling options will provide information regarding the
student’s abilities in the other schooling options, as well as their productivity in the labor
market. Similarly, wages in the blue-collar sector may be informative not only with regard
to productivity in this sector but also with regard to the individual’s schooling abilities and
productivity in the white-collar sector.

Agents are assumed to be forward-looking and choose the sequence of actions yielding
the highest value of expected lifetime utility. Hence, when making their schooling and
labor market decisions, individuals take into account the option value associated with the
new information acquired on different choice paths. Individuals who choose to work while in
college will get two signals on their abilities and productivities: one through their grades, and
one through their wages. It is interesting to note that, in this setting, even though working
while in college may be detrimental to academic performance (see, e.g., Stinebrickner and
Stinebrickner, 2003), it also serves as an additional channel through which individuals can
learn both about their productivities and schooling abilities while in school. Our framework
incorporates this tradeoff.

We now detail the main elements of the model. We first discuss the components indi-
viduals are forming beliefs over, namely, the grade and wage equations, and the probability
of graduating. We then describe how individuals update their beliefs. Finally, we model
the flow payoffs and the optimization problem the individuals face. Discussions of model

identification and estimation are deferred to Sections 4 and 5, respectively.



3.2 Grades

In the following, we denote by j € {2,4S5,4N} the type of college and major attended, where
2 denotes a two-year college, 4.S a four-year college science major, and 4N a four-year college
non-science major. Individuals are indexed by 1.

We assume that grades in the college sector j depend on schooling ability A;;, which is
not directly observed by the agents. However, they form some initial beliefs about A;; that
are given by the prior distribution N (0, ‘7124]‘)- Grades also depend on a set of covariates for
college sector j and period of college enrollment 7,'° X;;., that is known to the individual
and includes skill measures such as high school grades, indicators denoting participation in
the labor market (i.e., working part-time or full-time), and background characteristics (i.e.,
age, race, and parental education).! In the following and throughout the paper, we assume
that unobserved ability A; is independent of period-1 characteristics, Xj;1.

Grades in two-year colleges and in the first two years of four-year colleges are given by:
Gijr = Y05 + Xijrm1j + Aij + €i5r (1)

The idiosyncratic shocks, €;;,, are mutually independent and distributed A/(0, 0'327_), and are
also independent from the other state variables. Define the type-j (college, major) academic

index of ¢ in period 7, Al;j;, as:
Alijr = v0; + Xijrr1yj + Aij (2)

The academic index Al;;; gives expected grades conditional on knowing A;; but not the
idiosyncratic shock €;;, (see Arcidiacono, 2004, for a similar ability index specification).
Finally, for four-year colleges and periods 7 > 2, we express grades relative to Al,j; as

follows:
Gl'jq— = )\Oj + /\1]'14]”7— + Eijr (3)

Hence, the return to the academic index varies over the periods of college enrollment and

across majors. As such, while remaining parsimonious, this specification allows for different

107 is defined as the period of college enrollment irrespective of the type of college and major. For instance,

someone who completes two years of a community college and then transfers to a four-year college will be
in his 7 = 3" period of college enrollment.

UThe specification for grades in two-year college also includes an indicator for whether an individual has
spent more than one year in this type of college.

10



effects of ability on grades for lower- and upper-classmen. Grade dynamics may also be

different for science and non-science majors.

3.3 A Two-Sector Labor Market

Individuals who choose one of the work options (either full-time or part-time) receive an

2 We assume that there are two

hourly wage that depends on their graduation status.
sectors in the labor market, which are indexed by [ and referred to as white collar (I = W)
and blue collar (I = B). Workers face search frictions in obtaining employment in the

t—1) (

white-collar sector. Each period, with some probability :\Z(f which depends on individual

characteristics and previous decision), the individual’s choice set contains both white-collar
and blue-collar work options. With probability 1 — S\Ef H), the worker cannot choose white-
collar work. Those who are not college graduates or advanced degree holders may work in
the white-collar sector if they receive an offer. Likewise, college graduates or advanced degree
holders may not receive a white-collar offer, in which case they work in the blue-collar sector
if choosing employment. We emphasize that S\Ef 1) i5 a function of individual characteristics
such that this probability matches observed white-collar employment rates in the data.
Log wages in sector [ are assumed to differ based on whether the individual is currently
attending college or not. For those who are not working while in school, log wages in sector
[ and calendar year ¢ are assumed to depend linearly on sector-specific productivity A;,
a set of observed characteristics Xy, (i.e., years of education, graduation, college major if
graduated, an indicator for working part-time, labor market experiences, age, demographics,
high school grades, and parental education), labor market conditions ¢;, and idiosyncratic

shocks e;:
Wiy = 0 + Yoo + Xawyu + Aa + € (4)

The returns to the various components in X;;; are sector-specific. Note that this specification
allows for human capital accumulation through schooling as well as on the job. The idiosyn-
cratic shocks, e;;, are assumed to be distributed A/(0, 0?) and are independent over time as

well as across individuals and both sectors, and independent of the other state variables.

12Note that one can think of wages as a measure of performance on the job. As such, we do not need to
assume that employers have perfect information about workers’ abilities. Instead, we make a spot market
assumption implying that workers are paid according to their realized productivity.

11



Like the model for grades, we define the sector-l productivity index of ¢ in period t as
Pl = yor + Xipyu + A (5)
Then, for individuals working while in school, we express log wages relative to Pl as
wi; = 0 + Aor + AuP Ly + € (6)

where the idiosyncratic shocks, €3, are assumed to be distributed A(0,02). Hence, the
return to the productivity index varies over in-school work status and occupational sector.
Importantly, such a specification allows for different signal-to-noise ratios for the wages
received in and out of college.

We account for aggregate changes in wages over time through calendar year indicators, d,.
If we did not control for these nonstationarities, we may falsely conclude that learning about
ability is important when in reality workers are simply responding to aggregate shocks. The
time dummies at t are observed in period t but individuals must form expectations over this
variable for periods ¢ 4+ 1 and beyond. We formalize this feature of the model in detail in
Section 3.5.2.

3.4 Consumption

We now discuss how consumption enters our model. Individuals make decisions in part based
on their expected utility of consumption, which is supported by some combination of labor
income, parental transfers, educational grants or loans, and the social safety net.

We follow a modified version of Johnson (2013) by assuming that the budget constraint
binds in each period (we do not have savings or assets in our model, so we omit these
components from Johnson’s equation, however, students can take loans to pay for their
education). Denoting consumption by C, labor income by W, parental transfers by PT,
educational grants (both need- and merit-based) by G, educational loans by L (the latter
two of which are a function of EFC '3 family income I, SAT test score), tuition and fees by
T, and school loan repayments (which are taking place when ¢ > t*) by SLR, we obtain the

budget constraint denoted in eq.(7).* The repayment of loans is prespecified by a formula

BEFC stands for Expected Family Contribution, which is a number that colleges use to compute how
much need-based financial aid a given student is eligible for.

4Because our model has no notion of college choice or geographic space, tuition 7 is the same for every
individual and differs only by college sector (2-year vs. 4-year).

12



(see Appendix G for more details), which avoids modeling how individuals decide to pay for

them.' We first define the latent consumption level C* as:

W if working & not in school & t< t*
W+ PT'+G(EFC,I,SAT)+ L(EFC,I,SAT) —T if working while in school & t< t*

C*"={PT+G(EFC,I,SAT)+ L(EFC,I,SAT)—T if in school & not working & t< t*
W —SLR if working & not in school & ¢ > t*
C if not in school & not working

(7)

The (realized) consumption level is then given by:
C =max(C*,C) (8)

Consumption is evaluated in terms of yearly consumption flow in 1996 dollars. We
calibrate a consumption floor for individuals not working and not in school. Namely, we
follow Hai and Heckman (2017) and set this value to C' = $2,800. Note that this consumption
floor also operates on the other cases. We discuss in detail in Appendix E the specification of
the consumption process, including how each component of consumption is computed. We

provide details on how individuals accumulate debt in Appendix G.

3.5 Beliefs

Individuals are uncertain about () their future preference shocks, (ii) their schooling ability
and labor market productivity, (iii) the evolution of the market shocks (the ¢;’s), (iv) (four-
year) college graduation, and (v) whether they can participate in the white-collar sector. The
first component, future preference shocks, will be discussed in Section 3.6 when we describe

preferences. We discuss the other components here.

3.5.1 Beliefs over schooling ability and labor market productivity

We assume that individuals are rational and update their beliefs in a Bayesian fashion.

Their initial ability beliefs are given by the population distribution of A, which is supposed

15In fact, as long as the loan repayment period starts after the estimation period, then we do not need to
take a statement on how repayments should impact estimation.

13



to be multivariate normal with mean zero and covariance matrix A. Importantly, we do
not restrict A to be diagonal, thus allowing for correlated learning across the five different
ability components.

At each period 7 of college attendance, individuals use their realizations of grades and
wages (if they work while in college) to update their beliefs about their schooling abilities in
all college options (Ao, Aiss, Aian), as well as their labor market productivity in both sectors
(Aiw, A;p). Grade realizations provide noisy signals regarding abilities, with S;;, denoting
the signal for individual ¢ from a type-j college option at enrollment period 7. Specifically,

for two-year colleges and the first two years of four-year colleges, the signal is given by:
Sijr = Gijr — Y05 — XijrNj (9)

For four-year colleges in subsequent enrollment periods (7 > 2), the index specification
yields:
Gijr — Xoj — A1 (V05 + Xijr 1)

Si ir — 10
J )\1] ( )

Similarly, individuals who participate in the labor market update their ability beliefs
after receiving their wages. The signal for those not in school and working in sector [ and

period t is given by:
Siit = witg — 0 — Yor — Xin Y (11)

For those enrolled in school while working in sector [ in period ¢, the signal is

Wi — 0 — Aot — Au(vor + Xawyu)

Sy = "

(12)

Finally, individuals may choose to work while in college, in which case they will receive two
ability signals (Sijr, Sit).*

To describe the updating rules, we first introduce some notation. Let §2;; be a 5 x 5
matrix with zeros everywhere except for the diagonal terms corresponding to the choices
made by individual 7 in period ¢ (namely two-year college, four-year college science major,
four-year college non-science major, skilled or unskilled labor market). The diagonal ele-

ments corresponding to the choices made are given by the inverse of the variances of the

160nce an individual graduates from college, we assume that learning occurs only through wage signals.
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idiosyncratic shocks.!'” The maximum number of positive diagonal elements is two, which
corresponds to receiving two signals: one from grades in a particular schooling option and
one from wages. Similarly, denote by S;; a 5 x 1 vector with zeros everywhere except for
the elements corresponding to the choices in period ¢. Here, the non-zero elements are the
ability signals received in this period.!®

It follows from the normality assumptions on the initial prior ability distribution and on
the idiosyncratic shocks that the posterior ability distributions are also normally distributed.
Specifically, denoting by E;(A;) and A;(A;) the posterior ability mean and covariance at the
end of period ¢, we have (see DeGroot, 1970):

Ey(A) = (A (A) + Q) M AL (A) B (Ay) + Qitgit) (13)

As in a more standard one-dimensional learning model, prior variances at the beginning of
a given period decrease towards zero as individuals receive additional ability signals in the
previous periods, thus giving more weight to the prior ability and less to the current-period

signal.

3.5.2  Beliefs over market shocks

We now specify how individuals form their beliefs about the aggregate labor market. Indi-
viduals observe the current value of 9. We assume that ¢, is the same for both employment

sectors. We also assume that the aggregate shock follows an AR(1) process:
0r = o1 + G (15)

where ¢, is iid. N (0,02). The assumption that the aggregate shock follows an AR(1)

process, or a discretized version of it (Markov process of order 1) is common in the literature

I"Note that, for the college options, the idiosyncratic variances will depend on the year of enrollment. For
the work options, these variances will depend on school enrollment status.

18 As an example, someone who chooses to work in the blue-collar sector while pursuing a 4-year non-science
degree in 7 < 2 would have the following values for 2;; and S;;:

0 0 0 0 O
0 0 0 0 O
1 ~
Qe={0 0 = 0 0 1 5 =[0 0 Auv+euane 0 Ap+eip |
0 0 0 0 O
00 0 0 4

q
»
W
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(see, e.g., Adda et al., 2010; Robin, 2011). Given the realizations of the ¢;_1’s, individuals
then integrate over possible realizations of the (;’s when forming their expectations over the

future.

3.5.8  Beliefs over graduation

We treat graduation as probabilistic. Individuals are only at risk of graduating if they
have completed at least two years of college and if they are currently attending a four-year
institution. Individuals in this risk set face a probability of graduation at the end of their
7-th period of college enrollment that depends on a set of characteristics X;,,. This set of
characteristics includes time-invariant measures like high school grades and demographics.
It also includes time-varying components like years in each type of school (two-year or four-
year), current college major, current work decisions, and the individual’s prior beliefs about
his four-year college abilities in science and non-science majors.'” We then assume that the

probability of graduating conditional on X, takes a logit form:

eXp(XigTw)

Pr(grad;, = 1|Xipr) = 7 oxp(Xigr1))
igT

(16)

Individuals are assumed to know the parameters ¢ and form expectations over their proba-

bilities of graduating using (16).

3.5.4 Beliefs over white-collar job offer arrival

While individuals can always choose to work in the blue-collar sector, they face search
frictions associated with participation in the white-collar sector. In particular, white-collar

job offers arrive with probability, :\?{‘1, which is specified as follows:

- _e®Z0) - if j did not work in the WC sector at time ¢ — 1
)\i;—l — ) 14exp(Z],5x) (17)

1 if ¢ worked in the WC sector at time ¢t — 1

where Zt denotes a vector of state variables in period t (i.e. age and an indicator for
graduation) and the superscript d;_; emphasizes the dependence on the prior decision as

outlined in (17). Similar to graduation, individuals are assumed to know the parameters d,.

19While we do allow the prior ability beliefs, and thus prior college grades, to enter the graduation proba-
bility, we do not allow unobserved ability A; itself to affect graduation. If we did so, then individuals could
learn about their abilities through graduation realizations. This would substantially complicate our model,
by requiring in particular to allow for correlated Bayesian learning based on a mixed continuous-discrete
distribution of signals.
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Section 4 discusses the identification of S\it.

3.6 Flow utilities

We now define the flow payoffs for each of the schooling and work combinations. We denote
the various schooling options by j, where j € {2,45,4N,0}. Turning to the work options,
we denote by k € {p, f,0} part-time and full-time work, respectively, and by [ € {B, W} the
blue-collar (I = B) and white-collar (I = W) sector. The baseline alternative corresponds to
the home production option, i.e., no work (kK = 0) and no school (j = 0), which we denote
with a slight abuse of notation by d;; = (0,0,0).

We denote by Z; the variables that affect the utility of school, Zs; the variables that
affect the utility of work, Cjjx; the level of consumption associated with the school and work
alternative (j,k,l) in period t, and by Zy; the individual characteristics that affect flow
payoffs through consumption only. The flow payoff for choice d;; = (j, k,1) is assumed to be
given by, letting Z; = (Zoit, Z1it, Zoit):

Uii(Zit, €ijiir) = ajur + o E(U(Cijinr)) + Ziivej + Zoa(ou + 1) + €4k (18)
= Wi (Zit) + €ijru (19)

where the idiosyncratic preference shocks €;;p; are i.i.d. following a Type 1 extreme value
distribution.

We discuss below the different components of the flow utility payoffs, starting with the
utility of consumption. We assume that individuals have CRRA preferences over their con-
sumption, with a risk aversion parameter which we set equal to 8 = 0.4; see E.5 for details
on how we chose the value of 6. For a given sector [ and period t, the expected utility of
consumption depends on the expected labor income in that sector, along with the beliefs
about the aggregate shocks affecting sector [ in period . Consumption while in college also
depends on parental transfers, educational grants (both need- and merit-based), and loans,
along with tuition fees.

We now turn to the variables Z;;; and Zs;:

o Z1i4 and Zy; include demographics, family background characteristics, year of birth,
measures of academic performance, controls for the previous choice (to allow for switch-
ing costs similar in spirit to Keane and Wolpin, 1997), and individual (latent) specific

effects (assumed independent of the other covariates).? Our approach is consistent

20More specifically, we assume that agents can be characterized by a finite group of types and that these
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with students accumulating human capital while in college, with some non-pecuniary
payoffs associated with it. In particular, heterogeneity in the consumption value of
attending two- and four-year colleges, is captured with the observed individual char-

acteristics.?!

 Specific to Zy; is the expected ability in schooling option j (which is computed with
respect to individual ¢’s prior ability distribution at the beginning of period t), years
of college completed, interactions of previous college choices with years of college com-
pleted, and work intensity (whose effects are allowed to vary by labor market sector).
Expected ability is included in Z;; as an (inverse) proxy of the cost of effort associated
with college attendance.?? Finally, indicators for work intensity by sector capture the

costs associated with balancing both activities simultaneously.

Our model, however, does not incorporate endogenous effort adjustment. While this
would in principle be an interesting extension, we conjecture that in the absence of

measurement of effort, such a model would not be identified.??

o Finally, specific to Zs;; are indicators for four-year college graduation, and for partic-
ipation in the white-collar sector (when working part-time). Note that, although we
do not directly measure non-pecuniary returns to schooling, the inclusion of four-year

college graduation acts as a preference shifter for the work alternatives.

The home production sector is chosen as a reference alternative, and we normalize ac-
cordingly the corresponding flow utility to zero. The flow utility parameters, therefore, need

to be interpreted relative to this alternative.

3.7 The optimization problem

Individuals are forward-looking, and choose the sequence of college enrollment and labor
market participation decisions yielding the highest present value of expected lifetime util-

ity. The individual chooses (d;;)=1.. 7, a combination of schooling and work decisions, to

types are constant across agents within each group.

21Gee Heckman, Humphries, and Veramendi (2018) for a recent empirical analysis of the non-market
returns to education.

22This reduced-form assumption has been used in various prior studies in the empirical schooling choice
literature. See, for instance, Arcidiacono (2004) and Stinebrickner and Stinebrickner (2012).

ZSee recent work by De Groote (2022) who estimates a dynamic model of high school effort choice in the
absence of learning.
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sequentially maximize the discounted sum of payoffs:

T
E D BTN (wim(Za) + i) 1{die = (4, k, 1) }1{Offeryy, = 1} (20)
t=1 i k1
where § € (0,1) is the discount factor. The expectation is taken with respect to the distri-
bution of the future idiosyncratic preference shocks, the signals associated with the different
choice paths, the beliefs over the aggregate shock to wages, the probability of receiving an
offer in sector [ (1{Offer;; = 1} above), and the probability of graduating.

Let V;(Z;) denote the ex ante value function at the beginning of period ¢, that is, the
expected discounted sum of current and future payoffs just before the current period idiosyn-

cratic shock is revealed. The conditional value function vy (Z;) is given by:
Vi(Zit) = wi(Zir) + BE Vi1 (Zivs1) | Zit, die = (J, k., 1) (21)

where the term F[-|-] is indexed by t to highlight the fact that this expectation is conditional
on the information set of the individual at the beginning of period ¢, which includes in
particular the sequence of ability signals received from periods 1 up until ¢ — 1. Denoting
by S\Etd 1) the probability of receiving an offer in the white-collar sector in period t given
previous decision d;_1, and assuming that the ¢’s are i.i.d. Type 1 extreme value yields the
following weighted log-sum formula:

Vel (Zit) = i (Zi) + BS\EJtIﬂEt Zit, diz = (J, k, 1)

In (Z SN eXp(Ujkl(Zit—i-l)))

7k

(22)

J

In (Z exp(vjkn (Zit+1)))

where v denotes Euler’s constant.

3.8 Finite dependence

Following Arcidiacono and Miller (2011), we re-express the future payoffs so we can avoid
solving the full backward recursion problem. Recall that it is the difference in the condi-
tional value functions that are relevant in estimation, not the conditional value functions
themselves. For simplicity, denote by h the triplet of home production choices (0,0,0). Our

goal is to find an expression for the difference in the conditional value functions, v;x — v,
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that is not recursive.?* To accomplish this, we rely on the finite dependence structure of
the problem, such that it can be reformulated in terms of two-period ahead flow payoffs and
conditional choice probabilities (CCPs are estimated in a first stage).?> However, given the
presence of search frictions, it is also necessary to include (convenient) weights to achieve
the cancellation of the recursive term.26

To be more specific on how the cancellation in the finite dependence path works, we
express the value function associated with d;; = h (home production) as follows, denoting

by XE?HS the job offer arrival rate in the white-collar sector:

E, [Vt+1 (Zit+1) |dit = h] = 5\1(‘3)4_1,3Et [V;s+1 (Zit+1> |dit = h7 Offer;, = 1]
+ (1=A 1) B Vi (Zien) |dig = B, Offeryy = 0] (23)

One can distinguish between three possible events in period ¢ + 1: (i) the agent hasn’t
received a job offer in the white-collar sector, (ii) the agent has received a job offer in
the white-collar sector and has accepted it, and (iii) the agent has received a job offer in
the white-collar sector and has rejected it. Then, as we show in more detail in Appendix
F, including convenient weights on the cases (i7) and (ii) makes it possible to achieve
cancellation of the recursive term when uncovering an expression for v, — v,.>" Suppressing

24 As a reminder, j denotes the schooling option, k refers to the work options, I determines the sector, and
t the period. vggo = vps refers to home production, which is the baseline alternative.

25More specifically, for the v conditional value function, individuals choose home production in both
t+1 and t+2. For the vj, conditional value function, individuals choose (j, k,1) in ¢+ 1 and home production
int—+2.

26Given that white-collar job offers arrive with probability S\Ei)l, then we respectively weight the acceptance

and rejection probabilities in ¢ + 1 of the offers (in the event that i receives an offer) by :\(%) and 1 — ZVL")’
t+1 t+1
allowing us to achieve cancellation.

27 Appendix F also details the case where there is uncertainty about graduation, which we avoid here for
expositional reasons.
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the 7 subscript, the differenced conditional value function is then given by:

u;r1(Zy) — BEy { tikll) In [py, (Zi41|Offer,4q = 1)] +

(1= X)W lpn (Zesa |Offerisn = 0)]| 22, de = (ki) |
+3E, { (A“ﬁ) A 10 [pjat (Zys1|Offery g = 1)] +

(1 — :\&7)) 5\5/?1 In [pp, (Zy41|Offery 1 = 1)] +

vsut(Z0) — on(Z0) = | (L= A b (ZiOffer 1 = 0)] — (24)
(@) )\£+)1ujkl(Zt+1)‘Zt,dt - h}

+B2E, {)\tfle) 1n [ph(Zys2|Offery 5 = 1)] +

( — AUKD ) 1n [ph(Zero|Offery o = 0)] | Zo1, dy = h,dopy = (j,k,l)}
2B, { (N 0 [pn(Ze 42| Offerso = 1)]) +

(1 - S‘E}i)z) I [pp(Zi2|Offeriyo = 0)] | Ziy1, dy = (4, k,1) , diy1 = h}

4 Identification

We first discuss in Subsection 4.1 how our model accommodates permanent unobserved

heterogeneity, before turning in Subsection 4.2 to the identification of the model parameters.

4.1 Unobserved heterogeneity and measurement system

The presence of unobserved ability (to the econometrician, but known by the agents) and
preference parameters that could be correlated over time constitute a threat to identifying
the coefficients of interest. We address this issue by allowing for unobserved heterogeneity
types in the spirit of Heckman and Singer (1984) and Keane and Wolpin (1997). Namely,
we include type-specific components, capturing permanent characteristics of the individual,
which enter the model in the form of location shifters. We allow for three unobserved binary
heterogeneity factors, namely one for schooling ability, one for schooling preferences, and one
for work productivity and preferences. Therefore, eight types in total capture the unobserved
heterogeneity, where individuals are characterized as low (L) or high (H) for each of the three

latent dimensions.?® We rely on an auxiliary measurement system, which is primarily used

28The possible combinations for schooling ability, schooling preferences, and work productivity and prefer-
ences that lead to eight types are as follows: (H,H,H), (H,H,L), (H,L,H), (H,L,L), (L,H,H), (L,H,L), (L,L,H),
and (L,L,L). We also estimated two extended specifications, allowing for 16 and 32 heterogeneity types. For
each of these cases, several of the estimated population type probabilities ended up being negligibly small
(below 0.5%).
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to identify the distribution of permanent unobserved heterogeneity. Beyond identification,
another advantage of using these measurements is that they render greater interpretability
to the heterogeneity types (Carneiro, Hansen, and Heckman, 2003). Appendix C describes

the measurements we use, and how each one of them relates to the unobserved heterogeneity

types.

4.2 Model identification

We now discuss how the model parameters are identified. We identify in a first step the unob-
served heterogeneity distribution, the conditional choice probabilities, the outcome equations
and the distribution of the agents’ beliefs. The structural utility parameters are then iden-
tified in a second step. We end this subsection by explaining how white-collar job offers are

separately identified from preferences for white-collar work.

4.2.1 Unobserved heterogeneity distributions, conditional choice probabilities, continuous

outcome equations and agents’ beliefs

Distribution of unobserved permanent heterogeneity that is known to the agent
Grades and log wages are linear functions of (i) observed covariates, (i7) type-specific unob-
served heterogeneity (known to the agents), (¢i) unobserved heterogeneity initially unknown
to the agents, and (iv) idiosyncratic shocks. Although we assume that the random factors
(#7) and (i47) are mutually independent, these factors are generally correlated once we condi-
tion on the outcome being observed by the analyst. For instance, grades in four-year college
science major are only observed for students who enrolled in this specific type of college and
major, a decision which likely depends on their (known) unobserved heterogeneity as well
as their beliefs about their initially unknown unobserved heterogeneity. It follows that one
cannot directly apply the identification arguments from, e.g., Carneiro, Hansen, and Heck-
man (2003) or Heckman and Navarro (2007), to identify the distribution of the factors from
the realized grades and log wages.

