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Abstract

This paper applies some of the key insights of dynamic discrete choice models
to continuous-time job search models. Our framework incorporates preference
shocks into search models, resulting in a tight connection between value func-
tions and conditional choice probabilities. In this environment, we establish
constructive identification of all the model parameters, including the wage offer
distributions off- and on-the-job. Our framework makes it possible to estimate
rich nonstationary search models in a simple and tractable way, without hav-
ing to solve any differential equations. We apply our method using Hungarian
administrative data. Longer unemployment durations are associated with sub-
stantially worse wage offers and lower offer arrival rates, resulting in accepted

wages falling over time.
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1 Introduction

This paper applies some of the key insights from the dynamic discrete choice literature
to continuous-time job search models. The main idea of our approach is to adapt
conditional choice probabilities (henceforth CCP) to a job search environment. To
do so, we incorporate preference shocks into the search framework, resulting in a
tight connection between value functions and conditional choice probabilities. These
shocks, which can be interpreted as the stochastic component of job switching costs,
affect the instantaneous utility of accepting a particular job offer. As a result, and
consistent with recent empirical evidence that workers tend to accept particular job
offers with probabilities that are significantly different from zero or one (Krueger and
Mueller, 2016), future job offers associated with particular wages will only be accepted

probabilistically from the perspective of the worker.

Our approach has two key advantages. The first one is related to identification.
We consider a class of nonstationary job search models that incorporate on-the-job
search, non-pecuniary job attributes, and involuntary wage transitions. The primary
contribution of our paper is to establish constructive identification of all of the model
parameters, up to the discount rate. Importantly, and in contrast with the influential
non-identification result of Flinn and Heckman (1982), we are able to separately
identify the offered wage distribution both from employment and unemployment—the
latter allowed to vary over the course of unemployment—without having to assume
recoverability of the underlying distribution. Central to our identification strategy
is the existence of preference shocks that allow us to trace out the full offered wage
distribution from the observed job-to-job transitions, and express the employment
and unemployment value functions as functions of the conditional probabilities of
accepting particular job offers. Under this framework, we are able to derive closed-
form expressions for most of the model parameters where the expressions depend on

the hazard rates associated with the different types of labor market transitions.

The second advantage is computational. While the empirical labor search literature
has been rapidly growing over the last few years, structural estimation of these mod-
els often remains challenging. This is particularly true for models in nonstationary

environments, which tend to be the norm rather than the exception in the context



of job search (van den Berg, 1990, 2001, Cahuc et al., 2014). We provide in this
paper a novel empirical framework that makes it possible to estimate nonstationary

job search models in a simple, tractable, and transparent way.

We illustrate our method using rich longitudinal administrative data from Hungary.
The dataset consists of half of the population, i.e., 4.6 million individuals, who are
linked across 900 thousand firms. An important feature of the Hungarian data is
that individuals are observed on a monthly basis, making it possible to follow the
labor force transitions at a high frequency.In practice we consider a flexible paramet-
ric specification that allows for unobserved heterogeneity through worker types, and
devise a novel sequential estimation procedure that adapts the insights of Arcidiacono

and Miller (2011) to a search environment.

The data reveal sharp decreases over time in accepted wages out of unemployment.
Among those who find a job before benefit expiration, job seekers with the shortest
25% of unemployment durations were a little over half as likely to exit to a minimum
wage job than those with the longest 25% of unemployment durations. Estimates of
the model show that this, in part, is the result of the wage offer distribution shifting to
the left as unemployment duration increases. With the offer arrival rate also declin-
ing over the course of unemployment, job seekers become increasingly less selective in
which jobs they are willing to accept. The decline in accepted wages is then a result
both of facing worse wage offer distributions but also changes in the job acceptance
rate. An important takeaway from these results is that nonstationarities along mul-
tiple dimensions play a central role in accounting for the job search environment over

the course of unemployment.

This paper primarily contributes to two strands of the literature. First, it fits into the
literature on the identification and estimation of structural dynamic discrete choice
models (Rust, 1994, Heckman and Navarro, 2007, survey by Blundell, 2017). Since
the seminal articles of Hotz and Miller (1993) and Magnac and Thesmar (2002),
CCP methods have been increasingly used as a way to identify, and estimate com-
plex dynamic discrete choice models at a limited computational cost (see surveys
by Aguirregabiria and Mira, 2010 and Arcidiacono and Ellickson, 2011). While CCP
methods have been used a variety of settings, they have been mostly used in a discrete

time environment. Exceptions are Arcidiacono et al. (2016), Agarwal et al. (2021)
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and Llull and Miller (2018), who apply CCP methods to estimate continuous-time
dynamic equilibrium models of market competition, an equilibrium model of kidney
allocations, and a stationary dynamic model of job and location choices in the con-
text of internal migration in Spain, respectively. We contribute to this literature by
exploring the use of CCP methods to constructively identify, and then estimate job

search models.

Our paper also fits into the empirical job search literature. Since the seminal work of
Flinn and Heckman (1982), a large number of papers have structurally estimated var-
ious types of job search models (see Eckstein and van den Berg, 2007 for a survey, and
French and Taber, 2011 for an overview of the identification of job search models). In
this literature, structural parameters are generally estimated via maximum likelihood
or indirect inference methods, where the full model needs to be solved within the es-
timation procedure, and are often based on a strict job acceptance cutoff based on
whether the offer exceeds the reservation wage. Nonstationarity in job search, which
arises in particular when the level of unemployment benefits varies over the unem-
ployment spell, is an important case where the computational demands are especially
high. Since the important work of van den Berg (1990) who structurally estimated
a continuous-time nonstationary search model,! examples of structural estimates of

nonstationary job search models remain scarce.?

We contribute to this literature by providing a novel empirical framework, based
on a constructive identification strategy, that makes it possible to estimate a rich
class of nonstationary job search models in a simple and tractable way. Key to
our identification strategy is the stochastic nature of job acceptance. In that sense,
our approach shares similarities with Sorkin (2018) as well as Lentz et al. (2023).
Our paper also complements the work of Sullivan and To (2014) and Taber and
Vejlin (2020) who consider the identification of search models that allow for non-
pecuniary job attributes. In contrast to these papers, we consider a nonstationary
environment and establish constructive identification of the model parameters, most

of them being obtained as closed-form expressions of the underlying hazard rates.

1See also Wolpin (1987), which is the first study to estimate a (discrete time) nonstationary search
model.

ZNotable exceptions include Cockx et al. (2018), Launov and Walde (2013), Robin (2011), Lollivier
and Rioux (2010), Paserman (2008), and Frijters and van der Klaauw (2006).
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Another important difference with Taber and Vejlin (2020) is that, while they consider

an equilibrium search framework, our framework is set in partial equilibrium.

Additionally, our empirical illustration fits into the vast empirical literature that inves-
tigates the impact of unemployment benefit levels and duration on labor supply (see,
e.g., recent work by Le Barbanchon et al., 2017, Nekoei and Weber, 2017, and surveys
by Schmieder and von Wachter, 2016 and Krueger and Meyer, 2002). Consistent with
many of these studies, our estimation results provide evidence that nonstationarity
plays an important role in describing the search environment over the course of the
unemployment spell. A central and distinctive feature of our empirical strategy is
that it leverages the direct links that exist between reduced form hazard rates from
unemployment to employment, or from one job to another, and the structural pa-
rameters of the model. Beyond the specific illustration we consider in this paper, a
similar approach can be readily used to identify and estimate a wide range of search

models (see Gyetvai, 2021, for a recent application to occupational mobility).

The rest of the paper is structured as follows. In Section 2, we introduce and discuss
the general setup of the nonstationary search model we consider throughout the paper.
Section 3 establishes identification of the model parameters. In Section 4 we discuss
the data used to estimate the model. Section 5 presents our estimation procedure,

with Section 6 discussing the estimation results. Section 7 concludes.



