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A Mathematical appendix

A.1 Proof of Theorem 1

A.1.1 Proof of Lemma 2 (ii)

Akin to Equation (3.2), for any triple (w,w′, w̃) ∈ Ω3
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(A.1)

Note that now we exploit transitions across job types s and s′, thus we are able to
use the same wage in the old and new jobs. This nonlinear system of two equations
and two unknowns—λss

′ and λs′s—can be rewritten as follows:Bw′λ
ss′ + Cw′λ

s′s − Aw′λss
′
λs
′s

Bw̃λ
ss′ + Cw̃λ

s′s − Aw̃λss
′
λs
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 =
0

0

 (A.2)

where the A, B, C coefficients are defined in Lemma 2 (ii). Assuming Aw′ 6= 0
(Condition (a) from Lemma 2 (ii)) and replacing λss′λs′s in the second equation by
its expression from the first equation identifies the ratio of the arrival rates, with:

λs
′s =

(
Bw′Aw̃ −Bw̃Aw′

Aw′Cw̃ − Aw̃Cw′

)
λss

′

where Aw′Cw̃ − Aw̃Cw′ 6= 0 from Condition (c). Finally, substituting for λs′s in the
first equation identifies, under Condition (b), λss′ and then λs

′s, which admit the
following closed-form expressions:

λss
′ = Bw′Cw̃ −Bw̃Cw′

Bw′Aw̃ −Bw̃Aw′
and λs

′s = Bw′Cw̃ −Bw̃Cw′

Aw′Cw̃ − Aw̃Cw′
(A.3)

Having identified the arrival rates λss′ and the wage offer distribution f sw, identification
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of the CCPs pss′ww′ follows. Then, we can identify css
′ + cs

′s, and together with the
assumption that switching costs are symmetric (i.e., css′ = cs

′s), css′ is identified.

A.1.2 Proof of Lemma 3 (ii)–(iii)

(ii) Identification of CRRA preferences. We assume that workers are endowed
with CRRA preferences, such that:

u(w) = α
w1−θ

1− θ
From the prior identification result in Lemma 3 such that uw is identified up to a
constant, it follows that for w̃ > w′ > w, the following ratio is identified:

uw′ − uw
uw̃ − uw

= w′1−θ − w1−θ

w̃1−θ − w1−θ (A.4)

In order to establish identification of the risk aversion parameter θ, we show that the
function θ 7→ y1−θ−x1−θ

z1−θ−y1−θ , where z > y > x > 0, is monotonically increasing on (0,∞).

f(θ) = y1−θ − x1−θ

z1−θ − y1−θ (A.5)
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(A.6)

f ′(θ) > 0 (A.7)
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⇔
[
x1−θ ln(x/y)
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(A.9)

⇔ ln(y/x)
[
1− (y/z)1−θ

]
< ln(z/y)

[
(y/x)1−θ − 1

]
(A.10)

⇔ (y/x)1−θ ln(z/y) + ln(y/x)(y/z)1−θ > ln(y/x) + ln(z/y) (A.11)
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The above condition holds if and only if g(θ) > g(1), where, for all θ > 0, g(θ) ≡
(y/x)1−θ ln(z/y) + (y/z)1−θ ln(y/x). The derivative of g(·) is given by:

g′(θ) = ln(y/x) ln(z/y)[(y/z)1−θ − (y/x)1−θ]

It follows that g′(θ) < 0 on (0, 1) and g′(θ) > 0 on (1,∞). Identification of θ follows.

Having identified θ, it follows that the utility coefficient α is identified and given by
the following closed-form expression:

α = uw̃ − uw
w̃1−θ − w1−θ (A.12)

which yields full identification of the flow utility of wages.

(iii) Identification of φs up to V0(0). We can express the log odds ratio in terms
of the structural parameters using Equation (3.7):
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Collecting all known terms on the left hand side, the equation can be rearranged as:

κss̃ww̃ = 1
ρ+ δs̃0

φs̃ − 1
ρ+ δs0

φs +
(

δs̃0
ρ+ δs̃0

− δs0
ρ+ δs0

)
V0(0) (A.14)
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where
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Now, since φ1 = 0, writing Equation (A.14) for s = 1 yields:

κ̃1s̃
ww̃ = 1

ρ+ δs̃0
φs̃ +

(
δs̃0

ρ+ δs̃0
− δ1

0
ρ+ δ1

0

)
V0(0) (A.16)

Thus, we can write φs̃ as a known linear function of V0(0). Furthermore, note that
when the job destruction rates are not specific to job types, i.e., δs0 = δ0 for all s, the
non-pecuniary payoffs φs are directly identified from Equation (A.16).