Instead, we use for identification the auxiliary measurement system discussed in Subsec-
tion 4.1. Namely, we rely on the fact that we have access to a set of selection-free measure-
ments for the three unobserved discrete heterogeneity factors. This then allows us to use
existing identification results for finite mixture models with multiple measurements. Specif-
ically, one can apply Theorem 8 of Allman, Matias, and Rhodes (2009) to our context to
identify the distribution of the unobserved heterogeneity types, along with the distributions
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of the measurements conditional on the heterogeneity types.

Type-specific conditional choice probabilities The choice probabilities conditional on
the observed state variables and the measurements, which are directly identified from the
data, can be expressed as a finite mixture over the heterogeneity types of the type-specific
conditional choice probabilities. The mixture weights are identified from the previous step.
Key to the identification of the type-specific conditional choice probabilities is then the
assumption that measurements are independent from choices once we condition on hetero-
geneity types.?? Conditional on the vector of observed state variables, the finite mixture
model can then trivially be expressed as a linear system with Ny, (number of distinct values
taken by the vector of measurements) equations and Ny (number of points of support of the
vector of types) unknowns. Provided that the measurements are relevant measurements of
types (i.e. that the type distribution conditional on measurements is a non-trivial function
of at least a subset of the measurements), the type-specific choice probabilities will generally
be over-identified in our context.

Consider the case of the type-specific conditional choice probabilities in the first period,
assuming one unobserved heterogeneity factor with two points of support (i.e. two types),
R € {1,2}. While simpler than our specification, this setup remains rich enough to convey
the main identification arguments. Under the previous assumptions, the choice probabilities

conditional on the measurements M = m, Pr(D|M = m), can be written as a finite mixture

of the type-specific conditional choice probabilities, where the mixture weights, 7=™ and
ad=m =1 — xM=m " are identified from the earlier step (we omit the conditioning on the

observed covariates for simplicity here). Namely:
Pr(D|M =m) =Pr(D|M =m,R=1)m"=" + Pr(D|M =m,R=2)(1 —m"=™)  (25)

Evaluating the choice probabilities conditional on measurements at two different points

my and my in the support of the measurements M yields the following linear system:

Pr(D|M =my)\  (m=™ 1—="="\ (Pr(D|R=1) (26)
Pr(D|M = my) o= 1 — =" | \Pr(D|R = 2)
2t follows that measurements only affect the choice probabilities through the mixture weights. See

Henry, Kitamura, and Salanie (2014) who use similar exclusion restrictions to (partially) identify finite
mixture models in a more general context with unknown mixture weights.
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Pr(DIR=1
This identifies the vector of type-specific conditional choice probabilities x(Dl )
Pr(D|R = 2)

as long as the rank condition 7= = 7M="2 holds.

Similar arguments can be used to establish identification of the type-specific conditional
choice probabilities in the more general case of a vector of unobserved discrete heterogeneity

factors.30

Outcome equation parameters (grades and log wages) An important feature of our
model is that grades and wages are all subject to sample selection. For instance, grades in
four-year science are, by definition, only observed for those who chose to enroll in a four-
year college, science major. The same holds true for wages in blue- and white-collar sectors.
Importantly though, conditional on the heterogeneity type, grades and wages are subject to
selection on observables only. It follows that identification of the outcome equation param-
eters can be established using a control function approach. Identification of the outcome

equation parameters proceeds along these two steps:

Step 1: Identification of the distribution of the outcome Y7 conditional on heterogeneity type
(R), past schooling/work choices (D,_; = j, D,_5...), past ability signals (S;_1, S-—2...),

and other state variables Xﬁ_l

This follows from a similar reasoning as for the type-specific conditional choice prob-
abilities, after replacing the conditional choice probabilities by the densities of the

outcomes Y conditional on past choices, past outcomes and other state variables.

Step 2: Identification of the outcome equation parameters

From the theoretical regression of E(Y/|R, D,y = j,D; 9,....;8: 1,5+ 9,.... X2_}),
which is identified from the previous step, on R, XZ,I, the interaction terms D,_5S,_1,

D, 5D, 35, 5, ..., and an intercept. Identification of the ability signal S, follows.

Distribution of unobserved ability factors A = (As, Ass, Aun, Aw, Ap)’ that are ini-
tially unknown to the agent The joint distribution of the unobserved factors A is
primarily identified from the covariances between the outcomes (grades and log wages) and

past ability signals.

30For periods t > 1, the mixture weights are given by the type probabilities conditional on the measure-
ments and the state variables, which, unlike for the first period, include prior choices and ability beliefs.
Identification of these weights exploits the normality assumption on the outcome equations (grades and log
wages).
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In our model, conditional on observed covariates, both type-specific unobserved hetero-
geneity and unobserved factors A generate persistence in the outcomes. The assumption
that the distribution of unobserved heterogeneity known by the agent is discrete plays an
important role in identifying the distribution of A. In particular, denoting by Y the out-
comes, S the past ability signals, X the observed covariates, R the heterogeneity type dummy
which follows a Bernoulli distribution (e.g. schooling ability type for grades, where we as-
sume here to simplify the exposition that there are only two types), and D the selection
dummy, Cov(Y, S| X, D = 1) as well as Cov(Y?,S|X, D = 1) are both functions of the same
covariance term Cov(R,S|X,D = 1) = Cov(R?,S|X,D = 1). The share of the covariance
Cov(Y,S|X = 2z, D = 1) that is attributable to the unobserved ability A is then identified
from the covariances Cov(Y,S|X = z,D = 1) and Cov(Y? S|X = z,D = 1), letting = vary
on the support of X. This, in turn, identifies the signal-to-noise ratios associated with the

different signals, along with the variance-covariance matrix of A.

Individual beliefs about unobserved abilities Individual prior beliefs about abilities
A, at the beginning of any given period, are identified as a byproduct of the previous steps,
combined with the maintained normality assumption for the distribution of the ability sig-

nals.

4.2.2  Structural utility function parameters

We discuss the identification of the conditional value functions before turning to the flow
payoffs. As these arguments take as given the conditional choice probabilities, we start by
discussing the identification of the white-collar job arrival rates and probabilities of choosing

to work in a white-collar job.

White-collar job arrival rates and choices First, note that individuals with arbitrarily
large prior abilities in the white-collar sector are predicted to choose to work in the white-
collar sector—conditional on receiving an offer in that sector—with a probability approaching

one.! In other words, it follows from the specification of our choice model that:

yli{glo Pr(Dt = W|Oﬁert = ]_, Zt7 Et—l(A—W)7 Et—l(AW) =1, R) =1 (27)

31Note that implicit here is the assumption that prior ability, and thus expected wages in the white-collar
sector are positively associated with the flow utility for holding a white-collar job.
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where we denote by E; 1(A_w) the vector of prior abilities for all three college options
and the blue-collar sector, and we suppress the individual subscripts to ease the notational
burden.

It directly follows that, for this subset of individuals, the offer arrival rates are equal to the
probabilities of working in the white-collar sector Pr(D; = W|Z;, Ey_1(A_w), Ei—1(Aw), R).
These type-specific conditional probabilities are identified for this subset of individuals in
a similar fashion as on p.23. Under the maintained assumption that the offer arrival rates
do not depend on prior ability this, in turn, identifies the arrival rates, which we denote
by Xf to make the dependence on R explicit. Finally, it follows that the probabilities
to work in the white-collar sector conditional on receiving an offer, which are given by

Pr(D; = W|Zy, B 1(A_w), Br—1(Aw), R) = Pr(Dt:W‘Z"Et”%*W)’Et*l(AW)’R), are identified

t
for the whole population. In practice, separate identification of the white-collar job offer

arrival rates and the probabilities of choosing to work in the white-collar sector conditional
on receiving an offer in that sector is further facilitated by our parametric and distributional
assumptions, combined with additional exclusion restrictions between the offer arrival rates

and the flow utility of working in the white-collar sector (see Table B6 in Appendix B).

Conditional value functions Having identified the type-specific conditional choice prob-
abilities, one can then identify the conditional value functions associated with each alterna-
tive using standard identification arguments.?? In particular, it follows from the assumption
that the idiosyncratic preference shocks are drawn from a Type 1 extreme value distribution
that the conditional value functions—up to a reference alternative (home production)—are
identified by inverting the type-specific conditional choice probabilities as in Hotz and Miller
(1993). This identification result does require knowledge of the distribution of the preference
shocks. However, similar inversion results can be obtained for a more general class of error
distributions, including generalized extreme value distributions (see, e.g., Arcidiacono and
Miller, 2011, Chiong, Galichon, and Shum, 2013).

Flow utilities Finally, having identified the type-specific conditional choice probabilities
and conditional value functions from the earlier steps, the flow utilities associated with the
different alternatives are identified by applying to our context the results of Arcidiacono and
Miller (2020) (see, in particular, Theorem 3 and discussion in Section 3.3 of that paper).

Identification relies on the finite dependence property of our model, discussed in detail in

32Note that it follows from the final paragraph of Section 4.2.1 that the posterior ability vector can be
treated at this stage as an observed continuous state variable.
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Subsection 3.8.

5 Estimation

For expositional reasons, we first present the estimation procedure for the specification with-
out type-specific unobserved heterogeneity (Subsections 5.1-5.4). We then discuss how the
procedure can be extended to allow for unobserved heterogeneity types (Subsections 5.5-
5.6).33

5.1 Additive separability

Assuming that the idiosyncratic shocks are mutually and serially uncorrelated and in the
absence of type-specific unobserved heterogeneity, the model can be estimated sequentially.
Broadly speaking, the estimation, in this case, proceeds in two key stages. In the first
stage, one can estimate the parameters from the grade and wage processes in addition to
the choice probabilities associated with all schooling and work alternatives, while the second
stage is devoted to estimating the flow utility parameters, taking as given the first-stage
estimates.?* The validity of this sequential approach rests on the likelihood being separable
in the contributions of the choices and outcomes.

Namely, consider the case of an individual ¢ attending college for T, periods, who par-
ticipates in the blue-collar (white-collar) labor market for T (T ) periods, and for whom
we observe a sequence of T, decisions. We write the individual contributions to the likeli-
hood of the grades, log wages and choices by integrating out the unobserved ability terms
A = (As, Ays, Ayn, Aw, Ap)’. This breaks down the dependence across the grades, log wages,
choices, and between these variables. The contribution to the likelihood then writes, denot-
ing by (Gi;). (7 € {1,...,T.}) the grades, (w;p;), (T € {1,...,Tg}) the log wages in the

blue-collar sector, (wyw,), (7 € {1,...,Tw}) the log wages in the white-collar sector, and

33Note that throughout this section, we keep the conditioning on the observed covariates implicit to save
on notation.

34We refer to the first stage as the estimation steps that are necessary to complete before estimating
the structural parameters. Note that this stage also includes estimating the graduation and search friction
parameters, consumption-related inputs (i.e., loans, grants, and transfers), flexible conditional choice prob-
abilities (CCPs), and a measurement system to account for unobserved heterogeneity. We will discuss these
remaining elements later to ease the exposition. See Appendix Table B5 for a full summary of the estimation
steps.
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(dir); the decisions (7 € {1,...,T4}), as a five-dimensional integral:

L(dm e ,dde, Git, .., GiTCawiBla <o, WiBTg, Wiw1, - - - 7wiWTW)

(28)
= /L(dila s addea Git, ..., Git,, wiB1, . . . y WiBTg, WiWw1ly - - - 7wiWTW|A)SO(A)dA

where ¢(-) denotes the pdf of the unobserved ability distribution, which is N (0, A).

From the law of successive conditioning, and using the fact that schooling and work
choices depend on ability A only through the observed sequence of signals, we obtain the
following partially separable expression (using y as a shorthand for the vector of grades and

log wages):
L(dy,...,dir,, Gity ..o, Gir,, WiB1, - - o, WiBTy, Wi1s - - -, Wi Ty, ) = Lig X Liy (29)

where the contribution of the sequence of schooling and work decisions is given by:

X L(dde|di17 dia, . .. ,dde—l, G, Gig, ... WiB1, WiB2, - - -, Wiw1, Wiw2, - - )

This corresponds to the product over Ty periods of the Type 1 extreme value choice proba-
bilities obtained from the dynamic discrete choice model.
Finally, the contribution of the sequence of grades, blue-collar and white-collar log wages

is given by:

Liy == /L(G11|d11, A) tee L<GiTc dih diQ, e ,A)L(’UJZ'BﬂdZ'l? A) ce L(wiBTB|di17 dig, e ,A)

X L(wiwn|da, A) - - Lwiwry |, dig, - .., A)p(A)dA
(31)

where (L(w;g-|di1, ..., A))r, (L(wiws|di1, ..., A))r, and (L(Gyr|d;, . . ., A)); respectively de-
note the normal pdf’s of the blue- and white-collar log wages as well as the college grade
distributions, all conditional on the ability A and the sequence of choices. Taking logs of (29)
results in the choice part of the log-likelihood being additively separable from the outcome

(grades and log wages) part of the log-likelihood.?

35With type-specific unobserved heterogeneity, the log-likelihood is no longer additively separable. How-
ever, applying the EM algorithm restores the additive separability at the maximization step (Arcidiacono
and Jones, 2003). See Section 5.5 for more discussion.
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5.2 Estimation of grade and wage parameters

Estimation of the parameters of the grade and wage equations proceeds as follows. Instead
of directly maximizing the likelihood of the outcomes, which would be computationally
costly because of the ability integration, we compute the parameter estimates using the EM
algorithm (Dempster, Laird, and Rubin, 1977). The estimation procedure iterates over the

following two steps until convergence:3°

o E-step: update the posterior ability distribution from all the observed outcome data
(log wages and grades), using the outcome equation parameters obtained from the
previous iteration. This follows from the Bayesian updating formulas for the posterior
ability mean and covariance given in Section 3.5.1 (eq. 13). The (population) covari-
ance matrix of the ability distribution is then updated as follows for each iteration k
of the EM estimation:

1N
A= 5 2 (M) + EXAEL(AY) (32)
where N denotes the number of individuals in the sample, EF(A) the posterior ability
mean (EF(A)’ its transpose) and A¥(A) the posterior ability covariance computed at

the beginning of the E-step.

o M-step: given the posterior ability distribution obtained at the E-step, maximize the
expected complete log-likelihood of the outcome data, which is separable across sectors
(two-year college, four-year college science major, four-year college non-science major,

blue-collar and white-collar labor).

Namely, at the M-step of each iteration k of the EM estimation, denoting by ©%(-) the
pdf of the posterior ability distribution computed at the E-step, we maximize the expected

complete log-likelihood EI¥:

Blf = /m (L(Galdi, A) - - L(Car|div, dig, - - . A)L(wign|dir, A) - - -
X L(wipry|dit, dia, . . ., A)] @F(A)dA (33)

= Ez;:f2 + ElfAS + ElfAN + Elﬁw + Ez;fB

36In this context, the EM algorithm is guaranteed to converge to a local optimum.
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For instance, the parameters of the grade equation for college sector j are updated by
maximizing the contribution EI¥ v J €12,45,4N}, which writes, denoting by gom( ) the pdf
of the posterior distribution of A;:

Elf’J = / {ln [L(Gi7j71|dz’1, AJ)] + 4 In [L(Gi,j,Tj |di1, dig, N ,Aj)} } ()OZ (A])dA] (34)

Note that this term is additively separable over time. For any given period 7 of participation
in college sector j, it follows from the normality assumptions on the idiosyncratic grade shocks

and the unobserved ability that:

/ln L Gij7'|di17 dig, Ce ,AJ))QOZ(A]ﬁlAJ =

1
— In(2no}) — o 57 ()\2 AS(A) + (Gigr = Mo — Ay AL, )?)

15 %57 T

(35)

where j € {2,45,4N}, Aj;;(A) denotes the posterior variance of the college-j ability (com-
puted at the E-step), AL, = ~vo; + Xijry1; + Ef(A) is the posterior mean of the ability
index in college and major 7, and gof]() denotes the pdf of the posterior distribution of A;.
It follows that the parameters (Yo;, 71, Aojs A1, (O T) ) are updated by solving the following

minimization problem:

minz <ln(0]2 = ()\f]TAZ](A) (Gijr — Aojr — )\UTA[ZT)2)) (36)

i
where (Aojr, A1jz) = (0,1) for 7 < 2 and j € {45,4N}, and (Agjr, A1jr) = (Aoj, A1;) otherwise.

The estimation of the wage parameters in (6) proceeds in a similar manner, with two
main differences: (i) the idiosyncratic wage shock variances ¢ do not differ across time
periods 7, but instead differ across in-school work status s; and (ii) the aggregate labor
market shocks d; are common across both [ sectors. As a result of (i7), we estimate the wage
equation parameters jointly across sectors, adapting the loss function in (36) by taking the

sum across sectors, too.

5.3 Estimation of the graduation and search friction parameters and labor mar-

ket shock process

Under the assumption that the graduation probabilities take a logit form, we use individual

data pooled over time on college graduation and on the set of characteristics X, and
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estimate via maximum likelihood the parameters ¢ governing the graduation probabilities
(see Equation 16, Section 3.5.3).

To estimate the search friction parameters, we treat the arrival of a job offer in the
white-collar sector in any given period as a latent variable. Appendix H discusses the im-
plementation in detail.

We estimate the parameters ¢ and O'g in (15) by maximum likelihood using the estimated
values of 9, as data.

In the absence of type-specific unobserved heterogeneity, each of these sets of parameters
can be consistently estimated separately from all of the other parameters of the model. We
discuss in Subsection 5.5 how the estimation procedure needs to be adjusted to accommodate

type-specific unobserved heterogeneity.

5.4 Estimation of the flow payoffs

With the estimates of the grade, wage, search friction, and graduation parameters taken
as given, we estimate the flow payoffs in a second stage. Estimation relies on the finite

dependence property of our model (see Subsection 3.8).

Specifically, estimation of the flow utility parameters involves the following steps:
1. Estimate the CCPs (p) via a flexible multinomial logit model in a first stage.
2. Calculate the expected differenced future value terms along the finite dependence paths.

3. Estimate the flow utility parameters after expressing the future value function as a
function of the CCPs. Having estimated the CCPs in a first step, this simply amounts

to estimating a multinomial logit with an offset term.

Applying CCP methods to our model is key to making our model computationally feasi-
ble. With five-dimensional unobserved ability, plus the integration over the aggregate labor
market shocks, graduation, and job offer arrival events, solving this type of multi-armed
bandit model by backward recursion would be computationally prohibitive. By using the
finite dependence property of our model, we only need to integrate out over the future shocks

for two periods.?”

37 Another advantage of applying this approach is that we do not have to make assumptions about beliefs
far out into the future: everything about the future is captured in the conditional choice probabilities. Note
that conducting counterfactuals requires more assumptions as in this case we do not have counterfactual
data and hence do not observe the conditional choice probabilities.
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5.5 Estimation with type-specific unobserved heterogeneity

We account for permanent heterogeneity, unobserved to the econometrician but known to
the individuals, by assuming that individuals belong to one of R heterogeneity types, where
type is orthogonal to the covariates at ¢ = 1. To this end, we estimate (in the first stage)
a measurement system to identify three unobserved discrete heterogeneity factors: one for
schooling ability, one for schooling preferences, and one for work productivity and prefer-
ences.

Accounting for type-specific unobserved heterogeneity breaks down the non-separability
between the choice and outcome components of the likelihood described above as the full

log-likelihood function can be rewritten as:

Zlﬂ ZR:WrLimrLz‘eribrLiyr (37)
i r=1
where 7, denotes the population probability of being of type r, and Ly, Liar, L, and
L,,, respectively denote individual i’s contribution to the likelihood of (i) the measurement
system, (i7) the choices, aggregate market shocks, and white-collar offer arrival, (iii) four-
year college graduation outcomes, and (iv) grade and wage outcomes y = (G, wp, wy ), all
conditional on the unobserved heterogeneity type r.

Estimation with unobserved heterogeneity proceeds as follows. We estimate in a first
step the conditional probabilities of being of each type (g;-) along with the parameters of the
measurement system using the EM algorithm (see Appendix C) .3® This approach follows in
spirit Arcidiacono and Miller (2011), where the EM algorithm allows us to restore the additive
separability of the likelihood function despite the presence of unobserved heterogeneity.>’

After recovering the conditional probabilities of each type (g;.), we can use them as
weights when estimating the learning parameters, graduation probabilities, the aggregate
labor market time series process, CCPs (including white collar job offer arrival parameters),

and the structural flow utility parameters.*°

38In particular, the unobserved type is treated as if it were observed. We then update the posterior
probability of ¢ belonging to the r-th type using the joint likelihood of the measurements according to (given
Bayes’ rule):

Wr[:imr
Qir = — 38
’ 25:1 7T-7""Ci7nr' ( )

39Rather than updating the structural parameters of the decision process at each step, we rely on a
two-stage estimation strategy.
4ONote that this is identical to the case without unobserved heterogeneity, except that now the ¢;,’s are used
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Finally, standard errors are estimated using a parametric bootstrap procedure with 150

replications.*’ We discuss this procedure in detail in Appendix I.

5.6 Missing college majors and grades

In our data, college grades and four-year college majors are each missing at a non-trivial
rate. This is especially true for those who drop out of college by the end of the first period.
These individuals likely received negative grade realizations, which could bias our results
if ignored. We consider this issue within our estimation procedure by treating the first
instance of missing grades or major as another unobserved discrete latent variable. In the
case of missing grades, we approximate their distribution with a finite support discrete
distribution.*?

Bear in mind that the estimation approach discussed above can be easily adjusted to allow
for these additional latent variables. Specifically, along with the type-specific unobserved
heterogeneity distribution, the distribution of unobserved grades and majors (conditional
on each heterogeneity type) is estimated in the first stage of our estimation procedure.*®
Therefore, the maximization of the full log-likelihood conditions on both the unobserved

heterogeneity type as well as the major or grade quartile.* We summarize our complete

estimation procedure in Table B5.

6 Results

In this section we present our estimation results, show how our model fits the data, and dis-

cuss the model-implied sorting patterns on unobserved ability. Our model entails estimating

as weights. The CCPs are identified from the data and could in principle be estimated nonparametrically.
However, we decided to estimate them using a parametric specification to avoid the curse of dimensionality.
Nevertheless, we implemented highly flexible specifications that include a large set of covariates in addition
to accounting for the unobserved types. Appendix Table B15 presents the specifications and estimates
corresponding to the CCPs, while Appendix H provides more details on how the flexible conditional choice
probabilities are estimated.

41For finite mixture models like ours, the asymptotic variance tends to be a particularly poor approximation
with typical sample sizes. See McLachlan and Peel (2004, Section 2.16) who recommend the use of parametric
bootstrap in this context.

42More specifically, we discretized the distribution of grades in quartiles. The corresponding cut points of
the grades distribution occur at {0,2.5,3.0, 3.6,4.0}.

43The implementation is fully described in Appendix D.

44 Accounting for missing grades and majors in this fashion results in a finite mixture model with Rx2x4 =
8 R points of support.
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over 2,000 parameters (see Table B6). We focus our attention on the parameters of the grade
and wage equations as well as the parameters of the flow payoffs. We estimate the model
allowing for eight unobserved types. Estimation results of the measurement system which
determines the students’ probabilities of being each unobserved type are given in Tables
B9-B11 of Appendix B. The parameters governing the probability of graduating college and
the probability of receiving a white collar offer are also reported in Appendix B, respectively
in Tables B13 and B14.

6.1 Grade parameters

The parameter estimates for the grade equations are presented in Table 6. High school
grades are positively associated with college grades, though the effects is smaller in 2-year
colleges. Working full-time hinders performance, and this is especially true for the four-year
science option. Interestingly and consistent with the findings of Hansen, Heckman, and
Mullen (2004) regarding the effects of latent ability on achievement test scores, returns to
the ability index are found to be smaller after sophomore year for both groups of majors in
four-year colleges.

Turning to the type-specific unobserved ability (known to the agent), those with high
school-specific ability see higher grades in the four-year options, especially in science. There
is also evidence that high schooling preferences are associated with higher grades in science
though the effects are small. Unobserved preferences for work are not associated with higher
grades, and none of the other unobserved components are associated with higher grades in

two-year college.

6.2 Wage parameters

Estimates of the wage equations are given in Table 7.%° Each year of work experience in
the blue-collar sector corresponds to roughly a four-percentage-point increase in earnings in
both the blue-collar and white-collar sectors. Returns to white-collar experience are higher;
1 percentage point higher in the blue-collar sector and 1.7 percentage points higher in the
white-collar sector.

Returns to schooling are higher in the white-collar sector than in the blue-collar sector.

For each year of schooling (up to a maximum of four), workers see 2.7 (4.9) percentage points

45Estimates of the AR(1) processes governing the aggregate shocks are reported in Table B12.
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higher earnings in the blue (white) collar sector. On top of that, workers who graduate college
in the non-sciences see an earnings premium of 5.2 (7.4) percentage points in the blue (white)
collar sector. Graduating in the sciences is even more lucrative with an additional increase of
9.9 (14.7) percentage points in the blue (white) collar sector. All else equal, the total premium
for a non-science graduate relative to someone with no college experience is then respectively
16 and 27 percentage points in the blue- and white-collar sectors; the similar numbers for
science graduates are 26 and 42 percentage points. A first takeaway from these estimates is
the existence of sizable returns to graduating from a science relative to non-science major,
consistent with recent empirical evidence on this question (see, e.g., Mountjoy and Hickman,
2021, and Altonji, Arcidiacono, and Maurel, 2016 for a survey). Another takeaway is the
existence of a large penalty for college graduates working in a blue-collar occupation, a
finding in line with the overeducation literature (see, e.g., Clark, Joubert, and Maurel, 2017;
Shephard and Sidibe, 2019). Our results further point to a noticeable interaction between
college major and labor market sector, with the earnings advantage of science relative to
non-science majors being higher in the white-collar sector (15 vs. 10 percentage points).