2 Model

2.1 The environment

Consider an economy in continuous time with infinitely lived workers, who discount
the future at a rate p > 0. Both employed and unemployed workers engage in job
search. Job offers are characterized by a wage, w, and a job type, s. Job types
capture non-wage characteristics such as firm, occupation, industry, or any particular
non-monetary job attribute. The distribution of wages and job types are assumed to
be discrete with a finite number of support points, denoted by W and S respectively.
The support for wages and job types is given by 0, = {w, ..., w} and Qs = {s,...,5}.
Conditional on receiving an offer from a particular job type s, the offered wage distri-
butions depend on whether or not one is currently employed and, if not employed, the
duration of unemployment, which we denote by ¢. The probability mass functions
(pmf) of the wage offer distributions evaluated at wage w are given by f2 for the
employed, and ¢ (t) for the unemployed at unemployment duration t.

We model job offer arrivals from the different job types as Poisson processes, and
allow employed and unemployed workers to sample job offers at different frequencies.?
While working at a job of type s, the offer arrival rate for jobs of type s’ is given by A**'.
The offer arrival rate for the unemployed for type-s jobs may vary with the duration
of the unemployment spell, and is given by A*(¢). Unemployed workers also receive
benefits that depend on the duration of the spell.? The wage offer distribution (g2 (t)),
the unemployed offer arrival rates (A*(¢)), and the flow payoff of unemployment (b(¢))

are the three sources of nonstationarity in this setup.

While this model shares many of the features of the job search models that have been
estimated in the literature, a key distinction is that it incorporates preference shocks
into the search framework. This feature is instrumental to our approach as it allows us
to connect the value functions of unemployment and employment to the conditional

choice probabilities of accepting particular job offers. Specifically, any given job offer

3While we consider a continuous-time setup throughout the paper, our strategy can also be used to
identify a discrete-time version of the model, under the assumption that workers may only receive
one job offer per period.

4In practice, following much of the empirical search literature, we treat unemployment and non-
participation as a single state.



is associated with a wage and a job type, but also with a preference shock, ¢, which
is drawn independently whenever a new job offer arrives. The ¢ shock affects the
instantaneous utility of accepting a particular job offer. Our model also incorporates
job switching costs, which in our application play an important role in fitting the
observed job mobility flows. € can be interpreted as the stochastic component of job

switching costs.

2.2 Value of employment

The flow payoff of employment is assumed to be the sum of two parts: the utility of
the wage paid, u,,, and the non-pecuniary payoft of working in a job of type s, ¢°.
Without loss of generality, we normalize ¢! = 0. Workers employed in a job (w, s)
can experience three different types of transitions. First, they may be laid off and
become unemployed, which happens at a rate §5.> Second, within the same firm, they
may exogenously transition to a different wage w’ and job type s’. These involuntary
within-firm changes occur at a rate 655 ,, with the normalization that %%, = 0. Third,
workers may receive an offer from another firm for a job of type s’ at a rate \** and
then decide whether to accept it or stay with their current job. These voluntary
transitions are associated with an instantaneous cost of switching jobs, ¢**', where we
assume that the switching costs are symmetric (i.e. ¢ = ¢*'* for all s,s'). These

transitions may or may not involve a wage change, and may occur both between

(s" # s) or within (s = s) job types.

We now turn to the value of employment. The Bellman equation for the value of

employment V.§ associated with a job (w, s) writes as follows:

<p oY S Y A) VE = wy + T Vo0) + Y ST e ve (2.0)

+3° 30 2B, max {V;ﬁ — e, Vs }

w' s

5Our identification strategy would readily apply to a more general setup where the utility of work

is not additively separable in the wage and non-pecuniary component, or where transitions to
unemployment are allowed to be wage-specific. We do not consider this more general model for
ease of exposition.



where V4(0) is the value of unemployment immediately upon entering an unemploy-
ment spell (¢ = 0). Following McFadden (1978) and Arcidiacono and Miller (2011),
we can re-express Equation (2.1) such that some of the value functions on the right-
hand side are eliminated. Namely, assuming that the shocks € are drawn from a

standard logistic distribution, we can rewrite the Bellman equation as:

<p+53+225;i;,> VE = wy + ¢+ 0Vo(0) + 3D 6 v

w’ 8

=X i (1= i) (2.2)

where pf;:}, denotes the probability of accepting a new job offer of type s’ at wage w’

given the current job type s and wage rate w.
Prior to the realization of €, the probability of a job of type s’ paying w’ being accepted
given current job type s paying w is then:

exp (Vuff — cSS/)
exp (Vi5) + exp (ij - CSS'>

(2.3)

’
ss’
Py =

2.3 Value of unemployment

We now write the problem of the unemployed individuals. Indexing by ¢ time spent

unemployed, it is useful in this nonstationary environment to first write the Bellman

equation for the unemployment value function Vj(#) in discrete time:®

A
Vo(t) = b(t)At+ HptAt SN ()gs (t+ AE. max {V; +¢,Vo(t + At)}
1— Y, A (t)At
+ L+ oAt Vo(t + At)

SNote that we implicitly normalize to zero the switching cost from unemployment to employment,
which in our setup is not separately identified from the value of unemployment.



where At denotes the discrete time unit and where the equation can be rewritten as:

pVo(t) = b(t)(1+ pAt) —1—22)\5 (t)gs (t + At)E. max {V,) — Vo(t + At) +¢,0}

Vo(t + At) — Vo( )
+ At

Next, letting At — 0, and denoting by Vy(t) the derivative of Vj(t) (with respect to
unemployment duration) and by p (¢) the probability of accepting a job offer of type

s and wage w at time ¢, we obtain the following differential equation in Vy(-):

pVo(t) ZZAS (t)In (1 = p, (1)) + Vo(t) (2.4)

A couple of remarks are in order. First, Equation (2.4) now involves the time deriva-
tive of the value of unemployment. This term represents the change in the option
value of job search due to variation over time in the value of unemployment. In the
particular case where nonstationarity arises as a result of over-time changes in the
level of unemployment benefits, the option value of searching for a job will decrease

as job seekers get closer to the unemployment benefit expiration date.

Second, Equation (2.4) is a simple linear first-order differential equation in Vy(-),
which admits under standard regularity conditions an exact analytical solution as a
function of the structural parameters and the conditional choice probabilities p2,(t).”
In the absence of preference shocks, Vy(t) would satisfy instead the following nonlinear

differential equation:
pVo(t) +ZZAS g5, (t) max {V5 — Vo(t), 0} + Vo(t)

This type of nonlinear differential equation would need to be solved numerically,

similar to van den Berg (1990) in a simpler context without on-the-job search.

"Sufficient regularity conditions are the continuity of the functions ¢ — X*(t), t = g5, (t) and ¢ —
ps(t). As we discuss in the section below, Vj(t) and V(t) can be directly identified (and estimated)
from the log-odds ratios out of unemployment, without having to solve any differential equation.



3 Identification

We have shown in the previous section that the unemployment and employment value
functions can be expressed as a function of the structural parameters of the model, the
wage offer distributions, and the conditional job acceptance probabilities. There are
two fundamental differences compared to a Hotz-Miller type CCP-based approach for
dynamic discrete choice models. First, in a search environment, choices (i.e., job offer
acceptance or rejection) are partially unobserved by the analyst. Second, wage offers
are generally unobserved as well. Nonetheless, we provide in the following a simple
and constructive identification strategy for the parameters of the job search model
introduced in Section 2. We first focus on a setup without unobserved heterogeneity.
In particular, we start by assuming that job types s are observed by the econometri-
cian.® We then discuss in Subsection 3.4 how identification proceeds in the presence
of worker- as well as firm-level heterogeneity. Our identification results hold in an
empirical setting where one has access to longitudinal data on (i) across-firm job-to-
job transitions, (ii) within-firm transitions, (iii) transitions from unemployment to

employment, and (iv) transitions from employment to unemployment.

Recall that we assume that wages are drawn from a discrete distribution with finite
support. This distribution can be thought of as a discrete approximation to an
underlying continuous wage distribution. We maintain this assumption throughout
our analysis for simplicity, but note that our identification strategy readily applies to

the case of continuous wage distributions.”

3.1 Assumptions

We first introduce four assumptions that relate to the types of transitions that are
observed in the data. We denote by A1, A2, A3 and A4, respectively, the assumptions
that the following hazard rates are identified from the data:

8In practice we consider in our application a parsimonious specification with only one job type. See
Gyetvai (2021) for an application, in a stationary setting, that uses occupations as job types.