A.2 Extension: aggregate shocks

One can extend our identification strategy to accommodate aggregate shocks. Specif-
ically, consider the case where the market economy can be in one of K different states,
where the job offer arrival rates, the job destruction rates, the rates of involuntary
wage mobility, the offered wage distributions, and the flow payoff of unemployment
are allowed to depend on the state of the economy. We further assume that the
econometrician perfectly observes the state of the economy. We denote the rate at
which the economy transitions from state k to k′ by qkk′ , which is identified from the
observed transition rates across market states.

On the employment side, identification of the state-specific offer arrival rates, destruc-
tion and involuntary wage mobility rates, offered wage distribution and conditional
choice probabilities, along with the switching cost all follow directly from the baseline
case, leaving the flow payoff of employment as the only unknown parameters. The
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value function of employment V s
wk is given by:
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(A.18)

where the difference in value functions on the left and right-hand sides are given by the
sum of the log odds ratio and the switching cost. This identifies the wage component
of the flow payoff up to a constant. Identification of the non-pecuniary components
φs then proceeds in a similar fashion, using instead the job-to-job transitions across
job types.

Identification of the unemployment-side parameters then follows from similar argu-
ments as in Section 3.3. The same strategy applies to a context with aggregate shocks,
after conditioning the hazard rates out of unemployment on the (observed) states of
the economy.

B Data appendix

B.1 Sample creation

We define our analysis sample as follows:

1. Flip primary and secondary work arrangements (PWAs, SWAs)

• In the raw data, PWA is defined as the arrangement with the highest
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earnings in the month. This setup may result in PWAs and SWAs flipping
in the raw data, e.g. when a worker works only a few days in their PWA.

• Solution: Looping through all worker-months, we flip variables related to
PWAs and SWAs as follows:

month firmid1 var1 firmid2 var2 month firmid1 var1 firmid2 var2
t− 1 A xt−1 B yt−1  t− 1 A xt−1 B yt−1
t B xt A yt t A yt B xt

2. Calculate durations

(a) Employed: we calculate or infer spell-year durations in PWA. See Ap-
pendix B.2 for details.

(b) Unemployed: we observe daily unemployment durations in the raw data.
For spells that end after October 2005 (the end date of our sample), we flag
spells as right-censored and shorten their durations by the out-of-sample
portion. Therefore, our analysis sample includes U spells that are censored
earlier than 269 days.

3. Define EE, EU, UE, EN, NE transitions

4. Calculate wages

(a) Calculate counterfactual minimum wage earnings: how much the worker
would have earned in a day working full time in a minimum-wage job

(b) Calculate daily wages as total earnings in a spell-year, divided by spell-year
durations

(c) Discretize wages: see Appendix B.3 for details

(d) Calculate accepted wages

5. Define covariates for population probabilities

6. Save analysis sample
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B.2 Correcting employment spell durations

The raw data on employment spells are recorded at a monthly frequency. In each
month, the total number of days worked (days) and total earnings are known. Fur-
thermore, days worked and earnings at PWAs and SWAs (days_1, days_2) are known
if the arrangement was ongoing on the 15th of the month. We focus on PWAs only.
Table 7 summarizes the possible ways in which EE transitions show up in the raw
data when observations on PWAs are not missing. When days equals days_1, we
know with certainty that the transition happened on the boundary of the month: we
label this as a clean EE transition (see Panel a). When days does not equal days_1,
we need to make some assumptions about the uncovered days: Panels b-d illustrate
these cases that we label fuzzy. The bottom tables summarize our assumptions on
the number of days worked in each PWA.

Table 7: EE scenarios in raw data, no missing PWAs
(a) Clean EE

days days_1 firmid1
31 31 A
30 30 A
31 31 B

⇓
no assumption needed

(b) Fuzzy EE 1

days days_1 firmid1
31 31 A
30 16 A
31 31 B

⇓
31 A
16 A
14 B
31 B

(c) Fuzzy EE 2

days days_1 firmid1
31 31 A
30 16 B
31 31 B

⇓
31 A
14 A
16 B
31 B

(d) Fuzzy EE 3

days days_1 firmid1
31 31 A
30 16 B
31 31 C

⇓
31 A

a < 14 A
16 B

30− 16− a C
31 C

Table 8 summarizes our assumptions when PWA data are missing.