The type-specific unobserved heterogeneity parameters suggest that the low-work-preference
type faces an earnings penalty and that this is especially true if they are also a low-schooling-
ability type. With the exception of the coefficient on Black (negative and significant in both
sectors), the other background measures (HS grades, parent graduated from college, and
Hispanic) are small and insignificant in both sectors.

Finally, the returns we have described apply when the individual is not in school. Returns
are dampened to all characteristics when the individual is also a student. Note that this
implies that the information content of wage signals will be lower, all else equal. The
magnitude of the estimated coefficients is about 0.67 in both sectors, implying that in-school
work is associated with about a 33% reduction in skill returns and informativeness of the

signal.

6.3 Learning

Table 8 presents the estimated correlation matrix for the unobserved abilities (initially un-
known to the individual) in each sector, along with their variances. A first key takeaway from
the correlation matrix is that it clearly supports the idea that skills are multidimensional:
all the correlation coefficients are significantly different from one at the 1% level. The data
unambiguously rejects a unidimensional model, or even a model with two imperfectly corre-

lated skills (schooling ability and labor market productivity). As such, these results add to
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a large and growing empirical literature providing evidence that skills are multidimensional
in nature (see Heckman and Mosso, 2014, and multiple references therein).

Four-year schooling ability is highly correlated across majors, with a correlation coefficient
of 0.78. Positive, though weaker, correlations are also seen with 2-year college ability, ranging
from 0.28 with 4-year science ability to 0.44 with 4-year non-science ability. Work abilities
are also strongly correlated (estimated correlation coefficient of 0.67).

The correlations between schooling abilities and labor market productivity are generally
positive but markedly lower than the correlations across college types and majors. None of
the correlations are significantly different from zero. Taken together, these patterns provide
clear indication that grades earned in college, regardless of schooling type, reveal little new
information about future labor market performance.

The variances of each of the unobserved ability measures and the outcomes are given
in the bottom two rows of Table 8. These estimates provide clear evidence that individu-
als have a substantial amount of uncertainty about their own abilities by the end of high
school. A sizable share of the dispersion in college grades and wages is attributable to the
ability components that are gradually revealed to the individuals. Specifically, those ability
components account for between 24% of the variance of grades in two-year college, to as
much as 46% of the variance of log wages in the white-collar sector. Even in the case with
the smallest variance—ability in the blue-collar sector—a one-standard-deviation increase in
ability would translate into a 29% increase in wages.

While the unknown ability component is large, learning may still take time due to the
noise of the signals. Table 9 gives the estimated variances of the idiosyncratic components
of wages and grades, respectively. It shows that, even though we account for both types
of unobserved ability (known and unknown to the individuals), residual variation in log
wages and grades remains sizable. In the first year of college where the signal-to-noise
ratios are 0.45, 0.41, and 0.25 for four-year science, four-year non-science, and two-year,
respectively.*6 The signal-to-noise ratios in the blue-collar sector are similar regardless of
whether the individual is in school at the time of employment, 0.41 and 0.37 for in-school
and out-of-school, respectively. However, working while out of school is more informative
in the white-collar sector; the signal-to-noise ratios here are 0.45 and 0.55 for in-school and

out-of-school, respectively.

46Gignal-to-noise ratios are defined and computed as the share of the variance of the signal that is at-
tributable to the latent ability (as opposed to the noise).
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6.4 Flow payoffs

Table 10 reports the structural parameter estimates of the flow utility parameters. Recall
that we specified the utility of consumption as CRRA and calibrated the risk aversion pa-
rameter to 0.4 (see Appendix E.5). The marginal utility of consumption given this risk
aversion parameter is large and positive. Work abilities do not enter the utility directly
except through wages, which in turn affect consumption.

The coefficients on prior academic ability—with the variables here referring to two-year,
four-year science, and four-year non-science, respectively—indicate that academic ability is
particularly important to the utility of the four-year college options. Similarly, the coefficient
on high school grades in four-year college options is also large and positive. These positive
effects suggest lower costs of effort when prior abilities and, in the case of the four-year
options, high school grades are high.

The estimated coefficients on previous activities point to the existence of large switching
costs across types of colleges and majors, as well as large costs to changing one’s work status.
The parameters on working full-time in the college options indicate negative complementar-
ities between school and full-time work. The coefficients on the unobserved types indicate
that high schooling ability and preferences are associated with higher utility in the schooling

options, though the estimates are noisy.

6.5 Model fit and ability sorting

We now discuss the fit of the model as well as the (predicted) sorting patterns by forward
simulating the model. Model comparisons are computed through forward simulation, using
the structural parameter estimates presented above along with the reduced-form CCPs for
the formation of the future value terms. Specifically, we begin by drawing an ability vec-
tor for each individual from the population distribution (a multivariate normal with mean
zero and covariance A).‘” We then draw an unobserved type for each individual from a
categorical distribution with parameter 7 (estimated vector of unobserved type probabilities
reported in Table B8). Next, we draw white-collar job offers, preference shocks, and com-
pute choice probabilities using the observed states (i.e., the demographic characteristics and

heterogeneity type and ability drawn at the beginning of the simulation), the structural flow

4TThe parameter values of the correlation matrix associated with A are listed in Table 8.
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utility estimates and the reduced-form CCPs to represent the future value term.*® We then
draw idiosyncratic shocks for the outcome equations (wages and grades) corresponding to the
choice that was made. Finally, we compute the implied ability beliefs using the idiosyncratic
shock draws and the ability draws, and then update the state space and repeat for T' = 10
periods.*® We perform this forward simulation 10 times for each individual in the estimation
sample.

Tables B16 and B17 show how the model matches the choice probabilities in the data
for non-graduates and graduates, respectively. The model-predicted choice probabilities and
the data choice probabilities are pooled across the first ten periods. In each case, the choice
probabilities match well. While this is somewhat to be expected given that this is what the
estimation procedure is designed to match, the model could still fail to capture dynamic
selection.

In Figure 1, we assess how well the model captures dynamic selection by showing the fit
on aspects that were not directly targeted by the estimation algorithm. The figure shows
how well our model matches educational decisions over time, focusing in particular on college
entry rates, college attrition, and graduating in either type of major. Here, too, the model
predictions are consistent with the data, except for slightly overestimating the number of
students who drop out of college or graduate in later time periods.

Turning to the ability sorting patterns, Table 11 shows the posterior mean of each unob-
served ability either (i) in the period of last college enrollment (for those who ever enroll)
or (i7) in period T' = 10 (for those who never do). These results are obtained by forward
simulating 10 times, for each individual in the sample, the outcomes and sequences of choices.

Two key patterns stand out from Table 11. First, there is substantial sorting on the
basis of college ability. Those who complete college degrees have generally received strongly
positive signals regarding their abilities. Further sorting occurs among college graduates,
with those who have had high science ability signals choosing science majors. But, reflecting
the strong correlation between abilities, science graduates have similar non-science posteriors
to those of non-science graduates.

The second key pattern from Table 11 is how little sorting there is across educational

0

paths on the basis of work abilities.®® Some exceptions are that those who drop out of

48In the forward simulation after ¢ = 1, the choice probabilities are a function of the demographic charac-
teristics, the unobserved type, the beliefs on unobserved ability, and the endogenous state variables such as
previous decision and experience.

49Updating the state space involves updating the ability beliefs and the choice-dependent state variables.
For example, if the person worked full-time in the previous period, then his work experience in the following
period is increased by one unit and his previous decision is work full-time.

50The substantial unresolved uncertainty for college graduates can be seen in Appendix Table B19 which
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college late have received signals that they are stronger in the blue-collar sector than in the
white-collar sector, and those who have worked in both sectors while in college sort into the
sciences if the signals were positive and in the non-sciences otherwise. But overall, those who
obtain college degrees have beliefs about their work abilities that are not especially different

from those who do not obtain a college degree.

7 The Importance of information

We now use the structural parameter and learning estimates to investigate the importance
of information about one’s abilities in three counterfactual scenarios. Because it is compu-
tationally infeasible to conduct counterfactuals when individuals are uncertain about their
abilities, each of the counterfactuals entails giving individuals full information about their
abilities. The first counterfactual does this alone. The second adds to the first by eliminating
search frictions, meaning that all individuals have the option of working in the white-collar
sector in every period. The final counterfactual adds to the first by relaxing credit con-
straints. In particular, we set each person’s in-college non-wage consumption to the 75th
percentile for all individuals and remove all loans.

To conduct the counterfactuals, we set a retirement date at age 65. We then give all
individuals initial draws on the five ability components—two-year, four-year science, four-
year non-science, white-collar productivity, and blue-collar productivity—which individuals
are now assumed to know when making their educational and labor supply decisions. In the
first and third counterfactual, individuals remain uncertain regarding having the option to
work in the white-collar sector. In addition, there are three other sources of uncertainty:
the probability of graduating from a four-year college conditional on attendance, aggregate
labor market shocks common to both sectors, and individual preference shocks.”® We then
solve the model backwards to get the counterfactual choice probabilities, and then forward
simulate to obtain the distribution of choices and the average abilities across different choice

paths.

shows the equivalent of Table 11 except the entries are the posterior ability variances.
51Despite these additional sources of uncertainty, we refer to our counterfactuals as ‘full information’ where
it is implied that the full information refers to abilities alone.
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7.1 Information and educational choices

Table 12 reports the college completion status frequencies in the baseline and in the three
counterfactual scenarios. Comparing column 2 (full information) to column 1 (baseline)
shows only a slight increase in the college graduation rate from providing information. How-
ever, there are efficiency gains as there is a 3.4 percentage point increase (13%) in the number
of individuals who never went to college. Dropout rates also decline, as well as the share
of individuals who switch majors and the share who stop out and then dropout. Time to
degree also falls by 0.3 years.

These findings are explained by a set of individuals who enroll in college under imperfect
information, find out they are not a good match, and then drop out. When ability is known,
these individuals do not enroll in the first place. In contrast, there are a set of students
who do not enroll under the imperfect information scenario. In the scenario where ability
is known, however, these individuals realize they are academically talented and/or have
high levels of white-collar productivity and choose to enroll in college continuously. These
countervailing forces result in the number of individuals graduating slightly increasing but
the number of individuals never attending college increasing.

The other significant difference between the full information counterfactual and the base-
line is the shift in majors from non-science to science. This is the result of the returns to
science degrees being higher than non-science degrees, but especially so in the white-collar
sector. As we will show, those who find out that their abilities are high in the white-collar
sector are much more likely to pursue a science degree given the higher returns, while those
who have especially high blue-collar ability find college less attractive as the returns to
education are lower there.

Comparing the full-information counterfactual to the one where search frictions are also
removed (column 3) or when credit constraints are relaxed (column 4), we see increases in
college graduation rates. Considering the removal of search frictions (column 3), increases
are the product of two countervailing forces. First, when search frictions are present, college
graduates see higher probabilities of having a white-collar option. When search frictions are
removed, this channel makes college relatively less attractive. Weighed against this is that
the returns to college are higher in white-collar jobs. When search frictions are removed,
college graduates are better able to take advantage of these higher returns, making college
attendance more attractive. This latter effect dominates, as evidence by the net increase
in college graduation rates. Considering the removal of credit constraints (column 4), the

rise in graduation rates is the result of higher in-school consumption coupled with no loan
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repayments in the future.
The patterns in Table 12 mask significant heterogeneity in the effects of information.
Table 13 shows counterfactual results by whether the individual’s family is above or below

the median income in the data.5?

Comparing full information (column 2) to the baseline
(column 1) shows that information increases the graduation rates of low-income individuals
by almost 5 percentage points (a 31% increase). This is counterbalanced by a 4.6 percentage
point drop in graduation rates of high-income individuals. All told, full information cuts the
gap in graduation rates between low and high-income individuals by more than half.

The mechanism for this convergence is differences in beliefs about the suitability of col-
lege between low and high-income individuals. Many low-income individuals have priors that
college is not a good match. Providing information reveals that some of them actually are a
good match, increasing their college graduation rates. The reverse holds true for high-income
individuals; many high-income individuals have priors that college is a good match with full
information revealing that for some, it is not. The slow revealing of information in the base-
line leads to higher graduation rates for high-income individuals because of switching costs
and having already accumulated some years of college experience. Hence, some individuals
who discover after a few years that college is not a good match for them opt to finish their
degree anyway, since they have relatively little remaining to do.

Counterfactual 3 (column 4) shows that, conditional on full information, relaxing credit
constraints does not close the gap in graduation rates between high and low-income indi-
viduals. While removing credit constraints increases college graduation rates for low-income
individuals, it does so even more for high-income individuals as they are more on the margin
of graduating from college.

We next investigate how the counterfactual scenarios change the ability compositions
across the different choice paths. Table 14 replicates Table 11, but with the abilities now
calculated based on the counterfactual simulations (counterfactual 1).5 As in the baseline,
Table 14 shows substantial sorting on the basis of college ability. However, the correlations
are now much stronger.

But in contrast to Table 11, there is now substantial sorting on the basis of white-collar
and blue-collar abilities. Across all the educational paths, those who graduate from college
have a comparative advantage in the white-collar sector. Among college graduates, higher
abilities in either sector are associated with being a science major. Those who never attend

college have above-average blue-collar abilities, but below-average white-collar abilities.

52We refer to those with families above and below median income as high- and low-income, respectively.
53Results for counterfactuals 2 and 3 are in Tables B20 and B21, respectively.
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7.2 Information and labor market outcomes

In order to assess the importance of information about labor market productivity and school-
ing ability on labor market outcomes, we next study how full information affects wages in
each of the labor market sectors. Given that full information results in much more sorting
on education based on work abilities, we would expect to see significant changes in the earn-
ings gap between college- and non-college-educated workers as well as between blue- and
white-collar workers.

To conduct this analysis, we focus on wage outcomes at age 28 and examine the sort-
ing patterns among those who are working full-time. Panel (a) of Table 15 shows differ-
ences in average earnings for different sectors and education levels for the baseline, the
full-information-only counterfactual, and the full-information counterfactual with no search
frictions. Average log wages are expressed relative to those working in the blue-collar sector
who did not graduate from college.

Comparing the full-information-only counterfactual (column 2) with the baseline (column
1) shows that information magnifies sorting. Whereas white-collar science graduates in the
baseline earned 42% more than blue-collar non-graduates, the gap increases to 93% in the
counterfactual. The source of this increase is that full information results in workers with
high white-collar ability choosing to get degrees in science as the returns to a science degree
are especially high in the white-collar sector. The source is not a drop in earnings for blue-
collar workers without a college degree as their earnings also increase, though only slightly.
Information provision, therefore, results in stronger matching of abilities and occupations in
the labor market. Indeed, with full information, more individuals choose a full-time work
option, as seen in the second set of columns in Panel (a) of Table 15. Full-time work is chosen
by less than 68% individuals in the baseline but rises to over 77% in the counterfactual.’*

Relative to the full information counterfactual, additionally removing search frictions
(column 3) results in declines in the gap between each of the white-collar combinations and
their blue-collar counterparts, coupled with shifts into white-collar jobs. This shift into
white-collar jobs is driven by those individuals who have high white-collar ability, just not
as high as those who would work in the white-collar sector when frictions are present.

The first set of columns of Panel (b) of Table 15 shows the overall premium for college
degrees and for working in the white-collar sector. In the full information counterfactual,

the premium roughly doubles for both science and non-science graduates relative to the

54These figures are calculated as 100 minus the entries in the “Remainder” row of each column, since each
of the other rows corresponds to full-time work.
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baseline. But the overall premium more than doubles because of the shift from non-science
to science majors among college graduates. Since science graduates make more than their
non-science counterparts, the overall college premium increases by more than the individual
parts. The premium for working in the white-collar sector also increases substantially. This
is in part because white-collar ability has a higher variance than blue-collar ability, so its
sorting effects get magnified. But it is also due to a greater share of those working in the
white collar sector having a college degree in the counterfactual relative to the baseline.
The second set of columns shows how much of these changes in premia are due to changes
in ability sorting. Here, we are comparing average abilities in the sector of work for the
comparison groups in the counterfactual to those in the baseline. For example, to get the
change in the white-collar premium due to ability, we first take the counterfactual average
ability for white-collar workers and subtract off the average ability for blue-collar workers.
Second, we subtract off the corresponding difference in baseline abilities. Changes in work
abilities account for between 71% and 93% of each of the premia; the remainder is due
to changes in the composition of who enters each sector-education combination, changes in
sector-specific work experience, and, in the case of non-graduates, changes in years of college.
To conclude, our results show that informational frictions play an important role in
shaping labor market outcomes. Providing full information to students about their own
abilities by the end of high school substantially changes the income composition of those
who graduate from college. Moreover, beyond the college graduation margin, providing more
information to students would also result in significant changes in the average productivity
levels of workers within each sector, increasing wage gaps between college and non-college-

educated workers as well as between white-collar and blue-collar workers.

8 Conclusion

In this paper, we examine the role played by imperfect information about own schooling
ability and labor market productivity in the context of college enrollment decisions, and the
transitions between school and work. Using data from the NLSY97, we estimate a dynamic
model of college attendance, major choice and work decisions. At the end of each year,
individuals update their ability and productivity beliefs through college grades and wages.
A central feature of our framework is to allow the different kinds of schooling and workplace
abilities to be arbitrarily correlated, implying that signals in one area may be informative

about abilities in another area.
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Estimation results show that a sizable fraction of the dispersion in college grades as well as
log wages is attributable to the ability components which are gradually revealed to individuals
as they accumulate more signals. These ability components are highly correlated across
college types and majors, and across the skilled and unskilled labor market. In contrast,
grades earned in college turn out to reveal little information about future labor market
performance. To the extent that part of the mission of higher education is to help prepare
students for the labor market, this finding suggests that there is room for improvement in
the screening mechanisms in place in college.

Finally, simulations conducted under a counterfactual full information scenario indicate
little change in graduation rates in the aggregate. However, this mask two key features.
First, it significantly closes the college graduation rate gap between children from low and
high income households. Low income households have expectations that college is likely to
be a poor match. Revealing information about abilities up front results in some low income
individuals being induced into college. Second, information amplifies sorting into college
based on (previously unknown) academic abilities but also sorting on white collar abilities.
Because the college premium is higher in the white collar sector, and especially so for science
majors, those with high white collar ability now find graduating from college particularly
attractive. As a result, providing information significantly increases the wage gap between
college and non-college graduates as well as between those working in the white collar sector

and those working in the blue collar sector.
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Table 1: Background characteristics of estimation sample by college en-
rollment status

Starting College Type

Two-year Four-year Sci  Four-year Non-Sci  Four-year Missing Major No college  Total

Black 0.207 0.138 0.208 0.156 0.243 0.201
(0.406) (0.345) (0.406) (0.363) (0.429) (0.401)
Hispanic 0.207 0.127 0.119 0.121 0.189 0.167
(0.406) (0.334) (0.325) (0.327) (0.392) (0.373)
SAT Math 468 572 519 531 439 488
(94) (115) (104) (111) (91) (109)
SAT Verbal 431 525 482 486 408 451
(104) (146) (134) (147) (99) (126)
HS GPA -0.041 0.694 0.444 0.547 -0.355 0.121
(0.752) (0.728) (0.774) (0.748) (0.792) (0.853)
Parent Graduated College 0.267 0.587 0.531 0.475 0.101 0.327
(0.443) (0.494) (0.500) (0.500) (0.302) (0.469)
Family Income ($1996) (000’s)  49.047 69.541 69.542 71.168 39.218 55.379
(38.979) (50.279) (55.817) (56.207) (28.094)  (46.146)
Observations 719 189 318 461 613 2,300

Notes: This table reports summary statistics for the subsample of the NLSY97 that is used to estimate our structural model. The sample corresponds
to the first observation in which an individual has enrolled in college. Grades are standardized to the NLSY97 male population. Standard deviations are
listed directly below the mean (in parentheses) for each entry. See Table A4 for complete details on sample selection.
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Table 2: Background characteristics of estimation sample by college occu-
pation and college completion status

Non-graduates Graduates
Blue Collar White Collar Blue Collar White Collar
Black 0.210 0.169 0.135 0.138
(0.407) (0.375) (0.342) (0.345)
Hispanic 0.197 0.193 0.112 0.086
(0.398) (0.395) (0.316) (0.281)
SAT Math 456 488 519 569
(95) (96) (110) (105)
SAT Verbal 422 465 474 531
(111) (114) (151) (148)
HS GPA -0.164 0.098 0.545 0.855
(0.784) (0.785) (0.745) (0.686)
Parent Graduated College 0.188 0.378 0.589 0.619
(0.391) (0.485) (0.492) (0.486)
Family Income ($1996) (000’s) 44.446 54.656 63.502 78.175
(36.038) (40.788) (43.021) (52.497)
Observations 11,631 1,168 953 1,185
Share Conditional on Graduation Outcome 0.910 0.090 0.446 0.554

Notes: This table reports summary statistics for the subsample of the NLSY97 that is used to estimate our structural model.
The sample corresponds to all individual-year observations in a work activity (N = 14,937). Grades are standardized to
the NLSY97 male population. Standard deviations are listed directly below the mean (in parentheses) for each entry. See
Table A4 for complete details on sample selection.
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Table 3: Completion outcomes of college enrollees (%)

Starting College Type

Two-Year Four-Year Sci Four-year Non-Sci  Four-year Missing Major Total

Continuous completion (CC), grad. Sci 2.23 44.44 3.46 13.67 10.31
Continuous completion (CC), grad. Non-Sci 8.34 16.40 48.74 36.88 24.66
Stopped out (SO), grad. Sci 2.64 4.23 1.26 0.87 2.07
Stopped out (SO), grad. Non-Sci 7.23 4.76 9.75 8.24 7.71
Stopped out (SO) then dropped out 21.14 6.88 10.38 12.15 15.06
Dropped out (DO) 53.55 20.11 23.27 23.86 35.98
CC right censored 0.28 0.53 0.31 1.30 0.59
SO right censored 4.59 2.65 2.83 3.04 3.62
Total N 719 189 318 461 1,687

Notes: This table reports college completion status statistics for the subsample of the NLSY97 that is used to estimate our structural model, conditional
on ever attending college. Completion status is computed using the full available data regardless of missing outcomes. “Right censored” refers to those
who are still enrolled in college in the last period of the survey. Students who begin two-year college but never enroll in a four-year college are considered
as dropouts. See Table A4 for complete details on sample selection.



Table 4: Period-t GPA outcomes (by ¢t + 1 period college decision)

(a) 4-year Students, GPA levels

Mean GPA  Std Dev N |[t-stat]

Leave 4-year college 2.171 1.003 179 11.561
Stay 2911 0.793 1720

(b) 2-year Students, GPA levels

Mean GPA  Std Dev N [t-stat|

Leave 2-year college 2.304 1.098 229 6.650
Stay 2.798 0.866 539

(c) 4-year Students, GPA residuals

Mean residual Std Dev. N |t-stat]

Leave 4-year college -0.548 0.979 140  8.909
Stay 0.053 0.739 1444

(d) 2-year Students, GPA residuals

Mean residual Std Dev N |t-stat]|

Leave 2-year college -0.310 1.057 229 6.266
Stay 0.132 0.815 539

Note: Each t-statistic tests for difference in means between the specified
activity and its complement. For residual outcomes, regression covariates
include race dummies, SAT scores, parental education, high school GPA,
age dummies, birth year, and work intensity dummies.
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Table 5: Period t log wage outcomes for stopouts (by ¢ + 1 decision)

(a) Log wage levels

Mean log wage Std Dev N [t-stat]

Stay in work 2.364 0.501 1350  3.567
Return to school 2.190 0.432 113
Total 2.350 0.498 1463

(b) Log wage residuals

Mean residual Std Dev. N |t-stat]

Stay in work 0.068 0.477 1350 2.001
Return to school -0.025 0.413 113
Total 0.060 0.474 1457

Note: Results are conditional on having attended at least one year of
college, currently working, and not yet having graduated from college.
As a result, the residuals do not average to zero here because the relevant
population is all wage observations in the estimation subsample of the
data. Regression covariates include levels and interactions of the following
variables: race and year dummies; SAT scores; graduation outcomes,
experience in different sectors; field of study; birth year; age; in-school
work dummies; and work intensity dummies.

o4



Table 6: Estimates of 2- and 4-year GPA Parameters

4 year Science 4 year Non-Science 2 year
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Black -0.120  (0.089)  -0.325 (0.065) -0.218  (0.062)
Hispanic -0.044  (0.095)  -0.067 (0.075) -0.074  (0.068)
Parent graduated college 0.090 (0.063) 0.111 (0.050) 0.015 (0.062)
HS Grades (z-score) 0.202  (0.038)  0.200 (0.027) 0.159  (0.026)
Work full-time -0.285  (0.068)  -0.146 (0.041) -0.040  (0.057)
Work part-time -0.046  (0.053) 0.032 (0.036) 0.056 (0.053)
Year 2 or higher in college 0.182 (0.041)
Unobserved type
(H, H, H) 0.199 (0.106) 0.078 (0.075) -0.058  (0.085)
(H, H, L) 0.194 (0.097) 0.080 (0.067) 0.014 (0.071)
(H, L, H) 0.131 (0.114) 0.038 (0.080) -0.048  (0.086)
(H, L, L) 0.162 (0.096) 0.058 (0.068) -0.014  (0.075)
(L, H, H) 0.041 (0.115) 0.050 (0.077) -0.028  (0.082)
(L, H, L) 0.079 (0.083) 0.003 (0.066) -0.047  (0.079)
(L, L, H) -0.018  (0.103) 0.021 (0.079) -0.043  (0.079)
Ao (ability index intercept)  0.394 (0.161) 0.563 (0.087) 0.000 (—)
A1 (ability index loading) 0.890 (0.062) 0.821 (0.036) 1.000 (—)
Mean of dependent variable 2.612 2.620 2.351
Person-year obs. 881 1,639 1,272

Notes: Bootstrap standard errors in parentheses. Reference categories for multinomial variables are as follows:
“White” for race/ethnicity, “Not working while in school” for work intensity, and “(L, L, L)” for unobserved
type. Coefficients for birth year and age dummies are omitted.