9Specifically, the key observation here is that, for any given pair of wages (w,w’), the hazard rates
associated with the transitions to wage w’ conditional on current wage w are directly identified
from the data. Such hazard rates are also known in the statistical literature as the conditional
mark-specific hazard function (see, e.g., Sun et al., 2009, Equation (1) p.395).
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Al fj{u,, the hazard rate of moving from a job with wage w and type s to a job

with wage w' and type s (in a different firm);

A2 h(t), the hazard rate out of unemployment at time ¢ to a job that pays w and

is of type s (assumed to be continuously differentiable);

A3 6%, the hazard rate of within-firm wage (w to w’) and type (s to s') changes;

ww’?
A4 ), the hazard rate from a type-s job to unemployment.

As is standard for this class of models, we also maintain the assumption that the

discount rate p is known.

We next show that these hazard rates can be used to recover closed-form solutions for
the employed and unemployed wage offer distributions (f; and g (t)); the pecuniary
and non-pecuniary payoffs of the job (u, and ¢°) each up to a constant; the cost
of switching jobs (¢**'); the job offer arrival rates for those who are employed and
unemployed (X**" and \*(t)); and the flow payoff of unemployment (b(t)). All of our

identification results are subject to the model specification given in Section 2.

3.2 Employed-side parameters

We begin by showing identification of the employed wage offer distributions for each

job type, f2, which we establish in the following lemma:

Lemma 1 Assume that Assumption A1 holds. Then f; s identified and can be

written as follows: .

= ww 1
> B35 (3.1)

fo
To prove this result, first note that the hazard hfj,:v, can be expressed as the product
of (i) the arrival rate of offers to job type s’ given the current job type is s (%),
(ii) the pmf. of w’ for offered wages in job type s’ (f2,), and (iii) the probability of
accepting a job of type s’ paying wage w’ given current job type s and wage w’ (p%,):

/ 88/

ss’  __ \ss' rs
hwwl - A w/ ww/

(3.2)
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Now consider the hazard rate of a transition to a job that is of the same type and

pays the same amount as the current job (hZ3,). From Equation (2.3), the probability

exp(—c™) ) for

of accepting a job in this case does not depend on w: p;}, = P, = Trexp(—c)

ww
all (w,w') € Q2. That is, since for these transitions the wage and job type is held
fixed, so too is the value function. Hence when the transitions are to same-type and
same-pay jobs, the ratio of the hazards for two different initial wages is the ratio of

the pmfs for the two wages:

S SS
fo _ b
£ R

Summing over w’ then gives the result:*
R

fo= ot
v Zw’ hfj’w’

Next, we consider in Lemma 2 below the identification of the on-the-job offer arrival
rates (A\**'), which then immediately leads to identification of the conditional choice

probabilities and switching costs.

Lemma 2 (i) Assume that Assumption A1 holds and that there exists a triple
(w,w', W) € Q2 such that fEhss hs, # [3,hi k.. Then X%, pis, and c**

ww' “w
are identified.

(ii) For v € {w,w} and s # &, let Ay = f5f5hs5 hss — S f2h35hss B, =

T Tww Tww w "xx X’

f;’hs’shss’ hs’s o s’hs’s hss/hs’s and Cx — fs hss/hss/ hs’s _rs hss’ hss/hs’s Assume

Tr Tww Tww w Tww Yrx " rx w TrTr T Tww T Tww w ww' "rxr " Yxx *

that Assumption A1 holds and that there exists a triple (w,w',w) € Q3 such
that the following conditions hold:

(a) Aw/ 7é 0
(b) BuAg — ByAuy #0
(C) Aw/Cﬁ} — A@Cw/ 7A 0

/ / ! ’ . .
then \*%, p2>.,, ¢ and V5, — Vo are identified.

0Tnspection of the proof indicates that this result does not rely on the distributional assumption
that the preference shocks e are drawn from a logistic distribution. Independence between ¢ and
the wage offers suffices to establish that p;;, does not depend on w, and is therefore also sufficient
for this identification result.
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Further, when the conditions stated in (i) and (ii) are met, there are closed-form
expressions for N, ¢, pi%, and V5 — V2, for all (w,w',s,s") € Q2 x Q% as a

function of the underlying hazard rates.

We show identification and the closed-form expression for A* in the text with the
corresponding proof for A** given in Appendix A.1.1. To begin, note that the distri-
butional assumption on the preference shocks ¢ yields a simple relationship between

probabilities of accepting a new job offer, the employment value functions, and the

switching cost:!!
I ([ Pow ) s s s (3.3)
1- pi}sw’ b Y
implying:
pSS , pSS,
I QT 3.4
n<1—pifwf>+ n<1—piﬁw> ’ 34

ss
ww’

Solving Equation (3.2) for p

hes
58 ;= ww 35
pww )\SSf{Z/ ( )

it then follows that, for any given triple (w,w’,w) € Q3:

In —hffw, +1In —hfj,w =In —hfjw +In —hf;w
XS fa — hiny Xesfos =i, )\ NS = higs xss fo — i,

Solving for A** under the assumption that fZho> hs5 =~ # f2,hs-hi —a condition

ww’ " w'w ww! “ow

that can be verified in the data—gives the result:

A5 = ( i)hiij) + fg)hfffw) h‘fjw’hfj’w + ( gh‘f:w’ + fi;’hfj’w) hiii)hfffw

fs s hss hss _fs s hss_hss
wJ W ww" ww wd w' wd ! ow

Given the expressions of f?, and \**, closed-form expressions for p:7,, and c** then
immediately result from Equations (3.5) and (3.4), as does the difference in value

functions V3, — V5 from Equation (3.3).

HRecall that the preference shocks are assumed to follow a standard logistic distribution. Note in
particular that the scale parameter of the shocks distribution would not be separately identified
from the flow utility of wages and unemployment.
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Lemma 3 below states our main identification result for the remaining set of employed-
side parameters, namely the utility of wages, u,,, and the non-pecuniary payoff of

working in a job of type s, ¢°.
Lemma 3 Given Assumptions Al, A3, and Aj:

(i) w, is identified up to a constant and has a closed-form expression.

i1) When workers have CRRA preferences so that ., = O‘w_lfe, both o and the risk
1-6

aversion parameter 6 are identified.

(iii) Given the normalization ¢' = 0, the non-pecuniary payoffs ¢° are a known

linear function of V(0).

We prove part (i) of Lemma 3 in the text with proofs of the remaining parts in
Appendix A.1.2. We begin by eliminating the employment value functions on the
right hand side of Equation (2.2). To do this, note that we can use the log-odds ratio
to express Vuff as a linear function of V,}, the switching cost ¢, and the conditional

choice probabilities ps? ,:
Ve = Vit +In(ph,) —In (1-pi,) (3.6)
Equation (2.2) can then be written as:

Vo = (ot ¢+ 8V0(0) + 353030 | +In (pi) —In (1 - pi) |

=3 (1= pi) ) (o + 65) (3.7)
Normalizing the flow payoff of employment in the lowest-paying job, wu,, to zero, it

follows that we can express In(pg,, /(1 — p5,)) as:

pfﬂs’w s s CE]
In (1 —pffw> = V,— Vﬂ—c

Uy = S S A F5 [In (1= p, ) —In (1= pisl, )]

- (3.8)

p+95
ey L Lo (1) 050 [ +1n (p, ) —n (1—pi,) ]
p =+ 05
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As the only unknown in Equation (3.8) is u,,, solving for u,, gives the result.'?

3.3 Unemployed-side parameters and main identification re-

sult

We now turn to the identification of the parameters governing the transitions out of
unemployment. As with the employed-side parameters, we begin by recovering the
wage offer distributions, g2 (t), which is allowed to vary over the course of unemploy-

ment.

Lemma 4 Given Assumptions A1l through A} and W > 3, the unemployed wage
offer distribution for job type s at time t, g5 (t), satisfies a generally overdetermined

W-1)
2

linear system of W —1 unknowns and at — 1 equations. A unique solution exists

when the system is of full rank.

To prove Lemma 4, we note that, for job type s, the difference in the log odds from
accepting a job that pays w and accepting a job that pays w’ can be written as the

difference in the employment value functions:

In <W> —n <pw(t)t)> —vE v (3.9)

1 —p;,(t) 1 —pr(

It follows that the difference in the log odds of accepting any two wage offers out
of unemployment depends on the (identified) difference in the employment value
functions associated with these two wages only. As such, it does not vary over the

course of unemployment.