Table 8: EE scenarios in raw data, missing PWAs
(a)

days days_1 firmid1
31 31 A
25 . .
31 31 A

⇓
31 A
25 A
31 A

(b)

days days_1 firmid1
31 31 A
25 . .
31 31 B

⇓
31 A

d < 15 A
25− d B
31 B

(c)

days days_1 firmid1
31 31 A
10 . .
7 . .
30 30 B

⇓
31 A
10 A
7 B
31 B

(d)

days days_1 firmid1
31 31 A
20 . .
25 . .
31 31 B

⇓
31 A

a < 15 A
20− a+ 25− b X

b < 15 B
31 B
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Furthermore, we censor spells that spill over calendar years. We do so in order to
track yearly wage changes observed in the raw data. Additionally, we censor spells
at October 31st due to data limitations, as mentioned in the text. As an example, a
continuous E spell from March 2003 until May 2005 that pays wage w and is followed
by a EE transition to a job paying w′ is represented as a right-censored spell of 8
months in w, a right-censored spell of 10 months in w, and a spell of 5 months with
a EE transition from w to w′.

B.3 Discretizing wages

We discretize the continuously observed wages in the data into W bins, with W = 50
for our main results. First, we calculate the average daily wage for each worker
in a given year across all months spent in employment. Then we categorize these
continuous wages into discrete bins. The first bin contains wages between 75 and 107
percent of the effective minimum wage.29 We drop wage observations below 75 percent
of the effective minimum wage because we cannot distinguish between full-time and
part-time earners in the data. Furthermore, we add a 7 percent padding to the right
cutoff of the first bin to ensure that we include all minimum wage earners in the
first bin. We then split the other wage observations, censored at the 99th percentile,
evenly across the remaining W −1 bins. We repeat the same discretization procedure
for each calendar year: Figure 6 demonstrates our discretization method for 2004 for
various groups.

Figure 7 plots the resulting discrete distribution of current wages. Current wages
for employment spells that lead to a job-to-job transition, on the left panel, have a
mean of 3,428 HUF (percentiles: 25th 1,738 HUF; 50th 2,347 HUF; 75th 3,685 HUF).
Current wages for all employment spells, on the right panel, have a mean of 3,670 HUF
(percentiles: 25th 1,738 HUF; 50th 2,557 HUF; 75th 4,249 HUF). Similarly, Figure
8 plots the discrete distribution of accepted wages for job-to-job and unemployment-
to-employment transitions. Accepted wages for job-to-job transitions have a mean
of 3,657 HUF (percentiles: 25th 1,738 HUF; 50th 2,516 HUF; 75th 4,056 HUF).
Accepted wages out of unemployment are more right-tailed than those for job-to-job

29During our sampling period, Hungary had a simple minimum wage policy: 50,000 HUF in 2003,
53,000 HUF in 2004, and 57,000 HUF in 2005 (200 HUF ≈ 1 USD in 2004).

8



Figure 6: Discretizing observed wages

(a) Current wages
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(b) Accepted wages (EE)
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(c) Accepted wages (UE)
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Notes: Histograms of daily wage rates in 2004 with 50 HUF bin width, truncated at the 95th
percentile (200 HUF ≈ 1 USD in 2004). Vertical lines denote selected wage bin cutoffs. Panel
(a): current daily wages for employment spells that lead to an EE transition. Panel (b): accepted
daily wages for employment spells after an EE transition. Panel (c): accepted daily wages for
unemployment spells after a UE transition.
Source: CERS-HAS, authors’ own calculations.
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Figure 7: Discrete distribution of current wages

(a) Spells leading to EE transitions

0

5

10

15

20

25

30

1 10 20 30 40 50
Current wage bins

F
re

qu
en

cy
 (

%
)

(b) All spells

0

5

10

15

20

25

30

1 10 20 30 40 50
Current wage bins

F
re

qu
en

cy
 (

%
)

Notes: Panel (a): discrete distribution of current wages for employment spells that lead to an EE
transition. Panel (b): discrete distribution of current wages for all employment spells.
Source: CERS-HAS, authors’ own calculations.

Figure 8: Discrete distribution of accepted wages
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Notes: Panel (a): discrete distribution of accepted wages for employment spells that lead to an EE
transition. Panel (b): discrete distribution of accepted wages for unemployment spells that lead to
an employment spell.
Source: CERS-HAS, authors’ own calculations.
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transitions, with a mean of 3,021 HUF (percentiles: 25th 1,802 HUF; 50th 2,427
HUF; 75th 3,543 HUF), in line with the notion that the unemployed tend to move to
lower-paying jobs.