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered
as { Schooling ability, Schooling preferences, Work ability and preferences }. e.g. “Unobserved type (H, L,
H)” corresponds to a worker with high schooling ability, low schooling preferences, and high work ability and
preferences. Labels are identified through the measurement system detailed in Appendix C.
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Table 7: Estimates of White- and Blue-collar Wage Parameters

White Collar Blue Collar
Coeft. Std. Error Coeftf. Std. Error

Black 0.098  (0.024)  -0.110  (0.018)
Hispanic 0.025 (0.027) 0.004 (0.018)
Parent graduated college 0.030 (0.021) 0.017 (0.015)
HS Grades (z-score) -0.034  (0.014)  -0.016  (0.008)
Work experience (any sector) 0.039 (0.003) 0.041 (0.001)
Work experience (white collar sector) 0.017  (0.003)  0.010  (0.003)
Years of college completed 0.049 (0.010) 0.027 (0.004)
College graduate (any major) 0.074  (0.027)  0.052  (0.017)
College graduate (science major) 0.147  (0.041) 0.099 (0.027)
Work part-time -0.032  (0.017)  -0.064  (0.008)
Unobserved type

(H, H, H) 0.109  (0.021)  0.039  (0.020)
(0 H, L 0.081  (0.019)  0.032  (0.018)
(H, L, H) 0.193  (0.023)  0.066  (0.020)
(H, L, L) 0.133  (0.020)  0.046  (0.018)
(L, H, H) 0.103 (0.022) 0.066 (0.018)
(L. H, L 0.075  (0.022)  -0.012  (0.019)
(L. L, H) 0.119  (0.023) 0075  (0.019)
Ao (in-school work index intercept) 0.750 (0.096) 0.659 (0.131)
A1 (in-school work index loading) 0.626 (0.037) 0.662 (0.055)
Mean of dependent variable 2.669 2.332
Person-year obs. 2,373 12,755

Notes: Bootstrap standard errors in parentheses. Reference categories for multinomial variables
are as follows: “White” for race/ethnicity, “Work full-time” for work intensity, and “(L, L, L)”
for unobserved type. Coefficients for birth year, age, and year dummies are omitted.

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels
are ordered as { Schooling ability, Schooling preferences, Work ability and preferences }. e.g.
“Unobserved type (H, L, H)” corresponds to a worker with high schooling ability, low schooling
preferences, and high work ability and preferences. Labels are identified through the measurement
system detailed in Appendix C.
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Table 8: Ability Correlation Matrix and Variances of Unobserved Abilities
and Raw Outcomes

White Collar Blue Collar Science Non-Science 2-year

White Collar 1.000
(—)
Blue Collar 0.673 1.000
(0.023) (—)
Science 0.054 0.086 1.000
(0.056) (0.053) (—)
Non-Science 0.088 -0.059 0.778 1.000
(0.046) (0.042) (0.058) (—)
2-year 0.063 0.095 0.280 0.439 1.000
(0.073) (0.056) (0.132) (0.097) (—)
Variance of Unobserved Abilities 0.167 0.084 0.413 0.402 0.260
(0.008) (0.003) (0.045) (0.029) (0.030)
Variance of Raw Outcomes 0.360 0.272 0.961 0.902 1.064

Notes: Bootstrap standard errors in parentheses. “Variance of Unobserved Abilities” refers to the diagonal elements
of the covariance matrix corresponding to the correlation matrix presented here. “Variance of Raw Outcomes” refers
to the variance of the corresponding outcome variables (log wages, college GPA). Each cell of the correlation matrix
contains at least 127 individuals and at most 1,810 individuals.

Table 9: Idiosyncratic Variances

Employment Schooling

Work Type White Collar Blue Collar Schooling Period Science Non-Science 2-year
In-school 0.206 0.120 1 0.500 0.573 0.772
(0.011) (0.004) (0.047) (0.041) (0.055)
Out-of-school 0.136 0.143 2 0.332 0.364 0.626
(0.002) (0.001) (0.041) (0.028) (0.054)
3 0.489 0.480 0.740
(0.046) (0.029) (0.042)

4 0.631 0.367

(0.057) (0.025)

5+ 0.572 0.535

(0.045)  (0.028)

Notes: Bootstrap standard errors in parentheses. The period-3 variance in 2-year college is the same for all periods
after period 3.

57



Table 10: Flow Utility Parameter Estimates

Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar
Black -0.085  -0.124 -0.115 0.044 0.037 0.028
(0.057) (0.091) (0.100) (0.039)  (0.032) (0.037)
Hispanic 0.044  -0.093 -0.041 -0.071  -0.018 0.030
(0.050) (0.108) (0.114) (0.041)  (0.028) (0.040)
HS Grades (z-score) -0.017  0.261 0.221 0.000 0.020 0.050
(0.025) (0.045) (0.051) (0.018)  (0.014) (0.017)
Parent graduated college 0.036 0.051 0.063 0.029 -0.029 0.184
(0.054) (0.088) (0.097) (0.034)  (0.030) (0.032)
Family Income ($10,000) 0.004  0.045 0.058 -0.014  -0.007 -0.006
(0.007) (0.009) (0.009) (0.004)  (0.003) (0.003)
Prior academic ability 0.306 1.481 1.625
(0.126) (0.221) (0.163)
Previous high school 0.985  2.650 1.730 1.185 0.907 -0.599
(0.099) (0.168) (0.110) (0.082)  (0.081) (0.178)
Previous 2-year college 2.413 1.046 0.721 0.043 0.301 0.110
(0.084) (0.164) (0.111) (0.095)  (0.090) (0.134)
Previous 4-year science 0.826 4.555 1.971 0.665 0.392 -0.165
(0.178) (0.138) (0.131) (0.104)  (0.100) (0.123)
Previous 4-year non-science 0.293 1.971 3.581 0.628 0.630 0.080
(0.154) (0.163) (0.097) (0.089)  (0.080) (0.092)
Previous work part-time 0.001 0.471 0.415 2.222 1.388 -0.981
(0.095) (0.121) (0.099) (0.049)  (0.054) 0.089)
Previous work full-time 0.069  0.151 0.564 0.986 2.316 -0.925
(0.102) (0.144) (0.104) (0.062)  (0.043) (0.087
Previous work white-collar -0.035  -0.362 -0.112 -1.325  -1.491 2.721
(0.143) (0.170) (0.134) (0.091)  (0.084) (0.151)
College graduate -0.232  -0.116 0.531
(0.103)  (0.115) (0.088)
Currently work white-collar -0.060
(0.110)
Currently work part-time 0.682 -0.618 -0.508
(0.124) (0.159) (0.130)
Currently work full-time -0.698  -1.408 -1.837
(0.142) (0.190) (0.162)
Unobserved type
(H, H, H) 0.146  0.309 0.107 -0.104  -0.082 0.130
(0.096) (0.215) (0.134) (0.088)  (0.112) (0.119)
(H, H, L) 0.112  0.293 0.134 -0.016  -0.016 0.034
(0.088) (0.193) (0.127) (0.073)  (0.098) (0.115)
(H, L, H) 0.196  0.383 0.131 -0.210  -0.051 0.090
(0.100) (0.221) (0.141) (0.093)  (0.118) (0.135)
(H,L, L) 0.107  0.310 0.154 -0.050  -0.070 0.084
(0.090) (0.196) (0.126) (0.078)  (0.107) (0.120)
(L, H, H) 0.078  0.235 0.086 -0.114  -0.058 0.110
(0.094) (0.202) (0.131) (0.075)  (0.090) (0.123)
(L, H, L) 0.065  0.334 0.030 -0.057 0.008 0.155
(0.095) (0.204) (0.134) (0.073)  (0.097) (0.123)
(L, L, H) 0.069  0.214 0.058 -0.154  -0.051 0.006
(0.095) (0.195) (0.132) (0.074)  (0.099) (0.127)
E[u(consumption)] <+ 1,000 3.117  (0.459)
Constant Relative Risk Aversion parameter (§) 0.4
Log likelihood -26,351
Person-year obs. 22,398

Notes: Home production is the reference alternative. Bootstrap standard errors are listed below each coefficient in parentheses. Beliefs
on labor market productivity are included in the expected utility of consumption term. Consumption is evaluated in terms of yearly
consumption flow in 1996 dollars. Missing majors are estimated to be science with probability 0.37. Missing GPAs are estimated to be
< 2.5 w.p. 0.66, 2.5-3.0 w.p. 0.12, 3.0-3.6 w.p. 0.13, and 3.6-4.0 w.p. 0.09.

Reference categories for multinomial variables are as follows: “White” for race/ethnicity, “Previous home production” for previous
decision, “Not working” for in-college work intensity, and “(L, L, L)” for unobserved type. We omit the following coefficients: birth year
dummies (for each choice); and the interactions between currently working full- or part-time and currently working in the white-collar

sector (for each of the schooling choices).

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered as { Schooling ability, Schooling
preferences, Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corresponds to a worker with high schooling ability, low
schooling preferences, and high work ability and preferences. Labels are identified through the measurement system detailed in Appendix

C.

58



69

Figure 1: Model fit of untargeted moments
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Notes: This figure plots rates of college entry, attrition, and graduation by time period separately for the data and model. Model frequencies are

constructed using 100 simulations of the structural model for each individual included in the estimation.



Table 11: Average posterior abilities after last period of college for different
choice paths in baseline model

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience

z=0 0.03 0.05 0.50 0.40 0.15 1.33
x > 0, white collar only -0.03 0.00 0.48 0.36 0.12 0.47
x > 0, blue collar only 0.05 0.08 0.49 0.39 0.17 3.55
x > 0, mixture 0.10 0.10 0.47 0.35 0.12 1.02
Continuous enrollment, graduate in non-science with x years of in-school work experience

x=0 0.02 -0.03 0.28 0.37 0.17 2.99
x > 0, white collar only 0.05 -0.03 0.31 0.41 0.18 0.98
x > 0, blue collar only -0.01 -0.08 0.30 0.39 0.18 8.99
x > 0, mixture -0.05 -0.12 0.25 0.35 0.19 1.87
Stop out (SO)

SO, graduate in science -0.02 0.03 0.21 0.13 0.02 0.95
SO, graduate in non-science -0.06 -0.14 0.22 0.33 0.19 3.13
SO then DO, start in 2yr -0.03 -0.03 -0.11 -0.11 -0.01 5.12
SO then DO, start in science -0.00 0.02 -0.42 -0.40 -0.21 1.67
SO then DO, start in non-science -0.01 0.05 -0.29 -0.37 -0.18 2.67
Truncated -0.06 -0.09 0.01 0.04 0.08 5.42
Drop out (DO) after x years of school

z=1 -0.00 0.01 -0.14 -0.16 -0.13 16.57
=2 -0.02 -0.01 -0.20 -0.23 -0.16 8.08
=3 -0.00 0.03 -0.24 -0.27 -0.12 4.37
r=4 0.00 0.07 -0.29 -0.33 -0.12 2.23
x>5 0.03 0.10 -0.28 -0.29 0.01 2.25

Never attended college
Never attend college 0.01 0.02 0.00 -0.00 0.00 26.35

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the baseline model
for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table 12: College completion status frequencies: baseline and counterfac-

tual
Counterfactuals
Full info. &  Full info. &
Baseline Full info.  no search  reduced credit

Status model alone frictions constraints
Continuous completion (CC), Science 6.37 9.05 9.89 10.67
Continuous completion (CC), Non-Science — 14.83 11.86 11.99 13.33
Stop out (SO) but graduated Science 0.95 1.62 1.74 1.97
Stop out (SO) but graduated Non-Science 3.13 2.92 3.60 4.10
Stop out (SO) then drop out 9.45 8.60 8.57 10.05
Truncated 5.42 4.25 4.46 6.40
Drop out (DO) 33.50 31.91 30.70 29.68
Never went to college 26.35 29.79 29.06 23.79
Graduate from 4-year college 25.27 25.45 27.22 30.08
Ever switch major 23.95 20.01 21.59 21.77
Time to degree (years) 5.12 4.82 4.88 4.93

Notes: Model frequencies are constructed using 10 simulations of the structural model for each individual included
in the estimation. Counterfactual frequencies use 10 simulations of each counterfactual model. “Full info. alone”
refers to our counterfactual where individuals have complete information about their abilities. “Full info. & no
search frictions” maintains full information and sets to 1 the white collar job offer arrival rate for everyone in
every period. “Full info. & reduced credit constraints” maintains full information, removes college loans, and sets
in-college non-wage consumption to its 75th percentile for all individuals.

We set the panel length in all columns to be 10 periods. Completion status is computed on the first 10 periods of
data (i.e. assuming that college is not an option after period 10).

“Truncated” refers to those who were enrolled in period 10.
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Table 13: College completion status in model and counterfactuals: het-
erogeneity by level of family income

Counterfactuals

Full info. &  Full info. &
Baseline Full info. no search  reduced credit
Status model alone frictions constraints

Panel A: Above-median family income in high school

Dropout 30.57 30.50 29.16 28.22
Never went to college 19.72 27.24 25.83 20.19
Graduate from 4-year college  34.50 29.87 32.03 35.98
Ever Switch Major 25.96 20.96 22.70 22.33
Panel B: Below-median family income in high school
Dropout 36.43 33.32 32.24 31.15
Never went to college 32.98 32.33 32.29 27.38
Graduate from 4-year college  16.05 21.03 22.41 24.17
Ever Switch Major 20.97 18.87 20.24 21.08

Notes: Model frequencies are constructed using 10 simulations of the structural model for each individual
included in the estimation. Counterfactual frequencies use 10 simulations of each counterfactual model.
“Full info. alone” refers to our counterfactual where individuals have complete information about their
abilities. “Full info. & no search frictions” maintains full information and sets to 1 the white collar job
offer arrival rate for everyone in every period. “Full info. & reduced credit constraints” maintains full
information, removes college loans, and sets in-college non-wage consumption to its 75th percentile for
all individuals.

We set the panel length in all columns to be 10 periods. Completion status is computed on the first 10
periods of data (i.e. assuming that college is not an option after period 10).
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Table 14: Average abilities for different choice paths in full-information
counterfactual scenario

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience

x=0 0.16 0.02 1.27 0.84 0.20 1.16
x > 0, white collar only 1.32 0.68 1.00 0.77 0.20 0.60
x > 0, blue collar only 0.44 0.34 1.25 0.79 0.23 5.92
x > 0, mixture 1.36 0.73 0.95 0.65 0.14 1.38
Continuous enrollment, graduate in non-science with x years of in-school work experience

z=0 -0.16 -0.59 0.68 1.18 0.54 1.94
x > 0, white collar only 0.99 0.01 0.37 0.93 0.44 0.53
x > 0, blue collar only 0.25 -0.13 0.63 1.10 0.44 8.25
x > 0, mixture 0.90 0.17 0.37 0.92 0.42 1.14
Stop out (SO)

SO, graduate in science 0.36 0.15 1.03 0.76 0.20 1.62
SO, graduate in non-science 0.01 -0.30 0.63 1.01 0.48 2.92
SO then DO, start in 2yr -0.20 -0.12 -0.37 -0.35 -0.01 3.27
SO then DO, start in science -0.31 -0.17 0.35 0.10 -0.07 1.80
SO then DO, start in non-science -0.24 -0.22 0.12 0.35 0.26 3.54
Truncated -0.14 -0.18 0.06 0.15 0.10 4.25
Drop out (DO) after x years of school

r=1 -0.12 0.01 -0.40 -0.43 -0.13 15.77
r=2 -0.17 -0.07 -0.16 -0.15 -0.02 7.61
x=3 -0.25 -0.16 0.20 0.24 0.13 5.12
r=4 -0.24 -0.14 0.31 0.31 0.19 2.47
x>5 -0.15 -0.22 0.40 0.37 0.14 0.95

Never attended college
Never attend college -0.07 0.08 -0.56 -0.64 -0.30 29.79

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the counterfactual
model described in the title for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.

63



Table 15: Wage Decompositions

(a) Average full-time log wage and choice share by employment sector and education
level at age 28

Average full-time log wage, relative to

blue-collar non-graduates in baseline Choice shares (%)
Sector and Education Level Baseline Counterfactual No Frictions Cfl Baseline Counterfactual No Frictions Cfl
White collar, Science graduate 0.42 0.95 0.90 3.53 5.53 6.43
White collar, Non-Science graduate 0.25 0.68 0.61 7.97 5.76 6.54
White collar, Non-graduate 0.14 0.48 0.29 5.68 1.41 5.69
Blue collar, Science graduate 0.17 0.26 0.29 2.33 4.15 4.05
Blue collar, Non-Science graduate 0.05 0.02 0.03 6.35 6.27 6.10
Blue collar, Non-graduate 0.00 0.02 0.03 41.91 54.43 48.56
Remainder — — — 32.23 22.45 22.62

Notes: “No Frictions Cfl” refers to the counterfactual where white-collar work is always an option. Columns in the “choice shares” panel sum to 100.

(b) Full-time log wage premia at age 28 in baseline and counterfactual models

Change in premium (relative to baseline)

Full-time log wage premium due to better sorting on abilities
Sector Baseline Counterfactual No Frictions Cfl Baseline Counterfactual No Frictions Cl
College wage premium 0.19 0.44 0.43 — 0.20 0.17
Science college premium 0.30 0.62 0.61 — 0.27 0.24
Non-science college premium 0.15 0.30 0.27 — 0.14 0.11
White-collar wage premium 0.23 0.74 0.57 — 0.38 0.29

Notes: “College wage premium” is the difference in average log wages between college graduates (regardless of major) and non-graduates. “Science
college premium” is the difference in average log wages between science graduates and non-graduates. “Non-science college premium” is the
difference in average log wages between non-science graduates and non-graduates. “White collar premium” is the difference in average log wages
between white-collar and blue-collar workers.

For the panel on changes in premia, numbers represent differences in differences in average abilities (in log dollar units). The first difference is
between sector groups (e.g. college graduates vs. non-graduates) and the second difference is between counterfactual and baseline. We compress
the bivariate work ability distribution into a single ability index based on which sector each full-time worker is working in.
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A Data details

This Appendix section details our construction of three sets of key variables used in our
analysis: choices, college grades, and wages. We also detail how we select the subsample

used in estimation.

A.1 Choices

From the NLSY97 data we classify individuals based on their labor force participation,
occupation, and educational choices. Specifically, we classify individuals in each period

using the following rules:

1. Any individual attending a college in the month of October is classified as being in
college for this year (either in a two- or a four-year college). For four-year colleges, our
definition of “Science” majors includes majors in Science, Technology, Engineering, and
Mathematics (STEM). See Table A1 for details on the exact majors in each category.
We use “Science” and “STEM?” interchangeably:.

2. Any individual reporting college attendance who also reports working at least four
weeks in October and at least 10 hours per week is classified as working part-time
while in school, with full-time work requiring at least 35 hours per week and four

weeks worked in October.

3. Any individual not in college (according to the criterion above) is classified as working

part-time or full-time according to the criteria above.*!

4. Individuals who report part- or full-time employment are also classified as working
in blue- or white-collar occupations. Using data from the March Current Population
Survey (CPS) for years 20072014, we classify each three-digit 2010 Census occupation
code as being white collar if 50% or more of male workers aged 18-64 in that occupation
hold at least a bachelor’s degree. Individuals in the NLSY97 are then classified as
working in a blue- or white-collar occupation if the three-digit 2010 Census occupation
code associated with their October job has a majority of college graduates as reported
in the CPS.A? See Table A2 for the most common occupations by sector and education

level.

AlThese criteria for labor force participation resemble those of Keane and Wolpin (1997).
A2For a similar approach, see Clark, Joubert, and Maurel (2017).

Al



5. Finally, all other cases are classified as home production.??

A.2 Grades and Majors

We use a four-point scale to measure college GPA (grades), which is the average GPA over
all enrollment periods in a calendar year. We use self-reported survey responses to construct
college major (see Table A1) and transcript data from the NLSY97 to construct grades.**
Out of 8,984 individuals in the NLSY97 (men and women), 2,830 never enrolled in post-
secondary education and 1,445 did not permit collection of their transcripts. The NLSY
received transcripts for 3,818 youths (men and women).

In our male-only subsample, grades are missing for 54% and majors are missing or un-
known for 26% of college students. We deal with these missing grades and majors by inte-

grating over the first missing period (see Section 5.6).

A.3 Wages

Wages are calculated as follows:

1. We compute the hourly compensation (i.e. wage plus tips and bonuses) for the self-

reported main job, converted to 1996 dollars.

2. Of the 22,631 person-year observations that report full- or part-time employment,
about one-fourth have missing wage observations. Many of these are coincident with
the NLSY97’s shift to a biennial frequency beginning in 2012. Since our data go until
2015, the years 2012 and 2014 tend to have larger numbers of missing wage observations

than the other years in our sample.

3. We take the following steps to reduce the number of missing wages and thus increase

our sample size. Table A3 contains complete details.

o If a person reports working for the same employer across a 3-year span, but
earnings are only observed in the first and third years, we linearly interpolate

their second-year earnings as the average between the first and third years. This

A3TFollowing this criterion, any individual who is unemployed (and not enrolled in college) in October is
classified in the home production sector.

AlSee https://www.nlsinfo.org/content/cohorts/nlsy97/other-documentation/
codebook-supplement/appendix-12-post-secondary-transcript for a complete discussion of the
transcript data, which we summarize in the following sentence.

A2
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is a common situation for calendar years 2012 and 2014. It is also a common
situation if someone skipped a round of the survey. This method allows us to

reduce the rate of missingness by 12 percentage points.

o If the missing wage observation comes at the end of a job spell or comprises the
entirety of a single job spell, we use the reported wage for the following year. This

is about 3% of all employment observations.

o If the missing wage observation comes at the beginning of a job spell, we use a
flexible model with individual fixed effects to fill in the missing wage observation.

This is about 6% of all employment observations.

o Finally, we impute any remaining missing earnings as annual income divided by

annual hours worked. This is about 2% of all employment observations.

4. As a final step, we top- and bottom-code the resulting earnings distribution at the 99.5

percentile and 2.5 percentile, respectively.

After following these steps, we are left with 1.6% of employment observations that are
missing. These missing observations then affect our sample in the same way as second or
later instances of missing grades or majors. In the end, our sample contains 14,937 work

observations with no missing wages.

A.4 Sample selection

To conclude, Table A4 shows all the sample restrictions that we imposed for the analysis. In
particular, we limit our analysis to men who have completed high school. We also drop all
current and future observations for any respondents missing a wage while choosing a work
activity. We integrate out over the first missing grade and/or college major (see Section 5.6),
but drop current and future observations when a second missing grade or college major is
observed. Our final estimation sample includes 22,398 person-year observations for 2,300

men.
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Table Al: Major Definitions

Science (STEM) Majors Non-Science Majors

Agriculture and natural resource sciences All other majors
Biological sciences

Computer/Information science

Engineering

Mathematics

Physical sciences

Nutrition/Dietetics/Food Science

Table A2: Most common occupations by sector in the NLSY97

Sector Education level Occupation title Frequency (%)
Blue Collar Non-College Graduate Laborers and Freight, Stock, and Material Movers 4.55
Food Preparation Workers 4.13
Driver/Sales Workers and Truck Drivers 3.87
Retail Salespersons 3.76
College Graduate First-Line Supervisors of Sales Workers 6.51
Sheriffs, Bailiffs, Correctional Officers 5.14
Customer Service Representatives 3.46

Laborers and Freight, Stock, and Material Movers 3.36

White Collar  Non-College Graduate Managers, nec (including Postmasters) 10.69
Network and Computer Systems Administrators 6.20
Sales Representatives and Services 5.57
Human Resources Managers 4.49
College Graduate Managers, nec (including Postmasters) 6.26
Software Developers 6.18
Postsecondary Teachers 4.48
Secondary School Teachers 3.98
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Table A3: Steps taken to mitigate number of missing wage observations

Description Person-years Percentage missing

Employed part- or full-time in preliminary sample® 22,631 —

Initial number with missing wages 5,384 23.79
Interpolation and imputation:
Remainder missing after interpolating 2,631 11.63
missing wages within the same job spell”
Remainder missing after using next-period 2,107 9.31
reported wage for some of the missing
wages®
Remainder missing after imputing (via FE 836 3.69

regression) prior-period wage for missing

current-period wage?

Remainder missing after imputing wages 372 1.64
as annual income / annual hours worked

Employed part- or full-time in final sample 14,937 0.00

Notes: Each row of the table lists the remaining number and percentage of employment
observations that have missing wages after cumulatively taking the corresponding action
described in the row and all rows above it.

# Preliminary sample refers to our estimation subsample prior to dropping missing
wages, college grades, or college majors.

b We linearly interpolate missing wages within the same job spell. This occurs most
frequently in waves after the survey switched to a biennial frequency (i.e. years after
2011).

¢ We replace missing current-period wages with the next-period wage in years 2012 and
2014 when the job spell ended in 2012 and 2014.