The conditional choice probabilities for accepting a job at time ¢ (p (¢)) on the left
hand side of Equation (3.9) can then be expressed as a function of the hazard out

of unemployment (h$ (t)), the arrival rate (A*(t)), and the probability that the offer
pays w (g, (t)):
AQ)

Py (t) = N )gn ) (3.10)

12Note that the expression substantially simplifies when there are no within-job involuntary changes
(625, = 0), which is the case we will consider in our application.
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Denote the differenced value function V,; — V5, as x;,,. Recall that I, is known

from Equation (3.3). Using Equations 3.9 and 3.10, we can then express A\°(t) as:

hay () iy () (exp (i — 1))

AU(t) = 9o (O)Vh5, (t) exp(r,,) — gos (£) 15, (1)

(3.11)
Evaluating the right hand side of Equation (3.11) for an alternative pair of wages,
(w,w"), and differencing yields:

hay (P (D) (exp (g — 1)) Iy (8)hi (8) (exp(ripy — 1))
G ()P (8) exp (k) = Gur ()R, (E) g3 ()i (1) exp(wigar) — i (DD (2)

—0 (3.12)

Denote the numerators of the two terms as A2, (t) and A%/ (t). These can be cal-
culated from the unemployment hazards and the previously identified differences in

employment value functions. Rearranging the terms yields:

0 = Aga ()hey(t) exp(ig ) 9o (1) = Agar (), (8) g0 ()
— A () Dy (8) exp (ki) 9 (1) + Aby (E)15 (8) g3 (2) (3.13)

This is a simple linear equation in its unknowns, the wage offer distribution terms.

Excluding, for any given job type s and unemployment duration ¢, redundant equa-

tions by evaluating Equation (3.13) at the following set of wage tuples:
{(w,w",0,@0") :w=1,w =2,w <, (0,0) # (1,2)}

and noting that ¢5(t) =1 — >, .5 g5, (t) yields a linear system with W — 1 unknowns
and %_1) —1 equations. When this generally overdetermined system is of full rank,

there exists a unique (closed-form) least squares solution for (g2 (t))weq,, -

Identification of the remaining unemployed-side parameters directly proceeds from

the earlier steps:

Lemma 5 Given Assumptions A1-A4, the offer arrival rates A\°(t), the conditional
choice probabilities pi (t), the flow payoff of unemployment b(t), the value function of
unemployment and its derivative, Vo(t) and Vy(t), are identified.

An important implication of Lemma 5 is that the non-pecuniary payoffs ¢°, which
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from Lemma 3 were only known up to V5(0), are also identified (up to the normal-
ization ¢! = 0).

Identification of A\*(t) follows directly from Equation (3.11) as all the terms on the
right hand side are either directly identified from the data (h$ (t)) or identified from a
previous step (k25 and g2 (¢)). Identification of p? (¢) then follows immediately from
Equation (3.10).

To recover the unemployment value function, we express the following log odds by

normalizing the future value of working relative to staying at the same job:

o) - o
= (w + 0"+ GVo(0) + D0 b5y [ + I (pl, ) — In (1= piil, )]

=X i (L= i) ) /(o + 65) = Va() (3.14)

where the second equality follows directly from Equation (3.7).

Evaluating the previous equation at the start of the unemployment spell (¢ = 0) and

solving for V4(0) yields:

Vo(0) = [uw + 6"+ Y an [ +In ( ww) —1n (1-pi, )]

w’ 8

p 1 —p3(0)

Note that at this stage everything on the right hand side is known, so that this
equality identifies V4(0). Plugging V4(0) into Equation (3.14) then identifies Vy(?)
(for all t > 0), and thus also Vy(t). It follows that one can directly identify the flow
payoff of unemployment b(t) from the Bellman equation (2.4):

b(t) = PY(0) + 32 37 N ()50 n (1= pi(t)) = (1) (3.16)

A remarkable implication of these results is that, by exploiting the tight connection

between value functions and conditional choice probabilities, we are able to recover
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the structural parameters of this nonstationary job search model without solving any

differential equation.

Finally, our main identification result follows from Lemmas 1 through 5:

Theorem 1 Given Assumptions A1-A4, all of the employed and unemployed-side
parameters are identified subject to a normalization of one u,, and one ¢°, and subject

to the rank conditions given in Lemmas 2 and 4.

Our identification strategy can be extended to more general search models. In partic-
ular, one can allow for aggregate shocks to the economy. Namely, we assume that the
economy is in one of K states, k € {1,..., K}, with the transition rate from state k
to k' denoted by ¢i. Different states of the economy then affect the job destruction
rates, 0;, the within-employer type and wage transitions, 55,51;, i the offer arrival rates,

#s' and the offer distributions, f,. Appendix A.2 shows that constructive identifica-
tion holds in this case as well, under the assumption that the econometrician observes
the market state, and therefore identifies g, and the hazards in A1l through A4, but
now conditional on market state. The key insight is that, on the employed side, the
introduction of market states has no effect on the identification proof for the offered
wage distribution, offer arrival rates, conditional choice probabilities, and switching

costs. Given that, identification of the remaining parameters follows trivially.

3.4 Worker- and firm-level unobserved heterogeneity

The identification strategy provided above can be extended to accommodate worker-
level unobserved heterogeneity.!> Namely, assume that workers belong to one of a
finite number of unobserved heterogeneity types, where the model parameters are
allowed to vary across types. The key here is to note that the previous constructive
identification strategy still identifies the structural parameters, from the knowledge
of the type-specific hazard functions and the distribution of heterogeneity types. The
distribution of types can be identified from the observed transitions from unemploy-

ment to employment by using the identification results from Heckman and Singer

BQOur identification strategy trivially applies to a setup with worker-level observed heterogeneity,
starting from the hazard rates which are now conditional on workers’ observed heterogeneity.
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(1984) for duration models with unobserved heterogeneity but without covariates.'4
Alternatively, a similar reasoning as in the dynamic model of Bonhomme et al. (2019)
identifies the distribution of worker-level unobserved heterogeneity from the observed
job-to-job transitions. One can then identify in a second step, taking as given the
distribution of heterogeneity types, the type-specific hazards associated with the job-

to-job, job-to-unemployment and unemployment-to-job transitions.

Our identification strategy also readily applies to a framework where job types s are
unobserved to the econometrician. Namely, and following the approach of Bonhomme
et al. (2019), one can classify firms into a finite number of firm classes using k-means
clustering. Our constructive identification strategy then still applies, setting s equal
to the firm class associated with a particular job, and taking the partition of firms

into firm classes as given.

4 Application to job search in Hungary: back-

ground and data

4.1 Setup

We apply our method to a special case of the job search model described in Section 2,
in which there is one job type only (S = 1) and no involuntary wage transitions
(635, = 0, for all (s,s’,w,w’)). While this model shares the key features of nonsta-
tionary job search models that have been estimated in the literature (see, in particular,
van den Berg, 1990, Lollivier and Rioux, 2010), an important distinction is that it

incorporates preference shocks into the search framework.

4.2 Institutional background

Our analysis focuses on the period from January 2003 to October 2005. During this
period, Hungary had a two-tier unemployment insurance system. Only those were
eligible for second-tier benefits who had a sufficiently long work history, and benefit

payments in the second tier were lower than in the first. Those who exhausted benefits

4These results apply to a class of duration models that are characterized by a Box-Cox baseline
hazard. We thank Jim Heckman for useful discussions on this point.
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in both tiers were eligible for social assistance. Tier 1 benefits expired in 270 days and
Tier 2 benefits expired in an additional 90 days. We focus on unemployed workers
leaving unemployment in Tier 1, because Tier 2 benefits were low ($114 per month on
average over our period of interest) and very similar to the amount of social assistance
that anyone is eligible for, regardless of prior work history. As such, Tier 2 benefits

likely did not provide significant further incentive to remain in unemployment.!?

4.3 Data

We estimate the model using matched employer-employee data from Hungarian ad-
ministrative records, provided by the Center for Economic and Regional Studies at
the Hungarian Academy of Sciences (CERS-HAS). The dataset used in this analysis
combines data from five administrative sources: (i) the National Health Insurance
Fund of Hungary; (ii) the Central Administration of National Pension Insurance; (iii)
the National Tax and Customs Administration of Hungary; (iv) the Public Employ-
ment Service National Labor Office; and (v) the Educational Authority.