C Estimation appendix

This appendix details our estimation procedure, outlined in Section 5.

C.1 Posterior type distribution

Rather than imposing the structure of the model when classifying types, we instead
choose a flexible functional form for the likelihood of job-to-job transitions. In par-
ticular, we obtain estimates of θIr by maximizing an alternative objective function:

∑
i

ln
∑

r

πrLIir(θIr)
Si∏
s=1
L̃Eisr(θ̃Er )

 (C.1)

where LIir(θIr) was defined in Equation (5.3) and we specify the reduced-form likeli-
hood associated with employment spell s below.

We break the hazard of going from w to w′ into two parts: (i) the hazard of leaving
w-paying job for any other job, and (ii) the probability that the accepted job pays
w′. These two parts are associated with the parameters θ̃hr and θ̃wr , respectively. We
specify the reduced-form hazard of leaving a w-paying job given the individual is of
type-r as:

h̃wsr = exp(θ̃h1r + θ̃h2r ln(ws) + θ̃h3r1{ws = w}+ θ̃h4r1{ys = 2004}+ θ̃h5r1{ys = 2005})
(C.2)

where ys refers to the calendar year of spell s.

Conditional on moving to a new job, for the reduced form we model the accepted
wage as a tobit like in Equation (5.3) but where one of the conditioning variables is
the log of the current wage. Note that here we use the actual observed wage level
in a given spell (unlike for the utility of wages where we use the mean wage in each
bin). L̃Eisr(θ̃Er ) is then given by:

11



L̃Eisr(θ̃Er ) =
[∏
w

h̃wsr exp(−h̃wsrts)
]
1{ws=w}

(C.3)

×
[
Φ
(

ln(w)− X̃w
s θ̃

w
xr

σ̃wr

)]1{ws+1=w}

·
[

1
σ̃wr
φ

(
ln(ws+1)− X̃w

s θ̃
w
xr

σ̃wr

)]1{ws+1>w}

with θ̃Er =
(
θ̃hr , θ̃

w
xr, σ̃

w
r

)′
, where X̃w

s θ̃
w
xr is given by:

X̃w
s θ̃

w
xr = θ̃w1r + θ̃w2 ln(ws) + θ̃w3 1{ys = 2004}+ θ̃w4 1{ys = 2005} (C.4)

We then estimate the parameters
(
θIr , θ̃

E
r

)
using:

max
θIr ,θ̃

E
r

∑
i

ln
∑

r

πrLIir(θIr)
Si∏
s=1
L̃Eisr(θ̃Er )

 (C.5)

and recover the conditional type probabilities using:

qir = πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )∑

r πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )

(C.6)
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C.2 Unemployed-side structural parameters

C.2.1 Optimization constraints for Type 1

The first set of constraints in Equation (5.27) simplify to the following nonlinear
constraints:

pw1(t) ≤ pw1(t+ 1) (C.7)
hw1(t)

λ1(t) gw1(t) ≤
hw1(t+ 1)

λ1(t+ 1) gw1(t+ 1) (C.8)

exp(Xλ
t+1θ

λ)
exp(Xλ

t θλ)
Λ
(
β1φw + γ11 + γ21 ln(t+ 1)

)
Λ
(
β1φw + γ11 + γ21 ln(t)

) ≤
exp(Xh

t+1θ
h
1 )

exp(Xh
t θ

h
1 ) (C.9)

(
Xλ
t+1 −Xλ

t

)
θλ −

(
Xh
t+1 −Xh

t

)
θh1

+ ln
[
1 + exp

(
−β1φw − γ11 − γ21 ln(t)

)]
− ln

[
1 + exp

(
−β1φw − γ11 − γ21 ln(t+ 1)

)]
≤ 0 (C.10)

The second constraint simplifies to the following nonlinear constraint:

pw1(1) ≥ ε (C.11)
hw1(1)

λ1(1) gw1(1) ≥ ε (C.12)

exp(Xh
1 θ

h
1 )

exp(Xλ
1 θ

λ)
1

Λ
(
β1φw + γ11

) ≥ ε (C.13)

Xh
1 θ

h
1 −Xλ

1 θ
λ − ln

[
1 + exp(−β1φw − γ11)

]
≥ ln(ε) (C.14)
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The third constraint simplifies as follows:

pw1(T ) ≤ 1− ε (C.15)
hw1(T ) exp(−κww1)

λ1(T ) gw1(T )− hw1(T )[1− exp(−κww1)] ≤ 1− ε (C.16)

exp(Xh
T θ

h
1 )
[
1 + ε

1− ε exp(−κww1)
]
≤ exp(Xλ

T θ
λ) Λ

(
β1φw + γ11 + γ21 ln(T )