4 We use a regression model with individual fixed effects to fill in missing wage ob-
servations within the same employment spell that cannot be interpolated due to not
having two endpoints. This occurs most frequently in years 2012 and 2014 that are
not directly covered by the survey due to being in the biennially administered phase.
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Table A4: Sample Selection

Selection criterion

Resultant persons

Resultant person-years

Full NLSY97 sample 8,984 170,696
Drop women 4,599 87,381
Drop other race 4,559 86,621
Drop missing AFQT and SAT test scores 3,789 71,991
Drop missing HS grades, Parental education, or Parental income 3,059 58,121
Drop HS Dropouts and GED recipients 2,411 45,809
Drop observations before HS graduation 2,331 36,003
Drop right-censored missing interview spells 2,331 35,548
Drop any who attend college at a young age or graduate college in 2 or fewer years 2,331 34,278
Drop any who are not in HS at age 15 or under or have other outlying data 2,331 34,186
Drop any who graduate HS after age 20 2,301 33,825
Drop observations after and including the first instance of missing a wage while working,

or after the first instance of a missing college major or GPA 2,300 22,398
Final structural estimation subsample® 2,300 22,398

& Qur structural estimation procedure incorporates integration of missing GPA and major observations, as discussed in Section 5.6.
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Table B5: Summary of estimation steps

Estimation
Stage Description Inputs Outputs Notes
- Loans, grants, - NLSY97 data on demographics - Function mappings for predicting - Use NLSY97, NPSAS, and SIPP data
and transfers and parental transfers loans, grants, and transfers - See Appendix E for complete details
- NPSAS data on grants and loans
- SIPP data on family assets
1 Measurement - measurements, - Unobserved type probabilities - Find global optimum
system - demographics - See Appendix C for complete details
2 Missing - unobserved type probabilities, - Missing outcome (major or GPA) - See Appendix D for complete details
data - demographics, type probabilities
- choices
3 Learning - outcomes (wages, GPA), - learning parameter estimates
parameters - unobserved type probabilities,
- missing outcome type probabilities,
- demographics,
- other state variables (experiences,
educational degrees)
4 Parameters for - choices, - job offer arrival - Choice model in this stage includes
offer arrival logit, - wages & consumption, parameter estimates (including CRRA consumption
CCP logit, - ability priors, individual offer probabilities) - Integrate over future consumption in CCPs
Graduation logit, - unobserved type probabilities, - CCP logit coefficients - See Appendices E and H for complete details
Wage AR(1) process - missing outcome type probabilities, - Graduation logit coefficients
- demographics - Wage AR(1) coefficients
- college graduation outcome
- other state variables
5 Compute future All data, Future value terms - FV formulas according to (24)
value (FV) terms all parameter estimates - See Appendix F for complete details
6 Structural flow All data, Structural flow utility - Estimation is a McFadden logit model with

utility parameters

all parameter estimates,
FV terms

parameter estimates

alternative-specific offset terms from stage 5




Table B6: Variables Included in Each Component of the Model, by Esti-
mation Stage

Stage 1 Stage 2 Stage 3 Stage 4 Stage 6
Measure- Reduced- White
ment form Log  College Parental Expected Expected Static Collar College Dynamic
Variable System Choice  Wages GPAs Transfers  Grants Loans Choice Offer Graduation  Choice
Individual background
Race dummies v v v v v v v v
Birth cohort dummies v v v ' v v
High school GPA v v v v v v
SAT Math (dummies) v v
SAT Verbal (dummies) v v
Family background
Parent completed college v v v v v v v
Family income ($10,000) ' v ' v v
Family income (log) v
Family income (dummies) v v
EFC (dummies) v v
EFC (continuous) v
Aggregate labor market
Year dummies v v
Individual characteristics
Age dummies (<18, 19, 20, >21) v v
Age (linear) v v v
Average cumulative wage & GPA v
Expected prior work ability v
Expected prior acad. ability v v
Education
Bachelor’s degree v v v v v
Science major v
Bachelor’s x Science major v v
Expected prior acad. ability x Science major v v v

Experiences (in years)
College (either type, linear) v
College (dummies)
Graduate school (dummies)
4-year college (dummies)
2-year college (dummies)
4-year dummies X 2-year dummies
Overall work experience v v
‘White-collar work experience v v

ENENEN

ENENEN

Work/Study characteristics
‘Work white-collar dummy
Work full-time dummy
Work part-time dummy
‘Work in-school signal adjustment v
Upperclassman signal adjustment v
Expected utility of consumption
Accumulated debt (quadratic)

Previous decision (dummies) v
CCP adjustment terms v

ENENEN
N
ENENEN
<
ENENEN

ENENEN

Unobserved Types
Type dummies v v v v v v v v

Number of parameters 221 967 170 22 114 114 240 10 33 164

Notes: Grand total of all parameters is 2,055. In the Stage 4 columns for transfers, grants and loans, we combine the parameter counts in both 2-year and 4-year models. We also combine the
parameter counts in the logit models of having positive amounts and the linear or log-linear models of total amounts conditional on amounts being positive. In the Stage 4 column for the static
choice model, we include the two parameters of the AR(1) model for wages.
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Table B7: Unobserved Type Coefficient Signs and Significance Across All
Equations of the Model

Unobserved Type Identity

High Schooling Ability Low Schooling Ability
High Schooling Low Schooling High Schooling Low Schooling
Ability & Prefs. Ability & Prefs. Ability & Prefs. Ability & Prefs.
High Low High Low High Low High Low

Work Work ‘Work Work Work Work Work ‘Work
Ab & Pr. Ab& Pr. Ab & Pr. Ab& Pr. Ab& Pr. Ab & Pr. Ab & Pr. Ab & Pr.

Model Equation (H,H,H) (H,H L) (HLH (HLL) (L HH (LHL) (LLH (LLL)

Panel A: Measurement System

ASVAB Arithmetic Reasoning (Ref)) (Ref.) (Ref.) (Ref)) - -* -* -*
ASVAB Coding Speed (Ref.) (Ret.) (Ref.) (Ref.) - -* -* -*
ASVAB Mathematical Knowledge (Ref.) (Ret.) (Ret.) (Ret.) - -* -* -*
ASVAB Numerical Operations (Ref.) (Ref.) (Ref.) (Ref.) -* - - -
ASVAB Paragraph Comprehension (Ref.) (Ret.) (Ref.) (Ref.) - -+ -+ -+
ASVAB Word Knowledge (Ref.) (Ref.) (Ref.) (Ref.) -+ -* -* -*
SAT Math (Ref.) (Ret.) (Ret.) (Ret.) - -* -* -*
SAT Verbal (Ref.) (Ret.) (Ret.) (Ref.) - -* -* -*
No. AP Exams (Ref.) (Ref.) - - (Ref.) (Ref.) - -
Late for Classes (Ref.) (Ref.) +* +* (Ref.) (Ref.) +* +*
Regularly Break Rules (Ref.) (Ref.) +* +* (Ref.) (Ref.) +* +*
Took Extra Classes/Lessons (Ref.) (Ret.) - - (Ref.) (Ret.) - -
Ever Took Classes During School Break (Ret.) (Ref.) +* +* (Ret.) (Ret.) +* +*
Reason Took Classes During Break (Ref. (Ref.) - - (Ref.) (Ref.) - -
Have High Standards at Work +* (Ref.) +* (Ref)) +* (Ref.) +* (Ret.)
Make Every Effort to Do What is Expected +* (Ref.) +* (Ref.) +* (Ref.) +* (Ref.)
Percent Chance Work at Age 30 +* (Ref.) +* (Ref.) +* (Ref.) +* (Ref.)
Parental Assessment of Age-30 Work Pr. + (Ref.) + (Ref.) + (Ref.) + (Ref.)
Panel B: Learning Outcomes

White Collar Log Wages +* +* +* +* + +* +* (Ret.)
Blue Collar Log Wages + + +* +* +* - +* (Ref.)
4-year Science Grades + +* + + + + - (Ref.)
4-year Non-Science Grades + + + + + + + (Ref.)
2-year Grades - + - - - - - (Ref.)
Panel C: White Collar Offer Arrival

Receive White Collar Offer +* +* +* +* - + + (Ref.)
Panel D: Logit for Graduation int + 1

Graduate in t + 1 +* +* + + + + + (Ref.)
Panel E: Flow Utilities

2-year College + + +* + + + + (Ref.)
4-year Science + + + + + + + (Ret.)
4-year Non-Science + + + + + + + (Ret.)
Work Part-Time - - - - - - - (Ref.)
Work Full-Time - - - - - + - (Ref.)
Work White Collar + + + + + + + (Ref.)
Home Production (Ref.) (Ret.) (Ret.) (Ref.) (Ret.) (Ret.) (Ref.) (Ref.)

Notes: * indicates statistical significance at the 5% level. “(Ref.)” indicates that the type served as the reference category for that outcome. See Tables 6 (grades), 7
(log wages), 10 (flow utilities), B9-B11 (measurement system), B13 (graduation), and B14 (offer arrival), for exact parameter estimates.
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Table B8: Estimates of Probability Mass for Each Unobserved Type

Type Identity Mass Probability Std. Error

(H, H, H) 0.154 (0.006)
(H, H, L) 0.210 (0.006)
(H, L, H) 0.051 (0.004)
(H, L, L) 0.164 (0.005)
(L, H, H) 0.097 (0.004)
(L, H, L) 0.041 (0.004)
(L, L, H) 0.109 (0.005)
(L, L, L) 0.174 (0.006)

Notes: Bootstrap standard errors in parentheses. Type
dummy labels are as follows: “H” signifies “high type”;
“L” signifies “low type”. Labels are ordered as { School-
ing ability, Schooling preferences, Work ability and prefer-
ences }. e.g. “Unobserved type (H, L, H)” corresponds to
a worker with high schooling ability, low schooling pref-
erences, and high work ability and preferences. Labels
are identified through the measurement system detailed
in Appendix C.
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Table B9: Measurement System Estimates for Schooling Ability Measure-

ments
ASVAB
Arithmetic Coding Mathematical Numerical — Paragraph Word SAT

Variable Reasoning Speed Knowledge Operations Comprehension Knowledge Math Verbal
Constant 0.890 0.343 0.709 0.543 0.647 0.623 0.464 0.254
(0.036)  (0.050) (0.037) (0.050) (0.038) (0.042)  (0.048) (0.059)
Black -0.663  -0.326 -0.509 -0.210 -0.507 -0.547  -0.668 -0.243
(0.031) (0.051)  (0.031) (0.044) (0.032) (0.036)  (0.042) (0.050)

Hispanic -0.354  -0.122 -0.232 -0.157 -0.221 -0.359  -0.237 0.032
(0.037)  (0.053)  (0.034) (0.045) (0.038) (0.038)  (0.050) (0.053)
Born in 1980 -0.090  -0.033 -0.023 -0.031 -0.087 -0.014  -0.255 -0.222
(0.042)  (0.056) (0.037) (0.055) (0.044) (0.046)  (0.054) (0.064)
Born in 1981 -0.018 0.019 0.015 -0.002 0.015 0.010 -0.153 -0.211
(0.036) (0.053)  (0.039) (0.051) (0.037) (0.042)  (0.055) (0.062)
Born in 1982 -0.056  -0.103 -0.048 -0.059 -0.109 -0.021  -0.129 -0.294
(0.039) (0.056) (0.037) (0.051) (0.042) (0.040)  (0.055) (0.067)
Born in 1983 -0.048  -0.000 -0.010 -0.042 -0.027 0.038 -0.067 -0.196
(0.039) (0.052)  (0.039) (0.051) (0.042) (0.045)  (0.051) (0.063)

Parent graduated college 0.335 0.269 0.365 0. 188 0.334 0.273 0.299 0.180
(0.030) (0.041)  (0.026) (0.037) (0.030) (0.030)  (0.038) (0.048)

Family Income ($10,000) 0.018 0.009 0.017 0.011 0.017 0.023 0.020 0.024
(0.003)  (0.004)  (0.003) (0.004) (0.003) (0.003)  (0.004) (0.005)
Unobserved type (L, L, H)  -1.356  -0.857 -1.320 1.076 -1.258 -0.980  -0.948 -0.757
(0.026) (0.033) (0.024) (0.033) (0.027) (0.028)  (0.033) (0.037)
Unobserved type (L, L, L)  -1.356  -0.857 -1.320 -1.076 -1.258 -0.980  -0.948 -0.757
(0.026) (0.033)  (0.024) (0.033) (0.027) (0.028)  (0.033) (0.037)
Unobserved type (L, H, H) -1.356  -0.857 -1.320 -1.076 -1.258 -0.980  -0.948 -0.757
(0.026) (0.033)  (0.024) (0.033) (0.027) (0.028)  (0.033) (0.037)
Unobserved type (L, H, L) -1.356  -0.857 -1.320 -1.076 -1.258 -0.980  -0.948 -0.757
(0.026)  (0.033) (0.024) (0.033) (0.027) (0.028)  (0.033) (0.037)

Unobserved type (H, L, H) Ref. Ref. Ref. Ref. Ref. Ref. Ref.  Ref.

(—) (—) (—) (—) (—) (—) (—) ()

Unobserved type (H, L, L) Ref. Ref. Ref. Ref. Ref. Ref. Ref.  Ref.

(—) (—) (—) (—) (—) (—) (—) ()

Unobserved type (H, H, H) Ref. Ref. Ref. Ref. Ref. Ref. Ref.  Ref.

(—) (—) (—) (—) (—) (—) (—) ()

Unobserved type (H, H, L) Ref. Ref. Ref. Ref. Ref. Ref. Ref.  Ref.
Std. Dev. of noise 0.614 0.871 0.591 0(.77)6 0(.647 0(.655 0.802 0.946
(0.009) (0.013)  (0.009) (0.011) (0.009) (0.010)  (0.012) (0.014)

Observations 2136 2,122 2,134 2,122 2,135 2136 1232 1,223

Notes: Bootstrap standard errors are listed below each coefficient in parentheses. Each column represents estimates of a linear regression
model with normally distributed errors, estimated by maximum likelihood.

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered as { Schooling ability, Schooling
preferences, Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corresponds to a worker with high schooling ability, low
schooling preferences, and high work ability and preferences. Labels are identified through the measurement system detailed in Appendix
C.
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Table B10: Measurement System Estimates for Schooling Ability & Pref-
erences Measurements

No. of AP No. times late Break rules Hours per week Ever took classes Reason took classes

Variable classes for school regularly  extra classes during school break during school break
Constant -6.304 -3.364 2.469
(0.538) (0.206) (0.115)
Black -0.472 0.509 -0.444 1.512 0.622 -0.164
(0.248) (0.109) (0.100) (0.509) (0.171) (0.130)
Hispanic 0.031 0.632 -0.185 0.369 0.743 0.119
(0.234) (0.114) (0.109) (0.590) (0.201) (0.137)
Born in 1980 -0.542 1.477 0.220 1.201 -0.782
(0.275) (0.154) (0.122) (0.185) (0.124)
Born in 1981 -0.229 1.025 0.121 0.738 -0.405
(0.258) (0.139) (0.112) (0.201) (0.107)
Born in 1982 -0.035 0.606 0.385 -1.470 0.602
(0.226) (0.157) (0.108) (0.554) (0.204)
Born in 1983 0.070 0.226 -0.038 -2.263
(0.226) (0.168) (0.115) (0.562)
Parent graduated college 0.837 0.049 -0.098 2.056 0.340 -0.133
(0.166) (0.107) (0.076) (0.526) (0.144) (0.112)
Family Income ($10,000) 0.022 0.010 -0.002 0.244 -0.012 0.024
(0.015) (0.011) (0.009) (0.049) (0.018) (0.012)
Unobserved type (L, L, H)  -1.187 1.524 1.443 -0.287 0.538 -2.742
(0.110) (0.062) (0.048) (0.273) (0.093) (0.047)
Unobserved type (L, L, L) -1.187 1.524 1.443 -0.287 0.538 -2.742
(0.110) (0.062) (0.048) (0.273) (0.093) (0.047)
Unobserved type (L, H, H) Ref. Ref. Ref. Ref. Ref. Ref.
(—) (—) (—) (=) (—) (=)
Unobserved type (L, H, L) Ref. Ref. Ref. Ref. Ref. Ref.
(—) (=) (—) (—) (—) =)
Unobserved type (H, L, H)  -1.187 1.524 1.443 -0.287 0.538 -2.742
(0.110) (0.062) (0.048) (0.273) (0.093) (0.047)
Unobserved type (H, L, L)  -1.187 1.524 1.443 -0.287 0.538 -2.742
(0.110) (0.062) (0.048) (0.273) (0.093) (0.047)
Unobserved type (H, H, H)  Ref. Ref. Ref. Ref. Ref. Ref.
(—) (—) (—) (—) (—) (—)
Unobserved type (H, H, L) Ref. Ref. Ref. Ref. Ref. Ref.
) (—) (—) (—) =) =) =)
Cut point 1 2.239 2.439 -0.605
(0.218) (0.163) (0.118)
Cut point 2 2.837 2.981 0.445
(0.229) (0.165) (0.115)
Cut point 3 3.448 1.041
(0.167) (0.118)
Cut point 4 3.876 1.485
(0.167) (0.117)
Cut point 5 4.144 2.268
(0.169) (0.124)
Cut point 6 4.510 3.088
(0.177) (0.132)
Cut point 7 5.448
(0.196)
Std. Dev. of noise 7.884
(0.253)
Observations 2,310 2,303 2,088 1,386 1,141 151

Notes: Bootstrap standard errors are listed below each coefficient in parentheses. The first three columns are estimates of ordered logit models,
where “Break rules regulary” is on a Likert scale with seven levels. “Hours per week in extra classes” is a Type II Tobit model left-censored at
zero hours. “Ever took classes during school break” and “Reason took classes during school break” are binary logit models with respective positive
categories of “Yes” and “In order to accelerate, for fun, or for enrichment” and respective reference categories “No” and “To make up classes or
for other reasons.”

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered as { Schooling ability, Schooling
preferences, Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corresponds to a worker with high schooling ability, low schooling
preferences, and high work ability and preferences. Labels are identified through the measurement system detailed in Appendix C.
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Table B11: Measurement System Estimates for Working Ability & Pref-
erences Measurements

Individual’s subjective Parent’s subjective
High standards Try to do what likelihood of working likelihood of working

Variable at work is expected at age 30 at age 30
Black 0.675 0.047 -0.236 -0.217
(0.128) (0.092) (0.139) (0.181)
Hispanic 0.001 0.229 -0.334 0.104
(0.123) (0.098) (0.130) (0.222)
Born in 1980 -0.086 -0.078 -0.070 0.040
(0.132) 0.114) (0.135) (0.196)
Born in 1981 0.177 0.370
(0.127) (0.107)
Born in 1982 -0.042 0.064
(0.137) (0.115)
Born in 1983 -0.124 0.111
(0.132) (0.105)
Parent graduated college -0.003 -0.307 -0.085 -0.158
(0.089) (0.078) (0.122) (0.166)
Family Income ($10,000) 0.039 0.007 0.011 0.074
(0.010) (0.008) (0.013) (0.022)
Unobserved type (L, L, H) 3.201 5.499 0.474 0.202
(0.088) (0.066) (0.099) (0.136)
Unobserved type (L, L, L) Ref. Ref. Ref. Ref.
(—) — (—) (—)
Unobserved type (L, H, H) 3.201 5.499 0.474 0.202
(0.088) (0.066) (0.099) (0.136)
Unobserved type (L, H, L) Ref. Ref. Ref. Ref.
(—) =) (—) (—)
Unobserved type (H, L, H) 3.201 5.499 0.474 0.202
(0.088) (0.066) (0.099) (0.136)
Unobserved type (H, L, L) Ref. Ref. Ref. Ref.
(—) () (—) (—)
Unobserved type (H, H, H) 3.201 5.499 0.474 0.202
(0.088) (0.066) (0.099) (0.136)
Unobserved type (H, H, L) Ref. Ref. Ref. Ref.
Cut point 1 -4.767 -4.480 -2.272 -2.984
(0.415) (0.288) (0.128) (0.197)
Cut point 2 -4.006 -3.187 -1.178 -1.964
(0.278) (0.165) (0.112) (0.170)
Cut point 3 -2.860 -2.247
(0.178) (0.134)
Cut point 4 -1.966 -1.022
(0.150) (0.103)
Cut point 5 -0.406 0.692
(0.131) (0.100)
Cut point 6 1.841 4.696
(0.129) (0.111)
Observations 2,085 2,087 915 849

Notes: Bootstrap standard errors are listed below each coefficient in parentheses. Each column represents estimates of an
ordered logit model. The first two columns are Likert scales with seven levels. The latter two columns are on a scale of
0%-100% that has been discretized into three bins: 0%-75%, 76%-90%, and 91%+

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered as { Schooling
ability, Schooling preferences, Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corresponds to a worker
with high schooling ability, low schooling preferences, and high work ability and preferences. Labels are identified through
the measurement system detailed in Appendix C.
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Table B12: Labor market shock forecasting estimates

Parameter Estimate Std. Error

Autocorrelation 0.494 (0.099)
Std. Dev. of shock  0.019 (0.002)

Observations 16

Notes: Estimates of Equation (15). Bootstrap stan-
dard errors in parentheses. We estimate a single AR1
process for both labor market sectors.
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Table B13: Estimates of Probability of Graduation

Variable Coeft. Std. Error
Constant -3.269 0.286
Black -0.656 0.135
Hispanic -0.421 0.158
HS Grades (z-score) 0.229 0.055
Parent graduated college -0.060 0.112
Family Income ($10,000) 0.017 0.009
College experience completion profiles:
0 years of 2yr 0.487 0.215
2+ years of 2yr 0.639 0.176
2 years of 4yr 1.235 0.217
3 years of 4yr 1.627 0.218
4 years of 4yr 2.645 0.271
5 years of 4yr 0.570 0.592
6+ years of 4yr 0.597 0.393

2 years of 4yr and 0 years of 2yr -2.816 0.311
4 years of 4yr and 0 years of 2yr -0.608 0.310
5 years of 4yr and 0 years of 2yr 2.244 0.677
6+ years of 4yr and 0 years of 2yr  1.531 0.433

Science major -0.495 0.119
Prior ability science x Science major 1.469 0.223
Prior ability non-sci. x Non-Sci. major 1.332 0.145
Work part-time -0.117 0.125
Work full-time 0.271 0.137
Unobserved type (H, H, H) 0.393 0.155
Unobserved type (H, H, L; 0.399 0.138
Unobserved type (H, L, H 0.175 0.164
Unobserved type (H, L, L) 0.272 0.148
Unobserved type (L, H, H) 0.083 0.173
Unobserved type (L, H, L 0.015 0.136
Unobserved type (L, L, H 0.020 0.168
Person-year observations 1,115

Notes: Parameter estimates of Equation (16) which is a logit predicting
probability of graduating in the following period. Estimated only on four-
year college students in their junior year and above. Bootstrap standard
errors in parentheses. Reference categories for multinomial variables are as
follows: “White” for race/ethnicity, “Born in 1984” for birth year, “1 year
of 2yr college” and “3 years of 4yr college and 0 years of 2yr college” for
college experience, “Not working” for work intensity, and “(L, L, L)” for
unobserved type.

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies
“low type”. Labels are ordered as { Schooling ability, Schooling preferences,
Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corre-
sponds to a worker with high schooling ability, low schooling preferences,
and high work ability and preferences. Labels are identified through the
measurement system detailed in Appendix C.
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Table B14: Estimates of White Collar Offer Arrival Parameters

Variable Coeftf. Std. Error
Constant -0.675  (0.245)
Age -0.164  (0.015)
College graduate 1.772 (0.119)
Unobserved type (H, H, H) 0.596 (0.139)
Unobserved type (H, H, L)  0.562 (0.138)
Unobserved type (H, L, H)  0.377  (0.146)
Unobserved type (H, L, L)  0.492 (0.141)
Unobserved type (L, H, H) -0.072  (0.128)
Unobserved type (L, H, L)  0.014 (0.120)
Unobserved type (L, L, H)  0.206 (0.131)

Person-year observations 22,398

Notes: Estimates of the d) parameters in Equation (H.4).
Bootstrap standard errors in parentheses. Age is normalized
to be zero at 18 years old. Reference category is “(L, L,
L)” for the unobserved type. We restrict the offer arrival
probability to equal 1 for those who worked in the white-
collar sector in the previous period.