The sample consists of half of the population, i.e., 4.6 million individuals, linked
across 900 thousand firms. On the individual side, a de facto 50% random sample
of the Hungarian population is observed; every Hungarian citizen born on January
1, 1927 and every second day thereafter are included. A key distinctive feature of
the Hungarian data is their frequency: job spells are observed on a monthly basis,
and unemployment spells are observed at a daily frequency. When working, one
individual can be present in at most two work arrangements: labor market measures,
such as wages and days worked, are observed separately for each one of them. We
also have information on demographics, total earnings and days worked, as well as,
for job seekers, unemployment benefit payments. On the firm side, all firms are
included at which any sampled individuals are observed to have worked for at least
one month. From these data, we can infer the length of the employment spells, as

well as job-to-job transitions from changes in firm identifiers.

We estimate the model using a sample of employment spells over the period January

15In practice, we choose to censor durations at 269 days as a disproportionally large number of
workers are recorded as claiming Tier 1 benefits up until exactly 270 days. This suggests that
some of these workers might actually have started working before that point.
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2003 to October 2005, and unemployment spells from January 2004 to October 2005.1
We focus on males who were older than 18 in the beginning of our sample and younger
than 40 at the end: we drop females from our sample to abstract from differential
labor market flows resulting in part from childbearing decisions.!” Furthermore, we
drop older males to abstract from differential search behavior as retirement nears,

with a retirement age of 43 for males in certain occupations.!®

Because of some recoding of jobs around the first day of the year, for job-to-job
transitions we treat employment spells that go past December 315 of a particular year
as right-censored. Given that the employed data set tracks where the individuals are
employed on the 15 of the month, there can be issues with distinguishing whether
there was a job-to-job transition versus a short break between two jobs. As a result,
we further right censor jobs at October 315 in each year to allow for a consistent
coding of job-to-job transitions within a month. Appendix B describes our data

cleaning process.

Table 1 shows summary statistics for the employment spells. In a given year, eleven
percent of workers have two or more employment spells. Eighty percent of employ-
ment spells are right-censored. Among those that are not right-censored, 28% end in a

transition to another job, with the remaining entailing transitions to unemployment.

For the purposes of estimation, we discretize wages into fifty bins. The first bin con-
tains wages around the minimum wage (namely between 75 and 107% of the effective
minimum wage in a given year), with the remaining bins set to be evenly distributed
based on the distribution of current wages in each calendar year.! Whenever we use
wage levels in a given bin (e.g., for the utility of wages), we take the mean wage in
each bin of the distribution of current wages in 2004, except for the first bin where
we use the 2004 minimum wage. For the purposes of describing the data below, we

follow a similar procedure but discretize wages into ten bins.

Table 2 shows the number of employment-to-employment transitions to particular

wage bins given the current wage bin. Excluding transitions to the first bin, the most

16Unemployment data is only available from January 2004 onwards.

17The female labor force participation rate in Hungary was 54.0 percent in 2004, 5.8 percentage
points lower than the OECD average in the same time period.

BOur final sample consists of 1,314,384 employment and 15,454 unemployment spells.

19Gee Appendix B.3 for additional details on the wage discretization process.

21



Table 1: Summary statistics, employment spells

Number of spells per year
1 2 3 4 5 )
In whole history (%)  16.8 15.6 489 14.1 3.6 0.9
In a given year (%) 88.9 104 0.7 0.0 0.0 0.0

Destination
EFE EU RC
Share (%) 5.7 144 799
Meoan Percentiles
10 25 50 75 90
Duration (year) 0.621 0.148 0.380 0.833 0.833 0.833

Current wage (HUF) 3,681 1,726 1,874 2,536 4,238 7,025

Notes: The top panel shows the share of individuals with a given number of employment spells in
their history, as well as the share of individual-years with a given number of employment spells.
Durations are right-censored at October 315" each year. The middle panel shows the fraction of
employment spells that end in an employment-to-employment, employment-to-unemployment tran-
sition, or are censored. The bottom panel shows summary statistics of the duration and current
daily wage of employment spells. 200 HUF ~ 1 USD in 2004.

Source: CERS-HAS, authors’ own calculations.

populous cells are those that involve within-bin transitions, the second most populous
cells are ones involving a transition to one bin higher, and the third most populous
cells are ones involving a transition to one bin lower.2’ There are also a number of

transitions involving substantial wages changes in both directions.

Table 3 takes this analysis one step further by looking at how often a job-to-job
transition resulted in wage increases or decreases of particular levels. Over 30% of
job-to-job changes involve a wage decrease of more than 5%; this number rises to
35% excluding jobs at the minimum wage level. Over 41% of job-to-job transitions
entail a wage increase of more than 5%; 28% of job-to-job transitions result in a more

incremental wage change, between negative five and plus five percent.

Taken together, the descriptives reported in Tables 2 and 3 provide support both
for and against the model described in Section 2. On the one hand, there is clear

evidence of individuals moving to jobs that involve significant wage cuts. This is

20The sole exception is current wage bin 3, with 8% more transitions to one bin lower than higher.
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Table 2: Employment-to-employment transition counts by wage bins

Accepted wage

1 2 3 4 5 6 7 8 9 10
13,711 2,116 1,269 1,368 1,184 992 1,045 1,025 660 480
2,677 1,378 646 604 498 357 388 387 213 133
1,247 672 831 625 429 350 351 278 150 82
1,324 540 574 1,228 868 584 494 392 216 115
1,145 319 325 594 963 741 625 464 263 119
823 232 234 333 595 925 838  H93 324 169
798 248 218 273 357 544 1,236 1,048 520 217
760 201 160 213 301 354 573 1,36 1,067 471
474 134 74 129 165 181 275 538 1,408 1,088
367 68 78 91 101 150 206 356 604 3,612

Current wage
SO %N G oo~

Notes: For exposition’s sake, the table uses 10 wage bins instead of 50 as in our empirical illustration.
The first bin contains wages between 75 and 107% of the effective minimum wage. Subsequent bins
are equally sized percentiles of the distribution of current wages.

Source: CERS-HAS, authors’ own calculations.

Table 3: Summary statistics, employment-to-employment transitions

By wage change

Overall Less than —5% —51to 5% More than 5%

Share (%)

All E spells 5.7 30.6 28.3 41.1

Cur. wage is min. 3.2 - 54.1 45.9

Cur. wage above min. 6.3 34.8 24.8 40.4
Mean wage change (%)

All E spells 18.8 -30.3 —0.3 68.6

Cur. wage is min. 38.6 - 0.5 83.4

Cur. wage above min. 16.1 —30.3 —0.5 66.3

Notes: The top panel shows the distribution of EE spells. The “Overall” column shows the share
of EE spells within all E spells/within E spells with a current wage being equal to vs. higher than
the minimum wage. Within each row, the columns titled “By wage change” show the conditional
distribution of EE spells by wage change. The bottom panel shows the mean wage change within
each category. Current and accepted wages are recoded as w = max(w, Win )-

Source: CERS-HAS, authors’ own calculations.

consistent with a search model where individuals value more than just the wage. On

the other hand, the large number of transitions along the diagonal in Table 2 strongly
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suggests that the current wage may affect what wages are offered. This motivates the
specification in our empirical application, where we allow for the possibility that the

current wage affects the wage offer distribution.

Figure 1: Unemployment durations

a) Histogram (b) Hazard of exiting to employment
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Notes: Panel (a) shows the distribution of unemployment spells that end in exiting to employment.
Spells are censored from the right at 269 days. Panel (b) shows the unconditional hazard rate of
exiting unemployment. We calculate the hazard as the kernel-smoothed density of exiting unem-
ployment to a job, divided by the kernel-smoothed survivor function. We use Gaussian kernels with
optimal bandwidth selection and reflection for boundary correction.

Source: CERS-HAS, authors’ own calculations.

Table 4: Summary statistics, unemployment-to-employment transitions

By unemployment duration (days)

Overall =237 60 61 90 91 180 181 269
Mean U duration (days)  108.3  20.7 458 755 130.4 220.0
Mean acc. wage (HUF) 3,042 3,356 3,229 3,080 2,975 2,727
Share w (%) 32.8 238 247 322 354 432

Notes: The table shows summary statistics of spells that end in an unemployment-to-employment
transition. Accepted wages are recoded as w = max(w, Wyin). The last row shows the share of UE

transitions to the lowest wage bin (75 to 107% of the minimum wage). Wage rates are daily; 200
HUF =~ 1 USD in 2004.