)
(C.17)

Xh
T θ

h
1 + ln

[
1 + ε

1− ε exp(−κww1)
]
≤ Xλ

T θ
λ − ln[1 + exp(−β1φw − γ11 − γ21 ln(T ))]

(C.18)

C.2.2 Optimization constraints for Type r = 2

The first set of constraints in Equation (5.31) simplify to the following nonlinear
constraints:

pw2(t) ≤ pw2(t+ 1) (C.19)
hw2(t)

λ2(t) gw2(t) ≤
hw2(t+ 1)

λ2(t+ 1) gw2(t+ 1) (C.20)
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2 + ψλ2 )

Λ
(
β2φw + γ12 + γ22 ln(t+ 1)
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exp(Xh
t θ

h
2 ) (C.21)
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+ ln
[
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(
−β2φw − γ12 − γ22 ln(t)

)]
− ln

[
1 + exp

(
−β2φw − γ12 − γ22 ln(t+ 1)

)]
≤ 0 (C.22)

The second constraint simplifies as follows:

pw2(1) ≥ ε (C.23)
hw2(1)

λ2(1) gw2(1) ≥ ε (C.24)

exp(Xh
1 θ

h
2 )

exp(Xλ
1 θ

λνλ2 + ψλ2 )
1

Λ
(
β2φw + γ12

) ≥ ε (C.25)

Xh
1 θ

h
2 −Xλ

1 θ
λνλ2 − ψλ2 − ln

[
1 + exp(−β2φw − γ12)

]
≥ ln(ε) (C.26)
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The third constraint which ensures that the CCPs are less than one simplifies to the
following nonlinear constraint:

pw2(T ) ≤ 1− ε (C.27)
hw2(T ) exp(−κww2)

λ2(T ) gw2(T )− hw2(T )[1− exp(−κww2)] ≤ 1− ε (C.28)

exp(Xh
T θ

h
2 )
[
1 + ε

1− ε exp(−κww2)
]
≤ exp(Xλ

T θ
λνλ2 + ψλ2 ) Λ

(
β2φw + γ12 + γ22 ln(T )

)
(C.29)

Xh
T θ

h
2 + ln

[
1 + ε

1− ε exp(−κww2)
]
≤ Xλ

T θ
λνλ2 + ψλ2 − ln[1+ exp(−β2φw − γ12 − γ22 ln(T ))]

(C.30)

Table 9: Computation time

Step Elapsed time
Estimate posterior probabilities 24.13 min
Estimate job-to-job structural parameters 12.34 min
Estimate unemployment-to-job structural parameters 7.87 sec
Total 36.77 min

Notes: Computation time of the full three-step estimation procedure, using a random perturbation
around the baseline estimates as starting values. Total includes, on top of the three estimation steps,
reading in the data and estimating nonparametric unemployment-to-employment hazards. Bench-
marked on a 32-core Intel® Xeon® Gold 6134 3.20GHz CPU with 96GB RAM, running MathWorks®
MATLAB® R2018b (9.5.0.1033004).
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D Additional results

Table 10: Type probabilities

Initial wage bin Type probability
Type 1 Type 2

1 99.8% 0.2%
[99.8%, 99.8%] [ 0.2%, 0.2%]

10 99.0% 1.0%
[98.9%, 99.0%] [ 1.0%, 1.1%]

20 96.2% 3.8%
[95.9%, 96.4%] [ 3.6%, 4.1%]

30 87.4% 12.6%
[86.7%, 88.1%] [11.9%, 13.3%]

40 61.8% 38.2%
[60.0%, 63.0%] [37.0%, 40.0%]

50 1.5% 98.5%
[ 1.3%, 1.7%] [98.3%, 98.7%]

Notes: 95% bootstrap confidence intervals in brackets (500 replications).
Source: CERS-HAS, authors’ own calculations.

Figure 9: Flow payoff of unemployment (normalized)
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Notes: Flow payoff normalized w.r.t. t = 0 for each type. Shaded regions represent 95% bootstrap
confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 10: Structural unemployment-to-employment hazards
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Notes: Annual hazard rates, conditional on exiting to a given wage bin. Shaded regions represent
95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 11: Value function of unemployment (normalized)
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Notes: Value function normalized w.r.t. the value of unemployment at t = 0 for each type. Shaded
regions represent 95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 12: CCPs, unemployment-to-employment transitions
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Notes: Shaded regions represent 95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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