Type dummy labels are as follows: “H” signifies “high type”;
“L” signifies “low type”. Labels are ordered as { School-
ing ability, Schooling preferences, Work ability and prefer-
ences }. e.g. “Unobserved type (H, L, H)” corresponds to a
worker with high schooling ability, low schooling preferences,
and high work ability and preferences. Labels are identified
through the measurement system detailed in Appendix C.
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Table B15: Parameter Estimates of Static Choice Model

Variable 2-year 4-year Sci 4-year Non-Sci Work PT  Work FT  White Collar
Constant -2.664 -4.704 -3.526 -2.158 -1.442 -2.106
(0.126)  (0.185) (0.130) (0.108) (0.105) (0.182)
Black -0.090 0.100 0.240 -0.049 -0.090 0.042
(0.078)  (0.107) (0.081) (0.056) (0.046) (0.086)
Hispanic 0.101 -0.037 -0.064 -0.087 0.014 0.116
(0.077)  (0.112) (0.085) (0.054) (0.047) (0.089)
HS Grades (z-score) 0.199 0.953 0.656 -0.034 -0.053 0.131
(0.032)  (0.049) (0.038) (0.024) (0.020) (0.034)
Parent graduated college 0.432 0.850 0.789 -0.003 -0.273 0.508
(0.063)  (0.085) (0.064) (0.049) (0.043) (0.078)
Born in 1980 0.082 0.177 0.196 0.177 0.210 0.409
(0.090)  (0.140) (0.102) (0.075) (0.062) (0.094)
Born in 1981 -0.070 -0.052 0.080 0.172 0.146 0.334
(0.094)  (0.138) (0.097) (0.077) (0.057) (0.098)
Born in 1982 -0.069 0.287 -0.045 0.163 0.077 0.329
(0.093)  (0.129) (0.100) (0.067) (0.056) (0.109)
Born in 1983 -0.029 0.081 0.059 0.112 0.005 0.168
(0.087)  (0.117) (0.097) (0.067) (0.057) (0.095)
Family Income ($10,000) 0.017 0.053 0.063 -0.028 -0.014 0.007
(0.008)  (0.008) (0.007) (0.006) (0.005) (0.009)

continued
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Variable 2-year 4-year Sci 4-year Non-Sci  Work PT  Work FT  White Collar
Age -0.187 -0.266 -0.282 -0.134 -0.146 0.174
(0.016)  (0.025) (0.019) (0.012) (0.011) (0.020)
Age squared 0.006 0.007 0.005 0.001 -0.004 -0.004
(0.001)  (0.002) (0.001) (0.001) (0.001) (0.001)
Experience 0.022 -0.050 -0.005 0.302 0.388 -0.043
(0.034)  (0.053) (0.043) (0.022) (0.016) (0.027)
Experience squared -0.006 0.010 -0.001 -0.019 -0.012 0.004
(0.003)  (0.004) (0.003) (0.001) (0.001) (0.002)
Years of college -0.031 0.668 0.488 0.275 0.160 0.359
(0.055)  (0.069) (0.045) (0.034) (0.028) (0.037)
Years of college squared 0.018 -0.024 -0.011 -0.019 0.003 -0.036
(0.007)  (0.007) (0.005) (0.003) (0.003) (0.004)
Prior academic ability 1.439 2.201 2.029
(0.203)  (0.186) (0.126)
Accumulated debt ($1,000) -0.005 -0.017 0.002 -0.005 0.007
(0.004)  (0.005) (0.004) (0.003) (0.002)
Accumulated debt squared <100 -0.009 0.001 -0.004 0.004 -0.006
(0.001)  (0.003) (0.003) (0.002) (0.001)
Non-grad xE[u(consumption)] <+ 1,000 1.642 1.642 1.642 1.642 1.642
(0.165)  (0.165) (0.165) (0.165) (0.165)
Previous high school 0.970 2.692 1.772 1.164 0.912 -0.530
(0.102)  (0.163) (0.112) (0.085) (0.083) (0.185)
Previous 2-year college 2.422 1.032 0.722 0.033 0.318 0.088

continued
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Variable 2-year 4-year Sci 4-year Non-Sci  Work PT  Work FT  White Collar
(0.088)  (0.165) (0.114) (0.096) (0.091) (0.136)
Previous 4-year science 0.890 4.504 1.912 0.643 0.407 -0.188
(0.180)  (0.138) (0.131) (0.106) (0.102) (0.125)
Previous 4-year non-science 0.319 1.940 3.524 0.604 0.634 0.073
(0.158)  (0.162) (0.098) (0.090) (0.081) (0.094)
Previous work part-time 0.005 0.471 0.416 2.210 1.377 -0.987
(0.096)  (0.122) (0.101) (0.049) (0.054) (0.090)
Previous work full-time 0.090 0.163 0.570 0.978 2.293 -0.953
(0.104)  (0.145) (0.106) (0.064) (0.043) (0.088)
Previous work white-collar -0.011 -0.435 -0.168 -1.346 -1.513 2.730
(0.145)  (0.170) (0.134) (0.091) (0.085) (0.152)
Currently work white-collar -0.137
(0.078)
Currently work part-time 0.877 -0.187 -0.113
(0.076)  (0.082) (0.070)
Currently work full-time -0.463 -1.794 -1.926
(0.083)  (0.096) (0.081)
Currently work part-time in white collar -0.320 0.315 0.086
(0.190)  (0.141) (0.124)
Currently work full-time in white collar -0.098 0.912 0.184
(0.140)  (0.142) (0.122)
Unobserved type (H, H, H) 0.269 0.262 0.298 -0.131 -0.089 -0.174
(0.087)  (0.118) (0.090) (0.061) (0.053) (0.089)

continued
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Variable 2-year 4-year Sci 4-year Non-Sci  Work PT  Work FT  White Collar
Unobserved type (H, H, L) 0.271 0.304 0.397 -0.000 -0.058 -0.257
(0.080)  (0.111) (0.089) (0.057) (0.046) (0.083)
Unobserved type (H, L, H) 0.224 0.074 0.292 -0.228 -0.069 -0.114
(0.090)  (0.128) (0.101) (0.071) (0.053) (0.092)
Unobserved type (H, L, L) 0.202 0.107 0.323 -0.002 -0.052 -0.265
(0.078)  (0.112) (0.091) (0.060) (0.049) (0.087)
Unobserved type (L, H, H) 0.023 -0.039 0.213 -0.125 -0.064 -0.143
(0.090)  (0.120) (0.092) (0.070) (0.055) (0.101)
Unobserved type (L, H, L) 0.006 -0.105 0.054 -0.008 0.029 -0.096
(0.075)  (0.092) (0.075) (0.050) (0.041) (0.086)
Unobserved type (L, L, H) -0.032 -0.100 0.126 -0.192 -0.091 -0.348
(0.086)  (0.119) (0.086) (0.060) (0.050) (0.097)
College graduate 0.204 0.585 0.585
(0.176) (0.207) (0.156)
Black x col. grad. 0.291 -0.065 0.637
(0.182)  (0.152) (0.129)
Hispanic x col. grad. -0.029 -0.115 -0.097
(0.193) (0.145) (0.137)
HS Grades (z-score) x col. grad -0.151 -0.283 0.318
(0.070) (0.058) (0.058)
Parent grad. col. x col. grad. 0.386 0.404 -0.596
(0.132) (0.098) (0.107)
Born in 1980 x col. grad. 0.197 0.504 -1.110

continued
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Variable 2-year 4-year Sci 4-year Non-Sci  Work PT  Work FT  White Collar
(0.174) (0.145) (0.155)

Born in 1981 x col. grad. -0.064 0.229 -0.728
(0.174)  (0.138) (0.140)

Born in 1982 x col. grad. -0.772 -0.117 -0.807
(0.164) (0.130) (0.143)

Born in 1983 x col. grad. -0.665 -0.159 -0.517
(0.159)  (0.134) (0.131)

Family Income ($10,000) x col. grad. -0.024 -0.033 0.034
(0.011) (0.009) (0.012)

Col. grad xE[u(consumption)] < 1,000 0.648 0.648
(0.218)  (0.218)

Constant Relative Risk Aversion parameter (0) 0.4

Log likelihood -26,351

Person-year obs. 22,398
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Notes: Home production is the reference alternative. Bootstrap standard errors are listed below each coefficient in paren-
theses. Beliefs on labor market productivity are included in the expected utility of consumption term. Consumption is
evaluated in terms of yearly consumption flow in 1996 dollars. Missing majors are estimated to be science with probability
0.37. Missing GPAs are estimated to be < 2.5 w.p. 0.66, 2.5-3.0 w.p. 0.12, 3.0-3.6 w.p. 0.13, and 3.6-4.0 w.p. 0.09.

Reference categories for multinomial variables are as follows: “White” for race/ethnicity, “Born in 1984” for birth year,

“Previous home production” for previous decision, “Not working” for in-college work intensity, and “(L, L, L)” for unobserved
type.

Type dummy labels are as follows: “H” signifies “high type”; “L” signifies “low type”. Labels are ordered as { Schooling
ability, Schooling preferences, Work ability and preferences }. e.g. “Unobserved type (H, L, H)” corresponds to a worker
with high schooling ability, low schooling preferences, and high work ability and preferences. Labels are identified through

the measurement system detailed in Appendix C.



Table B16: Model fit: Overall choice frequencies (Dynamic)

Choice alternative Data Frequency (%) Model Frequency (%)
2-year & work F'T blue collar 1.70 1.83
2-year & work F'T white collar 0.15 0.16
2-year & work PT blue collar 1.82 1.97
2-year & work PT white collar 0.10 0.13
2-year only 1.92 2.03
4-year Science & work F'T blue collar 0.43 0.50
4-year Science & work FT white collar 0.15 0.18
4-year Science & work PT blue collar 0.94 1.10
4-year Science & work PT white collar 0.14 0.17
4-year Science only 2.27 2.46
4-year Non-Science & work F'T blue collar 0.90 1.10
4-year Non-Science & work FT white collar 0.20 0.20
4-year Non-Science & work PT blue collar 1.88 2.28
4-year Non-Science & work PT white collar 0.29 0.32
4-year Non-Science only 4.06 4.67
Work PT blue collar 6.57 6.50
Work PT white collar 0.96 0.97
Work FT blue collar 42.71 41.79
Work FT white collar 8.61 9.01
Home production 24.22 22.64

Note: Model frequencies are constructed using 10 simulations of the structural model for each individual
included in the estimation. We set the panel length in the model to be the same as the panel length in the
data. This is because the model assumes random attrition conditional on all observables and unobservables.
White collar offer probability in simulation is 0.3167 and in estimation is 0.3077.
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Table B17: Model fit: Graduate choice frequencies

Choice alternative Data Frequency (%) Model Frequency (%)
Work PT blue collar 4.09 4.12
Work PT white collar 4.38 3.80
Work FT blue collar 34.54 36.39
Work FT white collar 43.66 42.00
Home production 13.34 13.69

Note: Model frequencies are constructed using 10 simulations of the structural model

for each individual included in the estimation.
White collar offer probability in simulation is 0.6847 and in estimation is 0.7044.
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Table B18: Average abilities by employment sector and education level at
age 28 in baseline and counterfactual models

White Collar Blue Collar 4-year Science 4-year Non-Science 2-year
Sector and education level Baseline Cfl N.F.Cfl Baseline Cfl N.F.Cfl Baseline Cfl N.F.Cfl Baseline Cfl N.F.Cfl Baseline Cfl N.F.Cfl
o= Science 0.02 0.48 0.42 0.03 0.16 0.14 0.29 0.68 0.66 0.21 0.49 0.47 0.07 0.11 0.09
g 273 Non-Science 0.01 0.39 0.32 -0.01 0.02 0.00 0.19 0.27 0.29 0.24 0.64 0.63 0.10 0.22 0.21
E =0 Non-graduate 0.04 0.38 0.25 0.02 0.10 0.06 -0.14 -0.31  -0.24 -0.15  -0.23  -0.20 -0.05 -0.12  -0.06
zs o 5 Science -0.01 -0.00  -0.00 -0.00 0.08 0.09 0.31 0.82 0.81 0.25 0.48 0.46 0.07 0.09 0.11
= % Non-Science -0.01 -0.07  -0.06 -0.03  -0.06 -0.05 0.19 0.48 0.45 0.24 0.70 0.67 0.10 0.26 0.27
ale) Non-graduate 0.01 -0.02  -0.02 0.02 0.04 0.04 -0.06  -0.18  -0.19 -0.07  -0.22  -0.23 -0.03  -0.06 -0.06
o= Science -0.06 0.15 0.19 -0.01 0.01 0.02 0.27 0.83 0.78 0.17 0.54 0.46 0.03 0.09 0.09
g = :; Non-Science 0.01 0.14 0.10 -0.03 -0.11  -0.11 0.07 0.48 0.22 0.14 0.79 0.54 0.06 0.26 0.16
= =0 Non-graduate 0.01 0.15 -0.04 -0.02  -0.05 -0.09 -0.08 -0.40 -0.21 -0.06  -0.22 -0.17 -0.00 0.06 -0.10
% o 5 Science 0.02 -0.19  -0.09 0.01 -0.07  -0.02 0.21 0.83 0.82 0.10 0.55 0.49 0.05 0.08 0.17
~ = % Non-Science -0.07  -0.07 -0.18 -0.04 -0.12 -0.15 0.15 0.49 0.42 0.21 0.73 0.61 0.16 0.25 0.22
ale Non-graduate -0.03  -0.13 -0.14 -0.02  -0.07  -0.08 -0.05  -0.17  -0.18 -0.05  -0.15 -0.19 -0.01  -0.03  -0.08
@ Science 0.00 -0.22  -0.19 0.01 -0.16  -0.11 0.31 0.82 0.77 0.23 0.54 0.46 0.08 0.14 0.09
g Non-Science -0.03  -0.23 -0.22 -0.05 -0.28 -0.24 0.13 0.42 0.45 0.23 0.71 0.72 0.06 0.19 0.22
= Non-graduate -0.04 -024 -0.24 -0.04 -0.20 -0.20 -0.06 -0.21  -0.22 -0.06  -0.16  -0.18 -0.04  -0.09  -0.09

Notes: “Cfl” refers to the counterfactual while “N.F. Cfl” refers to the counterfactual with no search frictions.



Table B19: Average posterior variances after last period of college for
different choice paths in baseline model

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)

Continuous enrollment, graduate in science with x years of in-school work experience

z=0 0.17 0.08 0.10 0.18 0.23 1.33
x > 0, white collar only 0.06 0.06 0.10 0.18 0.23 0.47
x > 0, blue collar only 0.12 0.03 0.10 0.18 0.22 3.55
x > 0, mixture 0.06 0.03 0.10 0.17 0.22 1.02
Continuous enrollment, graduate in non-science with x years of in-school work experience

z=0 0.16 0.08 0.19 0.09 0.22 2.99
x > 0, white collar only 0.07 0.06 0.19 0.09 0.21 0.98
x > 0, blue collar only 0.12 0.03 0.19 0.09 0.21 8.99
x > 0, mixture 0.06 0.03 0.18 0.09 0.20 1.87
Stop out (SO)

SO, graduate in science 0.10 0.03 0.13 0.15 0.19 0.95
SO, graduate in non-science 0.10 0.03 0.19 0.11 0.18 3.13
SO then DO, start in 2yr 0.11 0.03 0.32 0.28 0.14 5.12
SO then DO, start in science 0.11 0.03 0.16 0.20 0.18 1.67
SO then DO, start in non-science 0.11 0.03 0.25 0.16 0.18 2.67
Truncated 0.10 0.02 0.24 0.20 0.16 5.42
Drop out (DO) after x years of school

=1 0.14 0.05 0.36 0.33 0.21 16.57
=2 0.13 0.05 0.31 0.27 0.19 8.08
x=3 0.13 0.05 0.26 0.22 0.18 4.37
r=4 0.12 0.04 0.23 0.19 0.18 2.23
z>5 0.10 0.03 0.21 0.16 0.16 2.25
Never attended college

Never attend college 0.10 0.02 0.41 0.40 0.26 26.35

Time 0 population variance 0.17 0.08 0.41 0.40 0.26

Notes: Average posterior variances of ability across individuals are reported in each cell. This table is constructed using 10
simulations of the baseline model for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table B20: Average abilities for different choice paths in full-information
no-search-frictions counterfactual scenario

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience

x=0 -0.06 -0.17 1.29 0.79 0.15 0.93
x > 0, white collar only 1.12 0.50 1.03 0.76 0.11 1.16
x > 0, blue collar only 0.29 0.27 1.17 0.73 0.21 5.19
x > 0, mixture 1.06 0.66 1.05 0.68 0.20 2.61
Continuous enrollment, graduate in non-science with x years of in-school work experience

x=0 -0.23 -0.61 0.66 1.11 0.44 1.79
x > 0, white collar only 0.66 -0.05 0.44 0.97 0.35 1.24
x > 0, blue collar only 0.12 -0.15 0.66 1.09 0.50 6.50
x > 0, mixture 0.63 0.02 0.52 1.00 0.51 2.46
Stop out (SO)

SO, graduate in science 0.47 0.29 1.07 0.79 0.20 1.74
SO, graduate in non-science 0.08 -0.27 0.51 0.93 0.41 3.60
SO then DO, start in 2yr -0.17 -0.11 -0.30 -0.31 0.05 3.32
SO then DO, start in science -0.27 -0.14 0.28 0.06 0.01 1.88
SO then DO, start in non-science -0.18 -0.22 0.10 0.30 0.19 3.36
Truncated -0.17 -0.20 0.06 0.14 0.06 4.46
Drop out (DO) after x years of school

r=1 -0.11 -0.00 -0.41 -0.46 -0.17 14.79
r=2 -0.14 -0.04 -0.20 -0.20 -0.02 7.54
x=3 -0.24 -0.13 0.13 0.18 0.11 5.05
r=4 -0.23 -0.18 0.22 0.21 0.12 2.20
x>5 -0.20 -0.22 0.24 0.28 0.23 1.11

Never attended college
Never attend college -0.05 0.08 -0.57 -0.65 -0.32 29.06

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the counterfactual
model described in the title for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table B21: Average abilities for different choice paths in full-information
reduced-credit-constraints counterfactual scenario

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience

xr=0 0.13 -0.03 1.19 0.76 0.14 1.49
x > 0, white collar only 1.19 0.65 0.99 0.70 0.18 0.68
x > 0, blue collar only 0.40 0.33 1.14 0.69 0.17 7.02
z > 0, mixture 1.30 0.78 0.91 0.61 0.14 1.48
Continuous enrollment, graduate in non-science with x years of in-school work experience

z=0 -0.20 -0.60 0.63 1.11 0.45 2.27
x > 0, white collar only 0.92 0.03 0.40 0.94 0.47 0.65
x > 0, blue collar only 0.21 -0.12 0.58 1.02 0.41 9.32
x > 0, mixture 0.87 0.23 0.34 0.87 0.36 1.10
Stop out (SO)

SO, graduate in science 0.23 0.08 1.01 0.75 0.24 1.97
SO, graduate in non-science -0.00 -0.26 0.52 0.88 0.42 4.10
SO then DO, start in 2yr -0.20 -0.14 -0.41 -0.40 0.01 4.05
SO then DO, start in science -0.37 -0.14 0.25 -0.00 -0.06 2.05
SO then DO, start in non-science -0.31 -0.24 0.02 0.24 0.19 3.95
Truncated -0.18 -0.16 0.02 0.08 0.10 6.40
Drop out (DO) after x years of school

r=1 -0.09 0.05 -0.49 -0.53 -0.19 13.71
r=2 -0.19 -0.06 -0.26 -0.28 -0.10 6.81
r=3 -0.25 -0.14 0.01 0.06 0.08 5.06
r=4 -0.29 -0.16 0.20 0.17 0.11 2.77
x>5 -0.20 -0.26 0.19 0.21 0.06 1.34

Never attended college
Never attend college -0.03 0.16 -0.62 -0.71 -0.33 23.79

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the counterfactual
model described in the title for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table B22: College completion status frequencies: data, baseline model,
static model

Baseline Static

Status Data  model model
Continuous completion (CC), Science 2.88 3.14 3.12
Continuous completion (CC), Non-Science  7.21 7.84 7.29
Stop out (SO) but graduated Science 0.24 0.45 0.45
Stop out (SO) but graduated Non-Science  1.23 1.58 1.52
Stop out (SO) then drop out 2.70 6.02 5.81
Drop out (DO) 20.83  26.08  25.93
Never went to college 28.61  32.12 33.88
Truncated 36.30  22.77 22.00

Notes: Model frequencies are constructed using 10 simulations of the structural
model for each individual included in the estimation. Counterfactual frequencies use
10 simulations of each counterfactual model. We set the panel length in the model
to be the same as the panel length in the data. This is because the model assumes
random attrition conditional on all observables and unobservables.

Completion status is computed on the first 10 periods of data (i.e. assuming that
college is not an option after period 10).

“Truncated” refers to those who were enrolled in period 10.
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C Estimation of measurement system

This appendix section provides an overview of how we specify our measurement system.

C.1 Measurement system

C.1.1 Dimensions of unobserved types

We assume that there are three different dimensions of discrete unobserved types. Each of

the dimensions is associated with S’ heterogeneity types, for a total of S™ = [[5_, S7 types:
1. Schooling ability
2. Schooling preferences
3. Work ability and preferences

In practice, for our baseline specification we set each S, = 2 for a total number of S =8

types. Below, we detail the measurements for each of these dimensions of types.

C.1.2 Measurements of unobserved types

Here we outline the measurements used for each of the dimensions of unobserved types.

Schooling ability The schooling ability type is measured from cognitive test scores (each
of which has been z-scored relative to the entire NLSY97 sample) taken from the Armed
Services Vocational Aptitude Battery (ASVAB) and the SAT I exam:

o ASVAB Arithmetic Reasoning

« ASVAB Coding Speed

« ASVAB Mathematical Knowledge
o ASVAB Numerical Operations

o ASVAB Paragraph Comprehension
o ASVAB Word Knowledge

o SAT I Math
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e SAT I Verbal

Each of these cognitive test scores has a continuous distribution.

Schooling ability and preferences To identify schooling preferences, we make use of
measures of schooling ability and preferences, from which the marginal distribution (of the

joint system) identifies the schooling preferences. The measurements are:

o Number of Advanced Placement (AP) tests taken
o Number of times the individual reported being late for school without excuse

o How strongly the individual agrees with the following statement: “When I was in

school, I broke the rules regularly”

o How many hours per week the individual spent taking extra classes (such as music

lessons, etc.)

o If the individual ever took classes during a school break (this could either be for

remedial or accelerative reasons)

o If the individual took classes during break, the reason for doing so (e.g. “To accelerate,

for fun, for enrichment” or “To make up classes”)

Each of these measures is discrete, taking on various numbers of effective categories. For the

number of hours spent in extra classes, we treat the distribution as a censored variable.

Work ability and preferences We have no measures that separately inform us about the
individual’s work ability and preferences, so the final dimension of unobserved heterogeneity
types is combined. As in the case of schooling ability and preferences, the measurements of

work ability and preferences are discrete:

« How strongly the individual agrees with the following statement: “I have high standards

at work”

o How strongly the individual agrees with the following statement: “I make every effort

to do what is expected of me”

» The individual’s perceived likelihood of working part- or full-time at age 30 (reported

as a percent chance on a scale from 0-100)

o The parent’s perceived likelihood of the individual working part- or full-time at age 30

(reported on the same scale as above)
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C.2 Estimation

To estimate the measurement system, we use a variety of regression models. Each of the left-
hand side variables is a measurement described in the previous section, and the right-hand
side variables consist of demographic and family background variables, as well as dummies
for unobserved type. As demographic and family background variables, we use indicators
for race/ethnicity, birth year dummies, whether either of the individual’s parents is a col-
lege graduate, and the individual’s family income when he was a teenager (in thousands of

dollars). For individual i and measurement b, we have the following equation:
Yibr = XiPy + &y + €3y (C.1)

where X; consists of the demographic and family background variables, &;, is a set of dummies
indicating which of r types the individual belongs to, and ¢, is measurement error.

Note that, in the measurements for schooling ability and preferences, there will be two
different sets of 7’s included (i.e. the type dummies associated with schooling ability, and

the type dummies associated with schooling preferences).

C.2.1 Component likelihood functions

Continuous measurements For measurements that are continuous, we assume that ¢;;, ~

N (0,07) which yields the following likelihood:

Cco 1
o (O Y, Xiy &) = — ¢ (
ofs

(C.2)

Yirr — Xy — firwb>

Op
where ¢ (+) is the density of the standard normal distribution.
Censored measurements For measurements that are censored below at value y, we use

the Type I Tobit likelihood. We modify the likelihood to allow for a third case where we

know that the value of y is above y but do not know its exact value:
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2 I(Yibr >y, Yibr observed)
1 Yivr — Xzﬁb - Eirwb =
zbr (@ yzbrangzm ) = {QO ( X

Ob Oy
3 I(yivr=y)
Xi ir - =
{1—‘1’< L S y)} X (C.3)
Ob
{ (Xsz + &y — y) }I(yibr>y7 Yibr Unobserved)
P
Ob

where [ (-) is the indicator function and @ (+) is the CDF of the standard normal distribution.

Discrete ordered measurements For measurements that are discrete but have an inher-
ent ordering (e.g. number of AP tests taken, degree to which individual agrees with various
statements; etc.), we assume that ey is consistent with the ordered logit model. This yields
the following likelihood:

£'(i)br (@;yibT7Xi7€Z7’ H ozg;zb;_] (C4>
where 1[] is the indicator function, and where

Po,ijbr =Pr (yibr = ])
=Pr (Hj—Lb < X;Bp + Eipwn, < Féjb)
_ 1 1
I +exp (XiBb + Lipw — fijb) 1 +exp (XiBb + &irtwy — ’fjfl,b)

when €;;, is distributed Type 1 Extreme Value, and where ko, = —o0 and x» = oo.
Discrete unordered measurements For measurements that are discrete but have no
inherent ordering (e.g. did the individual take extra classes; what was the reason the indi-

vidual took extra classes; etc.), we assume that € is consistent with the multinomial logit
model. This yields the following likelihood:

E?br (@;yibr7Xi7€zr H ufﬁ;_] (06)
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where

exp (Xigjb + fir%‘b)
>k exp (Xi By + Eirvin)

Pu,ijbr -

when €5, is distributed Type 1 Extreme Value

C.2.2  Joint likelihood function

The joint likelihood function for the entire model (conditional on unobserved type) is then

'Cir: H ?l?r H fi:l?r H ‘C?br H ‘C?br (CS)

becont bEcenso beord bEunord
where cont stands for “continuous”; censo stands for “censored”; ord stands for “ordered
categorical”; and unord stands for “unordered categorical.”

C.2.3 The EM algorithm

We use the EM algorithm to iteratively estimate the measurement models (using the com-
ponent likelihoods in Section C.2.1), treating unobserved type as if it were observed. We
then update the probability of being a particular type using the joint likelihood of the mea-

surements (as specified in Section C.2.2) according to

Ty Eir

7}?/: 1 Tyt Eir’

Qir = (C.9)

C.3 Summary of specification assumptions

Table C1 summarizes the assumptions we make about the measurements.
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Table C1: Summary of assumptions about measurements

Measurement Latent type Distribution Estimator Categories
ASVAB Arithmetic Reasoning school ability continuous normal MLE —
ASVAB Coding Speed school ability continuous normal MLE —
ASVAB Mathematical Knowledge school ability continuous normal MLE —
ASVAB Numerical Operations school ability continuous normal MLE —
ASVAB Paragraph Comprehension school ability continuous normal MLE —
ASVAB Word Knowledge school ability continuous normal MLE —
SAT I Math school ability continuous normal MLE —
SAT T Verbal school ability continuous normal MLE —

Number of AP tests

Number of times late for school
Broke rules regularly

Hours per week took extra classes
Took class during break?