Source: CERS-HAS, authors’ own calculations.

Turning to the unemployment side, almost 43% of unemployment spells end in em-
ployment; most of the remaining spells are right-censored. Panel (a) of Figure 1 shows
the distribution of unemployment durations for those who exited unemployment dur-

ing our observation window; the mean duration is 108.3 days. Panel (b) of Figure
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1 shows that the hazard rate of exiting unemployment to employment is downward-
sloping, consistent with the existence of negative duration dependence. Next, we
divide those who exited unemployment to a job into five categories based on their
unemployment duration. Summary statistics for accepted wages for those who exited
unemployment in each of these durations are presented in Table 4. Consistent with
unemployed workers willing to accept lower wage offers over time, longer durations
are associated with lower accepted wages and higher probabilities of accepting a job
at the minimum wage. In particular, those whose unemployment durations were less
than 30 days were a little over half as likely to exit to a job paying the minimum

wage as those whose durations were in the top quartile.

5 Estimation procedure

For estimation, we specify u,, = o In(w) and set p = 0.05. Motivated by the job-to-job
transition patterns discussed in Section 4.3, we further allow current wages to affect
the on-the-job wage offer distribution.?!’ We use a flexible parametric specification for
the employed and unemployed wage offer distributions as well as for the offer arrival
rates out of unemployment, the latter two of which are time-dependent. We do this
for two main reasons. First, the model is heavily over-identified. This parametric
specification allows us to incorporate all of the relevant information in a disciplined
fashion. Second, the model requires data on job-to-job transitions conditional on the
current wage and unemployed-to-job transitions to specific wages at each moment
in time. These conditional transition rates are inherently noisy, and our flexible

parametric specification yields substantial precision gains.

Consider a workforce populated by N individuals, indexed by 7. Workers may face
different wage offer distributions, job offer arrival and destruction rates, as well as
different flow payoffs of unemployment in ways that are unobserved to the econo-
metrician. We allow for unobserved heterogeneity in the following manner. Each
individual belongs to one of R unobserved types with probability g;,.; the population
probability of type r is given by m,.. We set R = 2 in our application. Each individual

21Gee also Altonji et al. (2013) who estimate a model of earnings dynamics in discrete time in which
wage offers are allowed to depend on past wages.
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experiences S; employment spells indexed by s and S; unemployment spells indexed
by 5. The corresponding likelihoods for these spells for individual i of type r are
given by LE (0F) and LY (0F,0Y), respectively, where 0F denote the employed-side
parameters and Y the unemployed-side parameters. Note that the employed-side
parameters enter the likelihood for the unemployment spells but the reverse is not

true. We will exploit this sequential likelihood property in our estimation procedure.

In practice, we account for unobserved heterogeneity by estimating a specification
where the offer arrival rates, job destruction rates, wage offer distributions, and
flow payoff of unemployment are allowed to be type-specific. Denoting by fuwr

the probability to receive a wage offer w’ conditional on current wage w and type
7' QE (507‘7 )\7“7 (fww r)w w’y (uw>w> ), and 97["] = (()\7”<t>)t7 (gw?“(t))w,h (br<t))t)/

For estimation, the unobserved type must be integrated out of the likelihood function.
Note that there is an initial conditions problem here as the initial wage may be
affected by the type. These initial conditions, described in more detail in the next
subsection, are indexed by a vector of parameters 6. We denote by LI (67) the
probability of observing ¢’s initial wage conditional on being of type r. Assuming spells
are independent across individuals and, conditional on heterogeneity type, within
individuals, the log-likelihood for the initial wage, employment and unemployment

spells data is then:
S;
Zln (Zmﬁl CH) Hﬁir 0F) H LY (07,67 ) (5.1)

We estimate the model parameters using a three-step estimation procedure. Following
Arcidiacono and Jones (2003) and Arcidiacono and Miller (2011), we implement an
adaptation of the Expectation-Maximization (EM) algorithm that restores the addi-
tive separability of the log-likelihood function (5.1). In particular, the EM algorithm
treats the unobserved type as known at the maximization stage and weights the log-

likelihoods of each individual ¢ by the posterior probability of ¢ being of unobserved
type Ty Qir-

We build on Arcidiacono and Miller (2011) and use in a first step a reduced-form

approximation of the employment duration models to estimate 6! and the ¢;.’s. The
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posterior probabilities obtained at this stage follow directly from Bayes’ rule:

18T

TS, mLL (0D T, £E, (6F)

(5.2)

ir

where £Z (AF) denotes the reduced-form likelihood associated with employment spell

s. Given the ¢;,’s, we then estimate #% and Y (holding F fixed) in two sequential

maximization steps.

5.1 Step 1: posterior type distributions

We use the initial wage and the job-to-job transitions to estimate the conditional
probabilities of being each unobserved type, ¢;.. We specify the job-to-job transitions
between jobs that pay w to jobs that pay w’ as the product between the hazard rate
out of a job that pays w and the probability that the accepted wage is w’ given that

the current wage is w. The exact specification is given in Appendix C.1.

We specify the likelihood of the initial wage as following a tobit structure. Denote w?
as individual 7’s initial wage level, and X/ a set of observed characteristics that may
affect this initial wage.?> Denoting by ®(.) and ¢(.) the cdf and pdf of a standard

normal distribution, the likelihood contribution of initial wages is then

£ (1) — [q) <1n(w) - Xf%)] {w!=w} | l L, (m(w{) - X{egrﬂ 1w/ >w} 53

I I I
o, o, o,

!/
where 0! = (91 07{) . We specify X/ as a function of the individual’s type and year

xr)

indicators where the effects of the year indicators are fixed across types:

X/0L =0l +0i1{y; = 2004} + 02 1{y; = 2005} (5.4)

1 7xr

Given these parameters and the reduced form parameters éf governing the job-to-job

transitions, we can estimate the g;,.’s.

22We use the first recorded wage in each individual’s work history. Similarly, for the job-to-job
transitions we use the observed wages in each spell; see Appendix C.1.
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5.2 Step 2: employed-side parameters

With the estimated conditional type probabilities (the g¢;’s) in hand, we now pro-
ceed with the estimation of the employed-side parameters. Estimation proceeds as
it would without unobserved heterogeneity but where the ¢;.’s are used as weights.
For each employment spell s, we observe its duration, t;,, and the wage, w;,. Let
Wis+1 = 0 when individual 7 transitions to unemployment during their s*" employ-
ment spell. Estimation of the type-r job separation rate dg, then directly follows as
the weighted number of transitions to unemployment divided by the weighted time
spent in employment:

N Si
2 i i D s 1 is =
50T Z@:l q Z 1 {w +1 O} (55)

Zi\il qir 2351:1 tis

We estimate the other employed-side parameters via maximum likelihood. We express

the type-r hazard from moving from a job that pays w to one that pays w’ as follows:

hww’r - )\waw’v"pww’r (56)

The wage offer distribution, fu., iS parameterized using an ordered logit that de-
pends on current wages. First, we specify the wage cutoffs as having the following

recursive structure:

07 for w = w
bw_ + exp(65 + 03 In(w) + 65 In(w)?) for w > w

where w_ denotes the preceding support point of the wage distribution. These cutoffs

specify how large the latent index needs to be to reach a particular wage bin.

We then define the distribution of offered wages using the wage cutoffs as well as
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current wages w:

Aoy, + X767 for w' = w

Jowr = § Mpw + X700) — M@y + X707) forw<w' <w (5.8)
— Aow_ + X761) for w' =w

X707 = 6] In(w) + 6J1{w = w} + 6, (5.9)

where A(-) denotes the logistic function. The log of the current wage then shifts the
latent index and the unobserved types affect the offered wage distribution through
the location shift 6], .

Finally, given the logistic distribution assumption on the instantaneous shock e, the

conditional choice probabilities that enter Equation (5.6) can be written as:

- €xXp (Vw’r - Vwr - C)
Puowr = 1+ CeXp (Vw’r - Vwr - C)

(5.10)

In practice, we use the Bellman equation for the value function of employment and
solve for a fixed point in the differenced value functions that appears in Equation
(5.10), for all the states.

We collect the employed-side parameters that remain to be estimated in 6F =
(A, 02,0/ a,c). Tt follows that the likelihood contribution of a job spell s for a

»Yro

type-r worker ¢ is given by

E E\ Wwis=w,wiss1=w' Hw;s=w}
isr\Y0r; Yor ) — ww'r ww'rlis
LE, G0, 05) = TT [ (huwrr) ™ A=Y oxp(—Aurtis)]

w,w’

(5.11)

We then estimate these parameters by maximizing the expected complete log-likelihood

with respect to 0%
2 S;

max >3 girln ( E (Bor, 95)) (5.12)

rllrlsl
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5.3 Step 3: unemployed-side parameters

In the third and final step, we estimate the distribution of offered wages out of
unemployment, g,,(t), and the offer arrival rates, A,(¢), using maximum likelihood.
We then rely on our constructive identification strategy to estimate the flow payoft

of unemployment.

Note that the type-r hazard of leaving unemployment at duration ¢ to wage w is given
by:

P () = Ar(£) Guor ()P () (5.13)

In the next subsections, we show how each of these terms are specified.

5.3.1 Specification of p,,.(t)

We focus first on expressing p,,(t) in a way consistent with the structure of the model.
We introduce Kywir = Vir — Vi, so that exp(Kpwr) = exp(Vir)/ exp(Viy). Using
this identity, we can express the ratio of the conditional choice probabilities out of

unemployment as:

Pur(t) _ exp(Var)/[exp(Vor(t)) + exp(Viur )]
Purr(t)  exp(Virr) /[exp(Vor () + exp(Virr)]
)

= exp(Rwwr) [1 = Puwr(t){1 — exp(—Kuwuwr) }] (5.14)

We can therefore express all conditional choice probabilities relative to one other
conditional choice probability, say the one associated with the minimum wage p., (%),
and the corresponding K, terms:

Pur(t) exP(Kuwwr)

wr(t) = = = 5.15
Pur(?) 1 — pur(2) [1 — exp(/@ww)} ( )

Furthermore, we express the CCPs of accepting an offer from the first wage bin in

terms of a parameterized hazard rate out of unemployment to the first bin:

()

75 =0 (5.16)



where??

hur(t) = exp(X"0")  with
Xt=1 ' ') £ ¢

It follows that we can express the CCPs as

h®)
o Ar(t) guwr(t)
pwr (t> - hﬂr(t) eXp(K/wﬂr)
A (8) gur (6)—Pwr (B) [1—exp(Fuwwr )]

for w =w

for w > w

5.3.2 Specification of \.(t)
We parametrize the offer arrival rates A,.(t) as
(1) = exp(X 00} +40)  where
Xr=1 ¢t ¢ ¢
vp =1 and ¥} =0

The type-specific parameters (v

T

of the common Type 1 profile.

5.3.3 Specification of g, (t)

(5.19)

,w;\) provide a parsimonious scale and location shift

Finally, we parameterize the offered wages g, (t) using a similar ordered logit struc-

ture to that used in the employed offer distribution. We take the wage cutoffs ¢ as

given from the employed side in Equation (5.7), and add a type-specific variance-scale

parameter (3., a level shifter, v1,., and a duration shifter, vs,., specifying the wage offer

23We chose this polynomial because it fits the nonparametric Nelson—-Aalen hazard estimates the

best.
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distribution out of unemployment as:

A (Brdw + 11r + 720 In(1)) for w = w
Gur(t) = T A (Brdw + 717 + 72r In(t)) — A (5rgbw, + Y1ir + Yor ln(t)) forw <w <w
— A (@@bm + Y1 + Yor 1n(t)> for w =w
(5.23)

Note that the only (type-specific) parameters to estimate are 3, 7., and 7s,.

5.3.4 Estimation of p,,.(t), \.(t), and g,,(t)

Putting the three components together, the structural hazards are given by

P (1) forw =w
hoe(t) =4 (5.24)
hu}'r (t) gwr(t) eXP(ngr)

ggr(t) Ar(t) Jur (t)_hﬂf‘ (t) [1_9XP("W@7")]

We estimate these structural parameters in a maximum likelihood procedure, strat-
ified by types. First, we estimate the parameters 0V = (0,07, B1,v11,7021) for
Type 1 individuals. Then, given these estimates we estimate the parameters 6 =
(va,3, 0%, Ba, Y12, 722)" for the second type. In both cases, we impose that the CCPs

are non-decreasing in .24

The likelihood contribution of a type-r individual i’s spell 5 is

£5.00) = T { It e (= [ b)) (529

w

We first estimate the parameters 69 as follows:

max Zqﬂ Zln (ﬁgl (6Y) ) (5.26)

s.t. pwl(t) put(t+1) for1<t<T -1 (5.27)
pur(l) > ¢ (5.28)
po(T) <1—¢ (5.29)

24 Appendices C.2.1 and C.2.2 show how these constraints simplify.
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for some small £ and where T = 269 denotes the end of our time window.??

Taking the shape of the offer arrival process as given, we then estimate the remaining

type r = 2 parameters as follows:

WMZMZm@gW) (5.30)
S.t. Pu2(t) < pua(t+1) for1 <t<T -1, (5.31)
pu2(1l) > € (5.32)
po(T) <1-¢ (5.33)

5.3.5 Estimation of flow payoff of unemployment b, (t)

For the last remaining parameters, we first need to calculate the value function and
its first derivative. Given the estimates of the employed and unemployed parameters,

we calculate Vj,(t) pointwise at each duration ¢ using?®

aln(w)-3. A f ww/rln(l ~Puwr) _ Sortp 1n( pur (1) ) for t =0

Virlt) = 0 (5.39)
o ln(w)_zw/ >‘7'fww/r ln(l_pww’r)+60TV0T(0) Pwr (t)

From the time trajectory of the value function, we estimate its first derivative as

Vor(t + AT) — Vo (8)

Jor(t) = :
0 e (535)
where A7 is an arbitrarily small time interval.?”
We finally calculate the flow payoff of unemployment using the expression
b (t) = pVor(t) + Z)‘ )Guwr () In(1 — pur(t)) — v()r(t) (5.36)

where p = 0.05 and all of the other right-hand side parameters have been estimated

in previous steps.

%5In practice we set € = 5 x 1074,

26This expression would appear as though Vo,.(¢) is heavily overidentified as the expression holds for
all wages w. However, we have already imposed the structure of the model prior to this stage so
that all values of w lead to the same value of Vj,.(¢).

2TWe set At = 10~° in our application.
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6 Results

We now discuss our estimation results. We begin with the employed-side parameters,
showing substantial permanent heterogeneity (through the unobserved types) as well
as showing the importance of current wages on future wage offers. We then turn
to the unemployed side where the nonstationarities lie. Duration dependence affects
both the rate at which offers are received as well as the size of the wage offers, both
of which decline over time. As a result, workers become more willing to accept lower

wage offers over time.

6.1 Employed-side results

Table 5 below shows the estimates of the employed-side parameters with the exception
of the initial conditions and the wage offer distribution. Most workers (87%) are
classified as Type 1. Relative to Type 2 workers, these workers receive offers at a lower
rate and have higher job destruction rates. Type 1 workers expect to receive a job offer
once in every 2.9 years (0.349 annually) and have a 25.9% chance of separating from
their current job per annum; Type 2 workers receive offers slightly more frequently
(one in every 2.5 years or 0.408 per annum) and separate from their jobs substantially
less frequently (8.3% probability per annum). It follows that the index of search
frictions, which corresponds to the average number of job offers received during any
given employment spell (Ridder and van den Berg, 2003), is substantially higher for
this group of individuals (4.9 vs. 1.3 for Type 1 individuals) who also tend to have
higher initial wages. The mean index of search frictions across types is equal to 1.8,
a value which fits in the range of the estimates based on the joint distribution of job
durations and wages for French labor force survey data, but substantially lower than
those for CPS data in the US (Ridder and van den Berg, 2003).