Reason took class during break

school abil. & pref.
school abil. & pref.
school abil. & pref.
school abil. & pref.
school abil. & pref.
school abil. & pref.

ordered categorical
ordered categorical
ordered categorical
censored (y = 0)
binary

binary

ordered logit
ordered logit
ordered logit
normal MLE
binary logit
binary logit

0, 1, or 2+ tests

0,1, 2, 3,4,5, 6-10, or 11+ times
1-7 Likert scale

yes or no

1) for enrichment; 2) to catch up

Have high standards at work

Make every effort to do what is expected
Percent chance work at age 30

Parent: percent chance ¢ works at age 30

work abil. & pref.
work abil. & pref.
work abil. & pref.
work abil. & pref.

ordered categorical
ordered categorical
ordered categorical
ordered categorical

ordered logit
ordered logit
ordered logit
ordered logit

1-7 Likert scale
1-7 Likert scale
0-75%, 76-90%, 91-100%
0-75%, 76-90%, 91-100%




D Integration of missing outcomes

This appendix details our treatment of missing majors and GPA observations. In the estima-
tion, we treat the first missing major or GPA observation as a permanent unobserved type,
which we integrate out using a modified version of the EM algorithm detailed in Subsection
5.5.

The notation used throughout this section mirrors that which is used in that subsection.
Additionally, we introduce two time-invariant indices: (i) m € {science, non-science}, which

indexes missing major; and (i) g € {1,...4}, which indexes missing GPA quartile.

D.1 E-step

At the E-step of our algorithm, we need to take appropriate likelihood contributions for
each individual’s observations. The key idea is that the entire string of future likelihood
contributions depends on the missing choice that is being integrated over. To the extent
that the learning likelihood is non-separable across time (because of person-specific ability
that is being learned about), we treat the integration accordingly. Below, we list the joint
probabilities of ¢ being of a particular unobserved type and unobserved major or GPA quartile

(if either or both of these outcomes are missing).

7Tr£zr

Pr(r|i) = ¢ = SF ol (D.1)

Pr(r,ml|i) = Pr(r|i) Pr(m|r,i) = Girm = @r ST idzgj"zgf:gjy)ws) (D.2)
Pr(r, gli) = Pr(rl)) Pr(g]r, 1) = Girg = G ff ‘Z’ gzz;g (D.3)
Pr(r,m, gli) = Pr(r|i) Pr(m, g|r,i) = Qirmg = quffj:gg Zd: (( n;i”zzzz))ii (D.4)

where (D.1) holds for those who have no missing data and is the same as (38) and (C.9),
(D.2) holds for those who only have a missing major, (D.3) holds for those who only have
a missing GPA, and (D.4) holds for those who have both outcomes missing. Note that, for
(D.3) and (D.4), the integral in the numerator is over quartile g of the GPA distribution,

while in the denominator we integrate over the full support of the GPA distribution.
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D.2 M-step

At the M-step of our algorithm, we assign each individual a corresponding weight depending

on his missing outcome status.
« all who never have a missing major or missing GPA: weight by ¢;,

 those who have a missing major but no missing GPA: weight by ¢;,.,, for all observations

of the individual

« those who have a missing GPA but no missing major: weight by ¢;,, for all observations

of the individual

« those who have both a missing major and missing GPA: weight by ¢;,g for all obser-

vations of the individual

For the choice M-step, we construct £, to estimate a weighted multinomial logit, using
Qirmg> Qirms Qirg, OF Qir as the weights—depending on what is observed and what is unobserved.
This multinomial logit is estimated on the entire population. At this point we take as given
the parameter values from the measurement system likelihood function, denoted in (38) and
(C.8)—(C.9) as L;,.

D.3 Subsequent stage estimation

The estimation steps described above pertain only to the first two stages of our model, in
which we estimate the measurement system and recover the distribution of missing majors
and GPAs.

In the subsequent stages of our estimation procedure, we take as given the ¢’s listed
above and then estimate the learning parameters (i.e. the v;’s, 7’s, \;’s, \/’s, A and 0?) by
weighted m-estimation.

Once we obtain estimates of the learning parameters, we take these estimates as given and
then estimate the graduation probabilities, the aggregate labor market time series process,
CCPs (including white collar job offer arrival parameters), and the structural flow utility
parameters. In each subsequent stage, we continue to use the weights described above for
each individual, depending on his missing outcome status and measurement system likelihood

value.
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E Details on consumption

This appendix details how we model consumption. Individuals make decisions in part based
on their expected utility of consumption, where the utility of consumption follows a constant
relative risk aversion form. Consumption is supported by some combination of labor income,
parental transfers, educational grants or loans, or the social safety net. We detail below each

of these components.

E.1 Wages

Our model includes log (hourly) wage equations for the blue- and white-collar sectors. We
also allow individuals to choose between part-time and full-time employment. Denoting by w
the log wage and by h the annual hours worked, we compute E (W) using the work intensity

and number of weeks worked, as follows (assuming log wages are normally distributed as in

(6)):

62
E(W][X)=hexp <5t + Aot + Au (Yoo + Xawyu + Au) + ;) (E.1)

where

40 - 52 if working full-time in October
20 -52  if working part-time in October

As we only model employment decisions in the month of October, we verify, using the
individuals in our data, that the values chosen above correspond to the median individual
choosing each work alternative in October. Specifically, the median full-time October worker
reports working 40 hours per week and 52 weeks in the year. Likewise, the median part-
time October worker reports working 20 hours per week and 52 weeks in the year. As a
reassurance, the median among those who are non-employed in October is 0 weeks worked

in the year.

El



E.2 Parental transfers

For those who are enrolled in college, we impute (expected) parental transfers separately
by college sector. Our specification is in the spirit of Johnson (2013). Parental transfers
have two components: (i) a probability of receiving any transfer at all; and (i) a transfer
amount conditional on receiving a transfer at all. Following Johnson, we assume that parental
transfers are taken as given, but that actual transfer amounts depend on the individual’s
school enrollment decision (i.e. 2-year college is less expensive than 4-year college, so the

individual would expect a lesser amount of parental transfers if enrolling in the former).

E.2.1 Logit model of receiving any transfers at all

We use a logit model to compute the probability of receiving a parental transfer while
enrolled in college, where we estimate the parameters separately by sector of college (2-year

vs. 4-year):

eXp (X BPT)

L+ exp (X er) (2

Pr(PT >0]|X) =

We include the following in X:
o age
o log family income

« race/ethnicity dummies

E.2.2  Log transfers conditional on receiving any

We estimate log transfers conditional on receiving positive transfers using a log-linear regres-
sion model (again, separately estimating the parameters by sector of college). We include

the following as covariates in the regression:
o age
e log family income
 years of college completed

« race/ethnicity dummies
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E.2.3 Fxpected parental transfers

Using the two components of the transfer function, we then compute expected parental

transfers as follows:

E(PT|X)=Pr(PT >0|X) x E [exp (log (PT)) | X, PT > 0]

e (X5, ) . (XEM R ) (E.3)

1+exp (X EW 2

where Bpr are the estimated logit parameters, and Bln and &, are the estimated OLS pa-

rameters (0, is the root mean squared error of the regression model).

E.3 Tuition, Grants, Loans, and EFC

For those who are enrolled in college, we impute the out-of-pocket cost of attending college.
In order to capture realistic gradients in need- and merit-based grants, we make use of the
following three variables: Expected Family Contribution (EFC), parental income, and SAT
math and verbal scores.

Data on grants and loans are included in the NLSY97, but are missing at sufficiently high
rates as to render them unusable for our analysis. Moreover, it is difficult to separate need-
based from merit-based grants. To combat these limitations, we use an outside survey (the
National Center for Education Statistics 2008 National Postsecondary Student Aid Survey
or NPSAS) to compute the mapping between loans (or grants) and EFC, family income, and
SAT score. It is crucial to capture both family income and SAT score, as students with lower
income will tend to receive more generous grants, as also will students with greater academic

preparation (measured by SAT or ACT-equivalent score), through academic scholarships.

E. 3.1 Tuition

We impute tuition as the average annual tuition among men in the 2008 NPSAS. For four-
year colleges, we look only at public institutions.*®> This value is $6,394. For two-year

colleges, the value is $1,380.

ASMany students at elite private universities receive substantial grants to offset the higher tuition sticker
price. We discuss how we handle this in the ensuing paragraphs.
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E.3.2 Grants

We impute grants using data in the 2008 NPSAS. We follow a similar procedure as with

parental transfers: we first impute the probability of having positive levels of loans or grants,

and then impute the amount conditional on having any. The only difference is that the

NPSAS interface we use does not allow us to specify log grants as the dependent variable.”%
We then obtain

E(G|X)=Pr(G>0|X)x E[G|X,G> 0]
eXp<XEpr,G>

= (E.4)
B 1+ exp <XEPT’G) * <X6G>

We estimate these models separately by college sector (2-year vs. 4-year). Because
there is little merit-based aid in 2-year colleges, and because 2-year colleges do not require
prospective students to take the SAT or ACT, we exclude entrance exam scores from the
2-year college specification.

As right-hand-side variables, we include deciles of the EFC distribution, deciles of the
family income distribution, and deciles of the SAT (or ACT-equivalent) math and verbal
distributions.

We include as additional controls deciles of the tuition level of the university that the
NPSAS respondent is attending. This nets out unobservable college quality (which we do

not model) from the imputed levels of grants.

E.3.8 Loans

To impute loans, we also use data from the 2008 NPSAS. However, we model loans differently
than grants because loans eventually need to be paid back. The main difference with loans is
that we treat loans as deterministic. That is, an individual has an expectation regarding the
amount of loans he will be required to take up if he decides to attend 2-year or 4-year college.
This expected loan amount has no uncertain component with regards to consumption. We

obtain expected loans in a similar way as we impute grants:

A6The NPSAS data is confidential, but the NCES allows researchers to access it through its PowerStats
interface. NCES PowerStats has limited flexibility in terms of regression specifications, but it has enough
flexibility to serve our purposes.
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E(L|X)=Pr(L>0|X)xE[L|X,L> 0]

€xXp <XBpT,L>

- 1+ exp (XEpT,L> ’ (X§L>

(E.5)

As with grants, we estimate these models separately by college sector (2-year vs. 4-year).
The only difference is that we estimate loans on the age-18 subsample of the NPSAS, whereas
with grants, we include all enrolled students. The right-hand side variables are identical to
the model specification for grants. See Appendix G for more details on how we treat loans

in our dynamic model.

E.3.) EFC

The EFC is an important input to our method of imputing grants and loans. Here, we
describe our procedure for computing the EFC using observable components of the NLSY97,
along with calibration of other components that are not observed in the NLS97.

The EFC takes as inputs information on parental taxable income and assets and student
taxable income and assets.*” The goal of the EFC is to summarize a student’s eligibility for
need-based financial aid. Students with lower EFC values may be eligible for more generous
financial aid. The level of generosity is specific to the institution.

The EFC is a highly non-linear function of assets and income for both parents and stu-
dents, as well as characteristics of the family. We impute each individual’s EFC using a sim-
plified calculator available at http://www.collegegold.com/calculatecost/efcworksheets.

We briefly cover below how each component contributes to the EFC.

EFC = f (A" 17, X, A% I°) (E.6)

where A denotes assets, I denotes income, and P and C' superscripts denote parent and
child, respectively. X represents characteristics about the parent or family. These include
the parent’s age and marital status, the size of the family, and the number of children
currently in college.

We now outline the contributions for each component of the EFC. We denote by " the

ATThe following commonly held assets are not considered in the EFC: equity of primary residence, retire-
ment funds, and life insurance.

E5


http://www.collegegold.com/calculatecost/efcworksheets

EFC contribution from each component, as opposed to the amount of each component (which
is used in (E.6)). The contributions are also, of course, functions of the amounts themselves.

We suppress the amounts to conserve notation.

AP (X) =0.12 {AP ~ D (X) 1732 [(1 [Smgleff.g n ﬁmamed]ﬂ }

(E.7)

where 1[-] is the indicator function, and where

DAP(X) = min {$250k,0.54% 7} 1 [APF > 0]
D' (X)) = FICAY + Tax™" +0.061" + $10k 4 (H$3.46k — N$2.46k) +
min {$3.1k,0.351" } (E.8)
DA (X) = min {$250k,0.54%C} 1 |AP€ > 0]
DO (X) = FICA® 4 Taz"™® +0.031¢ + $2.55k

where AP'F denotes business/farm assets of the parent and AZ“ for the child; FIC' A denotes
federal payroll tax (for either parent or child); Taz denotes federal income tax paid (for
either parent or child); H denotes number of people in household; N denotes number of
children in college.

Combining (E.7) and (E.8), we have

0 if 17 < $20k
EFC = {17 (X)+I°(X) if I € ($20k, $50k) (E.9)
AP (X)) + 1P (X) + A (X) + I (X) if IP > $50k

E.3.5 FEFC components observed in the NLSY97
We use the following NLSY97 variables as inputs into the EFC function:
o Household size in 1997

» Parent age
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Parent marital status
Parent income at age 17
Parent net worth at age 17

— We use the 2004 Survey of Income and Program Participation (SIPP) to estimate
the function mapping household net worth to the subset of household assets that
enter into the EFC formula. We then use this function to impute parental EFC

assets as a function of parental net worth.*®
Child income in every year of survey

— We assume that past income has no stochastic element, and that it does not vary
except by previous work status. This assumption is innocuous, and is invoked
in order to allow us to preserve the properties of our dynamic model for ease of
estimation. In practice, EFC varies little with income, holding fixed work intensity
and all other EFC inputs.

E.3.6 EFC components not observed in the NLSY97

While the NLSY97 collects detailed data, there are a number of EFC inputs that are not

collected. Here we briefly discuss how we handle these.

E.4

Income taxes paid. For this, we impute income tax using the average tax rates reported

in Guner, Kaygusuz, and Ventura (2014)

Number of children in college. We calibrate this number to 1, which is the median in
the NLSY97

Business assets. We calibrate these to $0.

Child assets. We calibrate these to $0.

Flow utility of consumption

We assume that individuals have CRRA preferences over their consumption, with a risk

aversion parameter set equal to 6, which is a parameter to be estimated. It follows that the

flow utility of consumption is given by:

ASEFC assets are allowed to be a function of the following variables: a quadratic in net worth, log family
income, and the full set of interactions between parental education and race/ethnicity.
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u(C) (E.10)
where the consumption level C' is given by Equations 7 and 8. We distinguish three cases:

1. Not in school and not working:

o-?
EU(C)) = 13 (E.11)
2. Working and not in school:
B(w(e) = 2 C)
] (E.12)
= X (Fu(mC)C? + (1 = Fy(nC))E(2Z]Z < C'))

where (denoting by h the annual hours worked) Z = exp((1—0)In W), and F,(+) is the
cdf. of the (normal) distribution (my,, o,) of w, where m,, = log(h) + Ao + A (X' +
E(A,|Z;)) and 02 = 02 + N\3Var(A,|Z;), where ) is the intercept for the productivity
index for wages and A; is the loading on the productivity index for wages, with (A, A1)
normalized to (0, 1) for out-of-school wages. Note that Z is log-normally distributed,
with parameters m, = (1 — 6)m,, and 0% = (1 — 0)?02. Tt follows that the conditional

expectation term F(Z|Z < C 1_9) is obtained using the formula (and setting a = Ql_e):

CD( In(a)—m,—o? )
E(Z|Z < a) = exp(m. + 0%/2) q)(ln(;)’z_mz) (E.13)

Oz

where ®(-) denotes the cdf. of a standard normal distribution.*’

A9For obtaining the expected utility of consumption in future periods (which is required according to our
finite dependence framework), we simply set my 11 = My + @6 and o2, ;1 = o2, + O'g, where ¢ is the
autocorrelation coefficient on the year dummies §; and O'g is the variance of the residuals of the AR(1) year
dummy model.

We similarly augment the mean and variance of wages with the variances mentioned above for step (3)
discussed below.
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Note that the expression above applies to # > 1. If §# < 1, the expression becomes:

E(max! (¥, 0))

1-0 (E.14)
x (F,(n0)C'" + (1~ F,(nC)E(Z]Z > C'))

EUC)) =

1-6

where the conditional expectation term E(Z|Z > C'™?) is obtained using the formula
(and setting a = C'77):

1— q)(ln(a)—mz—cf)
E(Z|Z > a) = exp(m. + 02/2 2z E.15
(Z]Z > a) = exp( ) g (E.15)

Oz

If & = 1 we have logarithmic preferences and the expected utility of consumption is

given by:

EUC))=F,(nC)InC+ (1 - F,(InC))E(w|w > InC) (E.16)

where F,(+) is the cdf. of the normal distribution with moments (m,,, o,,) given above,

and the truncated mean F(w|w > InC) is given by:

E(w|lw >1InC) =my + oy (%) (E.17)

3. In school:

E(max!'~?(C*, ()

B(U(C)) = =~

(E.18)

1. and 2. are straightforward to compute and do not require numerical integration. 3.
does require numerical integration over the (log-normal) distributions of parental transfers

PT, grants G, and (for school and work only) in-school wages .

Specifically, the expected utility of consumption for the school and no-work alternative

is written as follows (keeping the conditioning on the observed characteristics X implicit):
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BEU(C)) = 1i9 [ max!=0(C", C) for (p1) fog)dpteg (E.19)

where fpr(-) and fg(-) respectively denote the pdf. of the log-normal distribution of parental
transfers and the normal distribution of grants, and C* is expressed as a function of parental
transfers, grants and loans as in (7). Recall that we treat expected loans as deterministic
with respect to consumption.

Similarly, the expected utility of consumption for the school and work alternatives is

written as follows:

E(U(C)) = 1i6 [ max=(C", ) for (1) folg) fir (W)dptdgd W (E.20)

where fpr(), fw(:), and fg(:) respectively denote the pdf. of the log-normal distributions
of parental transfers and in-school wages and the normal distribution of grants, and C* is
expressed as a function of parental transfers, loans, grants, and wages (see (7)).

In the following two subsubsections, we provide detailed examples of consumption for the

case of not working in college, as well as for the case of working while in college.

E.4.1 Ezample: Consumption in college (and not working)

Expanding out all notation and assuming that consumption in college (no work) is solely
a function of parental transfers (i.e. the individual received no grants), we would have
(combining (E.3) and (E.19))

1 [e%s)
BU(C)IX =) = /_ ~max! (e 41— £,C) e (pt)dpt

1-6

=(1—=Pr(PT > 0|X =1)) x f p
1 o0 1

+Pr(PT > 0|X =x) x T / max'? (e’ + 1 —t,0)—o(pt — X B,)dpt
- —00 Oin

(E.21)

where pt = log(PT) refers to log-parental transfers, [ refers to the individual’s deterministic
amount of expected loans, ¢ refers to tuition, and ¢(-) denotes the pdf. of a standard normal

distribution.
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The full version of (E.19) in the case where the student receives grants would then be

1 1 1
EUONX =2)=1— //_OO max' (" + g +1 - t,Q);so(pt = XPin) —wlg — X5,)dptdg

g

:1559/7m)maxl9®”—%g+¢——m<bdf%pwdF@ﬁ

=Pr(PT =0)Pr(G =0) x
+Pr(PT > 0)Pr(G =0) x
+Pr(PT = 0) Pr(G > 0) x

+Pr(PT > 0) Pr(G > 0) x

Cl—@
1-46

(E.22)

1_9/wnmf4@m+z—anF@w

1
1—-6

1
1-60

| maxd g+ 1 1,C)aF(g)

/OO max' "’ (e” + g + 1 —t,C)dF (pt)dF (g)

where pt = log(PT) refers to log-parental transfers, g refers to grants (in levels), [ refers to deterministic loans (in levels),

and ¢ (-) each denote the pdf. of the standard normal distribution.

E. 4.2  Example: Consumption while working in college

Expanding out all notation and considering the case of working while in college (and denoting h the annual hours worked),

we would have



¢ld

1
_ log(h)+w pt _ _ — Ay —
EUC)|X =x) 1_9// max' "~ +e”+g+1 t,C’)U e(w —log(h) — Ao — M (XSG + A))x

1
Bfwm X@da e(g X&)ZU—XMmme
- / / max' (B Lot 4 gy |t CVAF (w)dF (pt)dF(g)

—=Pr(PT = 0) Pr(G (st 41—t O)dF (w) (E.23)

+Pr(PT > 0) Pr(G // max! 0 (el Pt |t CYAF (w)dF (pt)

9

+ Pr(PT = 0) Pr(G > 0) x / max'~? (PN g 1| — ¢ C)dF(w)dF(g)

1 —9
+Pr(PT > 0) Pr(G > 0)

— 7 // max! 0 (el 1Pt g ]t C)dF (w)dF (pt)dF(g)

where the notation is as on the previous page, and where A denotes the individual’s prior ability belief as of time ¢ (i.e.
E(A|Z;)). Note that oy, is as defined above: o, = \/ 02 + N3V (A,|Z;) where A is the productivity index loading on in-school

wages (A; = 1 for out-of-school wages).




E.5 Risk aversion parameter ¢

We set the risk aversion parameter 6 equal to 0.4. We choose this parameter as follows.
We first implement a grid search procedure for the static choice model (stage 4 in Table
B5), using values of 6 in the interval [0, 2] in increments of 0.05. We choose this interval
because it covers several different values from the literature, ranging from risk neutrality to
the value of 2 used by Hai and Heckman (2017) and including the value of 0.48 in Keane
and Wolpin (2001). This preliminary step results in a value of # equal to 0.15. Repeating
a similar grid search procedure based on the dynamic choice model, conditional on the
static choice § = 0.15, yields § = 0.4. While for simplicity we set a common 6 = 0.4 for
the static and dynamic choice models, our estimation results (available upon request) are
quantitatively robust to the use of § = 0.15 and # = 0.4 in the static and dynamic choice

models, respectively.
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F More details on finite dependence

This appendix section details the mathematical derivation of our difference in value functions
listed in (24). The goal is to find an expression for v;; — v, that is not recursive. We
accomplish this with finite dependence. For the v;;; conditional value function, individuals
choose home production in both t 4+ 1 and ¢ + 2. For the v, conditional value function,
individuals choose (j, k,[) in t + 1 and home production in ¢ 4+ 2. Because of the exogenous
white collar job offer arrival rate 5\@1, we respectively weight the acceptance and rejection

probabilities in ¢ + 1 (in the event that ¢ receives an offer) by /\(% and 1 — ;\ﬁl) . This allows

us to achieve the cancellation in ¢ 4+ 3 that is required for estirri;tion of the ?rrllodel.

We make three simplifying assumptions that are crucial to the validity of finite depen-
dence: (i) the utility of rejecting a white-collar offer is same as the utility of not receiving
a white-collar offer, i.e. there is no “discouragement effect” to not receiving an offer; (i)
there is no human capital depreciation; and (7i7) loans evolve in a specific manner detailed
in Appendix G. For expositional purposes, we simplify the states to be work experience (z)
and previous decision (d;_1).

It is also helpful to keep in mind that the ex ante value function V; contains multiple
dimensions of uncertainty: job offer arrival; aggregate labor market state; college graduation;
wage and grade signals; and preference shocks.

Throughout this appendix, we make use of the conditional choice probability mapping
of Hotz and Miller (1993) and Arcidiacono and Miller (2011):

Vi(Zir) = vju(Zi) — Inpju(Zi) + ¢ (F.1)

for all 4, (j, k,1) and t, where ¢ is Euler’s constant. This holds by virtue of our assumption
that the preference shocks are distributed Type I extreme value. Note that, because we are
interested in differenced conditional value functions v;i — vy, ¢ drops out of the expression
and we accordingly suppress it for expositional purposes in what follows.

We abbreviate, for all (4, k,1) and ¢, ujx(Zi) as wjpy and p;x(Zit) as pje to conserve on
notation. We also omit dependence of v;; on (Z;;) and all E; operators. Finally, all utilities

and probabilities are conditional on unobserved type r, which we also suppress.
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F.1 Paths not involving four-year college

F.1.1  Work-home-home path with frictions

Vit = Wk + BE [Vigr (w0 + 1, de = (4, K, 1))]

= Wiy + B Xgikll)Et [‘/t-‘rl (xt + 17 dt = (]7 k? l) ,Offel't+1 = 1)] +
™ (1= AED) By [Via (2 + 1,di = (G, b, 1) , offer 1y = 0)]
= wi + B S‘Eikll) {uqift+l —Inppiq + Vit (¢ +1,dpy1 = h)} + (F.2)
! (1 - )‘wgikll)) {uZt—i-l —Inph g+ BVige (2 + 1, dpy = h)}
= Ujkit + 5 t+£(j{]€l) ht—H} + 52%+2 (ft -+ 1, dt+1 = h)
(L= A5Y) (= npii )

t+1

where superscript w signifies “received white collar offer” and superscript n signifies “no offer
received.” Because we assume that “received an offer in the previous period” is not a state

variable, the two V.5 terms can be combined. Continuing on through period t + 3:

Uikt = Ujke + 5 ( ( " { htH}

1= A) {= e )

12 5‘1&1)2 {U}ft+2 —Inpp o+ BVigs (@ + 1, dyso = h)} +
(1 - Ag&) {u2t+2 —Inphy o+ BVigs (2 + 1, dign = h)} (F.3)

o ;\gikf) {— lnqujftﬂ} + ) 2 ( 5‘:@2 {_ 1np1ift+2} + )
et ( (1= 320) (g} ) TN (-0 (gt}
+ Vigs (20 + 1, dig = h)
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F.1.2 Home-work-home path with frictions

Using the same notation as above, we get

Vp = Upt + BE: [Vie (ze, dy = h)]

:\gli-)lEt [Vig1 (24, dy = h,offer, .y = 1)] +
= upt + 3 3 (h)
(1 - )‘t+1) E; [Vig1 (4, dy = h, offer, ., = 0)]

(}\(lh)) S\Ei)lEt [Vtﬂ (xt, dy = h,offer,;; = 1,accept, | = 1)} +
t+1
t+1

N——

S‘z(ti)lEt {‘/t—i-l (ﬂft, di = h,offer;,; = 1,accept, ; = 0)] +
(1 - 5‘%@1) Ey [Vig1 (2, dy = h, offer, 1 = 0)]
(;(}z) ) A {U}pmﬂ = phr + BVisa (2 + 1, dpr = (4, K, l))} +

= un + 8 <1 - ;\(b > MY {Uﬁvtﬂ —Inppig + BVig2 (x4, dir = h)} +

(1 fl:\gi)l) {uZt—&-l —Inph1 + BViga (24, dir = h)}
(@) MY {U}pmtﬂ —Inphys + BV (2 + 1, dea = (J, K, l))} +
= une + (5\1%]41-)1 - 1) {— 1np;ft+1 + BVig2 (xt, diy1 = h)} +
(1 - /K@l) {— I phg + BVig2 (04, diyr = h)}
{u;'uklt-i-l —In pﬁ;ltﬂ} +
(1 - 5\1@1) {— Inpy, . +Inpp

(F.4)

= up + B } ) + B°Vigo (@ + 1, der = (4, k1))

A clever choice of weighting the offer acceptance and offer rejection future value terms in

(F.4) gives us the cancellation that we were looking for. Continuing on through period ¢+ 3:

Uikp1 — hlp;‘l)klt-',-l} +
Vp = Upt + B { J
( (1 - )\,Eﬂ) {— Inph; 41 + lnpqlftJrl}
432 S\gkzl) {Uht+2 —Inppy o + BVigs (2 4+ 1, dyys = h)} +
(1 - )\Eigl)) {Uht+2 —Inphiio+ BVigs (2 +1,diyo = h)}

{ | } (F.5)
_ Wi — 0P} +
upt + 3 ( (1 _ ;g@l) {_m Plr + 1npﬁt+1} )

kD [ w
+ B ( (1 iJr;(j{kl))lr{lpihf;;i_'_ } ) + B Vigs (2i+ 1,dyyo = h)
ht+2

>

t+2
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F.1.8 Pulting it together
Combining (F.3) and (F.5) gives us
S ikl w S (h w
_ )‘gil) {_ lnphtJrl} + 2 /\7§+)2 {_ 1npht+2} +
Vjkt — Up = Ujka + < (kD) i + 5 < (h) :
(1 — A1 ) {— hlpht+1} (1 - )‘t+2) {_ 1npht+2}
3 (h w w
<;\&> > /\§+)1 {ujklt—l—l - lnpjklt—H} +

t+1

~(h n X (h w
{— (1 - )\§+)1> Inpp, ., — (1 - 5\;@1) )\§+)1 lnpht—H}

. 52 ( 5‘&&21) '{_lnp%]tJ&} + )
(1 - S\gké» {— lnp2t+2}

-8 (F.6)

Equation (F.6) precisely matches equation (24), up to small differences in notation.

F.2 Paths involving four-year college

Because graduation from four-year college is stochastic in our model, finite dependence paths

involving these options contain additional terms that include graduation probabilities.

F.2.1 College-home-home path with frictions and stochastic graduation

Now we introduce a probability of graduation that four-year college students must forecast
over. Let p; be defined as the probability of having graduated with a bachelor’s degree before
period t, and let g; be a variable equal to 1 if one holds a bachelor’s degree at the beginning

of period ¢t and 0 otherwise.
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Vjkl = Ujkit + ﬁpt+1Et [V;—i-l (mt + ]-a dt = (]7 kv l) y Jt+1 = 1)] +
B (1 - Pt+1) E, [Vt+1 (:ct +1,di = (.j7 k, l) y Jt4+1 = 0)]

S‘g—kll’g)El‘/ [‘/tJrl ('xt + 17 dt = (.77 ka l) y Jt+1 = 17 OffertJrl = 1)] +
1- )‘gi—klhg)) Et [‘/H-l (xt + 17 dt = (]7 k? l) y Jt41 = 170ffert+l = 0)]

51— gy [ A B Ve (504 1o = (G 1), g = O, offeress = ]+
- Mt+1 n .
T\ (1= M) By Vi (0 4+ 1, dy = (G, K, 1), grar = 0, offery .y = 0)]
X(jkl,g)

41 {Ufiﬂ Inppidy + BViys (0 + 1, dis = hy gon = 1)} +
K
1— A7 ) {uht+1 Inppiy + BViso (e + 1, dpyr = h, g1 = 1)}

)‘gikllmg) {quftﬁgl lnpht_H + Vo (2 + 1,dey1 = h, gy = 0 +
B (1 - Pt+1) (1

= U + Bpig1 ( (

= Ujpe + Bpig1 ( (

- 5\gtkllmg)) {UZ;LF% lnphtﬁ—l + BVigo (e + 1,dey1 = hy g1 = 0
;\(jklag)

_ w,g (jklng) [ w,ng
e (P ) r0-me (S iy ) :

ht+1
B2pis1Viso (e + 1 dipr = hy g = 1) +
B2 (1 = p1) Vigo (2 + 1, dpy = hy gy = 0)
(F.7)
where superscript w signifies “received offer,” superscript n signifies “no offer received,”
superscript ng signifies “not graduated,” and superscript ¢ signifies “graduated.” Because

we assume that “received an offer in the previous period” is not a state variable, the two

sets of Vo terms can be combined. Continuing on through period ¢ + 3:
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S Gk, w, ki ,

Viki = Uik + Bpes1 /\IEJH 9){ 1nphtil}+ —i—ﬁ(l 1% 1) /\'EZH g){_lnpﬁtigl}—i_

ikl = Uikt L+ - MPt+ n n,n

’ ’ (1 - )\Eikllg ) { In pht+1} (1 - )‘Eikll g)) {— lnph2+g1}

8%p Yl {uht+2 Inpyts + BViss (@ + 1, dpyo = h, g1 = 1)}
t+1 N
(1 - Agi?) {uht+2 Inphfo + BViss (@ + 1, dpyo = h, g1 = 1)}
S\Ei’gg) {uht+2 Inpyi% + BVigs (v + 1, dpyo = b, g1 = 0)} + )

ﬁz (1 - pt-i-l) n n,n,
( )\giz g)> {Uht+gz Inppih + BVigs (2 + 1, diyo = b, grq = 0)}

S\(jklvg) 1 ; )\(Jk’l ng) In p:m9
s (o iy )+ a0 (S iy )

2 )‘gig) {—lnpﬁfiiz} + ) XEZ;W {_mpzvtﬁg} n
B pri1 < (hig) + 5% (1 — prs1) * (hivg) o i
(1 — Aiis ) { In pht+2} (1 — >‘t+2 ) {— lnpht+2}
Bpis1Vigs (xp +1,dio = hy g = 1) +

53 (1 = pes1) Vigs (2 + 1,dpy2 = b, gry1 = 0)
(F.8)

F.2.2  Home-college-home path with frictions and stochastic graduation

Using the same notation as above, we get
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Vp = Upt + BE: [Vig (v, dy =
1 (h,ng)

h)]

)\t-f—l
1— )\(h ng)

t+1
(s ) Mot B
h,ng)
<1 )\(h ng) ) )\IE+1
X (h,n
) Mo

1

= Up + B

_1
;\(h ng)

= Up + B

( t+
1
)\(h 19)

)\(ha"g)
< B t+ )

N (h,n
(s

1 (h,n
) Mo

= Up + B

1

( t+1

)\(h,ng)

= up; + )\t+1

(

= e+ (h.ng)

(1 — At

B2 priaViro (2 + 1, dpyr =
B% (1= pry2) Vigo (z + 1, dpyy =

Ey [Vt+1 (It, dy =
) Ey [Vt+1 (:Eta dy = h,offery,; = 0)]

{Uﬁltﬂ —Inpigg + BV (2 + 1, dea =

1 (hyn
i

{U}Ukltﬂ —Inpig + BV (2 + 1,dea =
y (h,ng) -1

h,ng)
1 - /\§+1 !

w wW
{ujklt—i-l - lnpjklt—l—l} +

) {— Inphy g +1nph

h,offer, 1 = 1)] +

|

[V}H (xt, dy = h,offer,;; = 1,accept, | = 1)}

E, [V}+1 (xt, dy = h,offer;; 1 = 1, accept,,; = 0)} +

h,n,
1 - )‘1(f+1 !

) E; [Viy1 (xy,dy = h,offer,,; = 0)]

ok )+
{Uﬁtﬂ —Inpp + BVigo (24, dpq = h)} +

) {uheir = M PRess + BViga (w0, diy = h) }

ok )+

) { Inpi 1 + BVigo (2, di = )}
) {—1npht+1 + Vo (x4, dpyr = h)}

)

(]7kal> y Jt42 = 1) +
(.jv k7l) y Je+2 = 0)

(F.9)

As before, a clever choice of weighting the offer acceptance and offer rejection future

value terms in (F.9) gives us the cancellation that we are looking for. Continuing on through

period t + 3:
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B {uwlel —In pwklt—&-l} +
Up = Ups + B ( (1 B 5\&59)) {_mp’,gtJrl + hlpqlftJrl} '

9 5‘%2[79) {“xt’iz —Inpyily + BVigs (2 + 1, do = h, gryo = 1)} +
B2 LGkL9)\ [, g n,g +
(1 - )‘t+2 ) {Uh£+2 - 1nph£+2 + BViys (33t +1,diyo=h, g0 = 1)}

42 {uht+2 — Inpys + BVis (@ + 1, dpyo = h, oy = 0)} +
1— )‘iikzlmg)) {UZ;LFQQ —Inppt% 4+ BVigs (v + 1,dio = h, gryo = 0)}

62 (1 - Pt+2) ( (

B {u”*”kltﬂ —In pwkltﬂ} +
= Upt + 3 ( (1 B X,ﬁ’i{j“")) {_1np£t+1 + lnp;}utﬂ} "

< (KL, w, Y (Fklmn,
)\gm 9 {_ hlpht-g}—Q} + AL

' { _In }
Dhita( T
B2 P ( < (jkl n ) + B (1 = pry2) ( "2 ikln nn ) +
(1 - )\gm’g)) {— lnphiiz} (1 - >‘g—2’ g)) {— lnph;fQ}
BoraVies (v + 1, diyg = b, grio = 1) +
B (1 — pry2) Vies (xe + 1, dyyo = h, g142 = 0)

w,ng

(F.10)

F.2.3 Putting it together when there is stochastic graduation in the model

Equations (F.8) and (F.10) can be combined under the following assumptions:

1. pii1 = piao; that is, there is no age- or calendar-time component to the college gradu-
ation probability

2. Vies (v, 9042 = 9) = Vias (1, ge1 = g) for g € {0,1}; i.e., utility does not depend on
how long one has been a college graduate.

Both of these assumptions hold according to our model, wherein the college graduation
process does not include age or calendar time, and wherein the flow utility does not depend

on duration of life as a college graduate—it depends only on current college graduation
status.

F'8



64

Combining the formulas in (F.8) and (F.10), setting p; 2 = piy1, and simplifying gives us:

S\(jkl,g) —lnp®? L4 X(jkl’ng) —lnp®™\ 4

Vjkl — Up = Ujkit + 6pt+1 ( ( t+;\§j+k1l{g )r{lﬁhf+1 }ht—H} ) + 8 (1 - pt+1) ( ( t+;\§]+kll ig)) {]jhf;;}zﬁf]l} ) +
Mg {—npidaf + Ms? {—npiit ) +

oy Uity ) -7 0= () iy )

1 y(hng) [ w w
(;\m ng)) At {ujkltJrl —Inplp+

h,n n (hyn
{ (1 - )\§+1 g)> Inph — (1 . 7Lg)> /\t+1g lnpht-i—l}
>‘z+1
kl w, S (Gkln, w,n,
Bt A {— lnphfm} + 82 (1 = pras) A" {— lnpht#%} +
t-+ kl - - P+ 3 k‘l,?’b )
( Agﬂ g)) {_1 pht+2} (1 - /\Eiz g)) {_ lantng}

(F.11)



G Details on debt accumulation

This appendix section details our treatment of accumulated debt in the model. As mentioned
in the body of the paper, we allow consumption to depend on loans borrowed during college.
As individuals will eventually need to repay these loans, accumulated debt is an important

state variable in our analysis.

G.1 Accumulated debt

We compute accumulated debt by relying on loan data from the NPSAS survey. As discussed
in Appendix E, we use the subsample of 2008 NPSAS respondents who are 18 years old
to compute expected loans at age 18 as a function of individual characteristics (EFC and
family income for 2-year colleges; EFC, family income, SAT math and SAT verbal for 4-year
colleges).

We then assume that debt accumulates according to the number of periods of school en-
rollment, where each period adds the individual-specific deterministic expected loan amount,
compounded by an interest rate ¢ which we calibrate. For reasons we discuss in the next
subsection, we assume that individuals take out larger loans the older they are. Specifically,
we assume that the expected loan amount for a person who has been out of high school for
t years is equal to (1 4 ¢)" times the deterministic loan amount calibrated from 18-year-olds
in the NPSAS, where ¢t = 0 corresponds to the first year after high school graduation.

In our logit model that we use to compute the CCPs, we allow accumulated debt to be

an individual-alternative-specific covariate. Mathematically, it is defined as follows:

(exper; o E(loan, o) + exper; 4B (loan; 4)) (1 + 1) + E(loan;s) (1 +1)" ifj € 2yr
debtije = { (exper; o E(loan; o) + exper; 4E(loan;s)) (14 1)" + E(loan; ) (1+0)" ifj € 4yr
(exper; o E(loan; ) + exper; 4E(loan; 4)) (14 1)" if j ¢ college
(G.1)

where E(loan;.) indicates the expected loan amount of individual i when choosing college
sector ¢ € {2,4}. exper; . indicates the number of periods in the past that the individual en-
rolled in college sector ¢, and ¢ (minus 1) is the number of years since high school graduation;
i.e. t =0 for someone in their first year after high school graduation.

Table G1 is an illustrative example of how loans and debt evolve over the lifetime of a
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fictitious individual in our sample.

Table G1: Example of loans and debt for a fictitious individual

t age; d; E(loan; ) debt;,

0 18 4yr E(loan; 4) E(loan; 4)

1 19 2yr E(loan;2)(1+1¢)  E(loan;4)(1+1¢) + E(loan;2)(1+ 1)
2 20 Home 0 E(loan; 4)(1 4 ¢)* + E(loan;s)(1 + 1)?
3 21 2yr E(loan;s)(1+1)°  E(loan;4)(1+ ) + 2E(loan; ) (1 4 ¢)*
4 22 dyr E(loan; 4)(1 +¢)* 2E(loan;4)(1 4 )* + 2E(loan;2)(1 + ¢)*

G.2 Finite dependence with debt

With debt as a state variable, satisfying the finite dependence assumption requires some
more assumptions. As mentioned in the previous subsection, the main assumption we make

is that the expected loan amount in t 4+ 1 for a person who was at home in ¢ is higher by

(14 ¢) than the expected loan amount in ¢ for a person who chose to attend college.

Mathematically, we have the following two finite dependence paths, assuming some

amount of accumulated debt in period ¢ — 1, debt;;_1. Note that this quantity is individual-

specific, not individual-alternative-specific. That is, debt;;_1 = debt;j;_1,7 ¢ college.

G.2.1 Home-School-Home Path

 In period ¢ the individual chooses Home, so debt; = debt;_1(1 + ¢), where we have

imposed that 7 = h in ¢ according to the finite dependence path.

e In period t+1 the individual attends college and, according to our assumption, borrows

a loan amount equal to F(loan;.)(1 + ) so

debtii 1 = debty (14 1) + E(loan;.)(1 + )"+

 In period t + 2 the individual chooses home and has debt;; o = debt; 1 (1 + ¢).

G.2.2 School-Home-Home Path

o In period ¢ the individual chooses school, so debt;; = debt;;—1(1+¢) + E(loan;.)(1+1)",

where we have imposed that j = ¢ in t according to the finite dependence path.

o In period t + 1 the individual chooses home and has debt;; 1 = debt; (1 + ¢).
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o In period t + 2 the individual chooses home and has debt; o = debt; 1 (1 + ¢).

G.2.3 Cancellation

It is easily verifiable that debt; o is the same along both paths by recursively applying the

formulas:

o Home-School-Home path:

debt;y 1o = debty 1(1 4 1)
= {debtu(1 + 1) + E(loan;)(1+ )"} (14 1)
— {[debtit_l(l + )] (1 + 1) + E(loan; .)(1 + L)t+1} (1+4¢)
= debty_1(1+ 1) + E(loan; ) (1 + )2

e School-Home-Home path:

debtiy o = debty1(1+ )
= {debt;y(1+¢)} (1 +¢)
= {[debti—1(1+0) + Bloan; )(1 + )| (1 + 1)} (1 + 1)
= debti;_1(1+1)* + E(loan; ) (1 + ¢)'*?
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H Estimation of CCP and offer arrival parameters with search

frictions

We make use of a flexible multinomial choice model in order to compute the log CCP terms
that enter (24). The likelihood function for this model can be written as

L= H oIl 11 (Pjaaer) (H.1)

r t {Gk,1}

When there are search frictions, however, certain choice alternatives are no longer avail-
able under certain cases. Denoting by J° the entire choice set, and by J" the limited choice
set, the likelihood is modified like so:

c=11> Il ()\m II (P;;kltr)d”k” +(1=2a) ]I (B’;km)d”’““) (H.2)

t {1 ede {5,k l}eJn

Conditional on the heterogeneity type R = r, the log-likelihood of occupational choice of

individual ¢ in period t is given by:

dijkit n dijkit . .
In (Am ke (P'L%kltr) T (1= Xier) I ey (Pz'jkltr) ! ) if diy ¢ white collar
dijkie . .
In <>\m Ik nere (H‘;kltr) " ) if d;; € white collar
(H.3)

gitr =

where

€xXp (Zitré)\)
1 -+ exp (Zitrd)\)

exp (Xmgjm)

>\it7“ =

Piur = S (mmajese XD ( X, ano) (H.4)
Pz‘?k;m _ exp (Xitrgjko

E{m,n,o}eJ" eXp (Xitrgmno)

and where P7,, denotes the (type-specific) choice probability when an offer was received (i.e.
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the full choice set was available), while P}, denotes the (type-specific) choice probability
when an offer was not received (i.e. limited choice set).

Having estimated the distribution of heterogeneity types in a first step from the measure-
ment equations, we estimate the unknown parameters ((5,\, B) by maximizing the following

weighted log-likelihood, where the weights are given by the posterior type probabilities g;,:

where £, is given in (H.3) above and ¢;. comes from (38).
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I Parametric bootstrap procedure

This appendix section details our parametric bootstrap procedure used to obtain standard
errors for the model estimates. We compute the standard errors based on B = 150 bootstrap
replications. We take the following steps to create each bootstrap replication. These steps
are similar to the steps we take to simulate the data when computing the fit of our model

in Subsection 6.5. Namely:

1. Sample with replacement N individuals from the the data used in the structural esti-

mation procedure.

2. Generate initial conditions for each sampled individual. This includes the unobservable
ability vector, the unobserved type, as well as the initial calendar year and the personal
and family background characteristics observed in the data. Draw the ability vector
from the estimated population distribution N (O, A) Similarly, draw the unobserved
type r € {1,..., R} from the estimated population distribution of types, which is a
categorical distribution with R-length parameter vector 7 (i.e. 7, is the estimated

probability of being unobserved type r).

3. For each time period until period T" = 19—the longest panel length in the sample—

repeat the following steps on the cross-section of individuals:

(a) Generate a white collar job offer according to the estimated 9y in (H.4).

(b) Generate choices based on the job offer outcome as well as the estimated flow

utility parameters of the structural model described in Subsection 3.6.

(c) Draw the outcomes (wage and/or grade) corresponding to the choice that was
just drawn, using the parametric specifications of the grade and wage processes
(see Subsections 3.2-3.3).

(d) If at risk of graduating, draw the graduation status using the predicted graduation
probability described in Subsection 3.5.3.

(e) Compute the implied posterior ability beliefs given the outcomes and choices
generated previously as discussed in Subsection 3.5.1, and update the values of

all other deterministic state variables.

4. Finally, for each bootstrap sample generated from the previous steps, estimate the

model as discussed in Subsection 5.5.
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5. Repeat steps 1-4 B = 150 times.

Once we have obtained the vector of parameter estimates for all bootstrap replications

(:)b, b=1,..., B, we estimate the variance of O as follows:

=~

Var (8) = 31_12 (6,-8)(6,-5) (1)

where © = % P Oy

Note that, because we simulate the model to form the parametric bootstrap replicates,
we have no missing data and hence there is no need to employ the algorithm discussed in
Subsection 5.6 and detailed in Appendix D. For each bootstrap replicate, we simply weight
each individual’s choice, graduation, and outcome likelihoods by g;,., which is the probability

that 7 is of unobserved type r in the bootstrap sample.
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J Details on Counterfactual Simulations

This appendix section details the steps we take for the counterfactual simulations of our
model. In our counterfactual simulations, we assume that agents have full information
about their abilities. We then solve each individual’s dynamic programming problem using

backwards recursion.

J.1 Assumptions to simplify the problem
Due to the high dimensionality of the state space, we make the following assumptions to
ensure tractability of our simulations:
o Retirement age is 65
o Terminal value is set equal to zero for all individuals and choice paths.
o Time is discrete at annual frequency
o Agents are able to choose college for only the first ten periods (i.e. until age 28)
A10

o Loans have a 30-year repayment horizon

o Experience variables are capped as follows. In most cases, these caps correspond to

the 99th percentile of what we observe in the data:

— white-collar work experience for non-graduates is capped at 10 years and for

graduates is capped at 15 years

— blue-collar work experience is capped at 15 years

total work experience is capped at 15 years
— 2-year college experience is capped at 4 years

— 4-year college experience is capped at 6 years

total college experience is capped at 7 years

We also discretize the AR(1) process governing the aggregate labor market shocks in (15) us-
ing Tauchen’s (1986) method. We separate the continuous labor market shocks into quartiles

and approximate the transitions using a four-by-four Markov transition matrix.

AL0Tn one of our counterfactuals, we set all loans to zero. See the first paragraph of Section 7 for more
details.
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J.2 Outline of steps to compute simulations

We take the following steps to produce simulated data consistent with our model parameters
and counterfactual scenario. For each individual in our cross-sectional sample, we repeat

this process 10 times:

1. Generate initial conditions (vector of abilities, unobserved type, and personal and fam-
ily background characteristics). Draw the ability vector from the estimated population
distribution N (0, A) Similarly, draw the unobserved type r € {1,..., R} from the

estimated population distribution of types.

2. Solve the model backwards from retirement age using the simplifications detailed in
J.1. The resulting policy functions are the individual’s probabilities of making each

choice at any given set of states.

3. Generate a sequence of observed states by simulating forward from the initial condi-
tions. This entails drawing a job offer outcome, drawing a choice, and then updating

the state space corresponding to the sequence of choices.

The process yields a panel data set of simulated choices that has a structure identical to the

data we use in estimation.
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K Mathematical symbol glossary

This section contains a glossary with descriptions of each mathematical symbol used in the

paper or appendices. See Table K1.
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Table K1: Mathematical symbol glossary

Symbol Description Main equations of reference
a Flow utility parameters (18)
B Discount factor (20)
& Nuisance parameters in measurement system, in- (C.1), (E.3), (H.4)
puts to consumption, and CCPs
vy Grade and wage parameters (1), (2), (4), (5)
dy Individual i’s choice in period ¢ (20), (21)
oy Aggregate labor market shock to wages (4), (6), (15)
Ox White collar offer arrival parameters (17), (H.4)
5 Idiosyncratic shocks to grades, wages, preferences, (1), (4), (18), (20), (C.1),
and unobserved type measurements (C.7)
¢ Innovations to aggregate labor market shock (15)
0 CRRA parameter on exp. util. of consumption (18), (E.11)
L Interest rate for loan repayment (G.1)
K Cut points for measurement system ordered logit (C.5)
A Grade or wage return to ability or productivity (3), (6)
index
A=t White collar offer arrival probability (17), (22)
13 Unobserved type in measurement system (C.1)
Ty Population probability mass of unobserved type r  (37), (38), (C.9)
Pt Probability of having graduated before time ¢ (F.8)
o Standard deviation of various idiosyncratic shocks (1), (4), (15), (36), (C.2)
o Nuisance parameter in inputs to consumption (E.3)
T Index of enrollment or employment time period, (9)
distinct from calendar time ¢
o) AR(1) coefficient on aggregate labor market shock (15)
® Normal distribution pdf (28), (31), (33), (C.2)
Y Graduation logit parameters (16)
w Parameter on unobserved type in measurement (C.1)
system
A; 5-dimensional ability vector that is gradually re- (1), (2), (4), (5)
vealed to the individual
A 5 x 5 population covariance matrix of abilities (28), (32)
Zi State variables for individual ¢ in period ¢ (18), (24)
Zit Covariates in job offer arrival logit (17)
C) Collection of all measurement system parameters, (C.2), (L.1)
or collection of all model parameters
Ay Posterior variance of ability at time ¢ (13)
o Standard normal cdf (C.3), (E.13)
X Covariate matrices in various equations (1), (4), (16)
Q Inverse of variance of idiosyncratic grade and wage (13)

shocks
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