The estimated parameter associated with the flow utility of log wages is equal to 0.323,
which is about a third in magnitude of the cost of switching jobs. The switching cost
translates directly into the probability of switching to a job that pays the same wage,

resulting in the probability of acceptance of a same-wage job of 27%.2 The flow

28The probability of switching to a same-wage job conditional on receiving a same wage offer is
exp(—c)/(1 4 exp(—c)) = exp(—.986)/(1 + exp(—.986)) = 0.27.
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utility parameter is sufficiently large as to produce substantial heterogeneity in the
probability of accepting a job given the current and offered wage. For example, Type
2’s employed in the highest wage bin who receive an offer from the lowest wage bin
have an acceptance probability of less than 1%; those in the lowest wage bin who

receive an offer from the highest wage bin have an acceptance probability of 96%.

Table 5: Structural parameter estimates, employed side

Parameter Estimate
Type 1 Type 2
A Offer arrival rate 0.349 0.408
[0.294, 0.421]  [0.363, 0.495]
0  Job separation rate 0.259 0.083
[0.258, 0.261]  [0.082, 0.085]
Ms  Search friction index 1.345 4.888
[1.137, 1.610]  [4.345, 5.878]
a  Flow utility of log wages 0.323
[0.287, 0.370]
¢ Job switching cost 0.986
[0.730, 1.243]
m  Type probability 0.867 0.133

0.864, 0.871]  [0.129, 0.136]

Notes: The offer arrival rate A and the job separation rate § are yearly rates. The flow utility of log
wages « and the job switching cost ¢ are fixed across heterogeneity types. 95% bootstrap confidence
intervals in brackets (500 replications).

Source: CERS-HAS, authors’ own calculations.

As wage offers are allowed to depend on the wage in the current job, Figure 2 shows
the offer distributions for workers currently in wage bin 1, 10, 20, 30, 40, and 50.
At any current wage, Type 1’s face a worse wage offer distribution than Type 2’s.
However, as the current wage rises, the distribution of offered wages shifts to the right
for both types. Hence a Type 1 worker currently working in the 40th wage bin faces a
better offer distribution than a Type 2 worker currently making the minimum wage.
As shown in Table 10 in Appendix D, Type 1 workers also have lower initial wages.
Virtually all (over 99%) of workers in each of the first ten initial wage bins are Type

1 compared to less than 2% in the top initial wage bin.
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Figure 2: Wage offer distribution, employed side
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are represented on the secondary vertical axis (right). Error bars represent 95% bootstrap confidence
intervals (500 replications).

Source: CERS-HAS, authors’ own calculations.

6.2 Unemployed-side results

We now turn to the unemployed-side results. Our model allows for nonstationarities
along multiple dimensions. Figure 3 shows one of these dimensions, revealing how
unemployed offer arrival rates evolve over time. For both types, increased unemploy-
ment durations are associated with fewer offers. For Type 1’s, offers come in at a rate
of 2.9 per year at the beginning of the unemployment spell but fall to a rate of 1 per
year by the end of the time window. Type 2’s, who already have better prospects on
the employed side, receive offers at a much higher rate, beginning at a rate of 6.1 per

year but falling to the same rate as Type 1 individuals by benefit expiration.
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Figure 3: Offer arrival rates out of unemployment
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Source: CERS-HAS, authors’ own calculations.

A second source of nonstationarity, illustrated in Figure 4, is in the offered wage
distribution for unemployed workers. Panels (a) and (b) show stark differences in
the offer distributions between offers at the start of unemployment (¢ = 1) and at
the end of our time window (¢t = 7" = 269 days). At ¢t = 1, Type 2’s face a much
better offer distribution that Type 1’s. However, this advantage vanishes near benefit
expiration. As unemployment duration increases, the offer distributions for both
types become substantially worse. Notably, Panel (¢) shows that this deterioration
of the offered wage distribution is larger than the initial wage offer differences across
types: Type 1's at t = 1 face a better wage offer distribution than Type 2’s at ¢t = 269.
Our results are qualitatively similar to, e.g., Faberman et al. (2022) who find that,
controlling for work histories, employed individuals receive (14%) higher wage offers
than the unemployed. In our nonstationary setting, both Type 1 and 2 unemployed
individuals also draw from a worse distribution than their employed counterparts,

and the gap further increases over the course of unemployment.

A third and last source of nonstationarity is the flow payoff of unemployment. The
evolution of these are displayed in Figure 9 in Appendix D. The flow payoff drops

sharply upon entering unemployment and then remains relatively flat. However, for
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Figure 4: Wage offer distribution, unemployed side
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Source: CERS-HAS, authors’ own calculations.

both types of individuals, the flow value decreases again close to benefit expiration.
In Figures 10 and 11 we show how these three sources of nonstationarity combined—
offer arrival wages, wage offers, and the flow payoff of unemployment—affect the
unemployment-to-job transitions and the value function of unemployment, respec-
tively. As unemployment duration increases, the value function for unemployment
falls. Correspondingly, the job acceptance probabilities rise sharply over the course

of unemployment (see Figure 12 in Appendix D).

With job acceptance probabilities rising, the ratio of average accepted wages to aver-

age offered wages falls over time. This is displayed in Figure 5 below. Like with the
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Figure 5: Offered vs. accepted wages out of unemployment
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Source: CERS-HAS, authors’ own calculations.

flow payoff of unemployment, we see a sharp drop in the accepted/offered wage ra-
tio immediately after entering unemployment. As unemployment duration increases,
workers gradually become less and less selective over which jobs they accept. By the

time benefits are about to expire, job seekers find almost all jobs acceptable.

Finally, the combined effects of these different sources of nonstationarities are dis-
played in Table 6. The first row points to a dynamic selection pattern whereby
the relative share of Type 2 individuals declines over the course of unemployment.
Namely, because Type 2’s receive offers at a much higher rate than Type 1’s, Type 2’s
exit unemployment faster than their Type 1 counterparts, making up to 12% of those
who leave in the shortest durations but only 8.4% of those who leave in the longest
durations. As shown in the first column, this translates to Type 2 individuals who
exit to a job having unemployment durations that are on average eleven days shorter
than their Type 1 counterparts. These results are in line with Alvarez et al. (2022),
who parse duration dependence in the job finding rate for the unemployed from dy-
namic selection. Our framework further illustrates the role played by time-varying

wage offers over the course of unemployment.

Averaging across heterogeneity types illustrates how well our model matches the pat-
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Table 6: Summary statistics by type, unemployment-to-employment transitions

By unemployment duration (days)
1-30 81-60 61-90 91-150 181-269

Pop. prob. of Type 2 (%) 10.0 120 114 10.3 8.7 8.4

Unconditional on type
Mean U duration (days) 100.6 171 449 74.9 131.1 221.4

Overall

Mean acc. wage (HUF) 3,102 3,532 3,242 3,126 2,960 2,708
Share w (%) 30.9 21.7 27.1 30.1 34.0 40.5
Type 1

Mean U duration (days) 101.7 17.1 44.9 74.9 131.2 221.2
Mean acc. wage (HUF) 2,802 3,227 2988 2905 2,789 2,605
Share w (%) 32.8 23.5 29.1 32.1 35.8 42.0
Type 2

Mean U duration (days) 90.8 16.9 44.6 74.7 129.4 222.6
Mean acc. wage (HUF) 4,990 5,761 5,208 5,044 4,744 3,836
Share w (%) 13.9 8.3 114 13.2 15.5 24.0

Notes: The table shows summary statistics of simulated UE transitions, based on model estimates.
The last row shows the share of UE transitions to the lowest wage bin (75 to 107% of the minimum
wage). Accepted wages recoded as w = max(w, wmin). Summary statistics are weighted by type
probabilities. Accepted wages are daily wage levels reported in Hungarian forints (200 HUF =~ 1
USD in 2004).

Source: CERS-HAS, authors’ own calculations.

terns displayed in Table 4 in Section 4.1. The model slightly underpredicts average
unemployment duration. Importantly though, it matches the key patterns of declin-
ing accepted wages out of unemployment as duration of unemployment increases,
both in terms of the mean accepted wage and the share of accepted job offers at the

minimum wage.

Taken together, our estimation results provide evidence that nonstationarity in the of-
fer arrival rates, the wage offer distribution, as well as the flow payoff of unemployment
are central features of the job search environment over the course of unemployment.
Our findings also highlight the importance of allowing for worker-level unobserved
heterogeneity. In particular, workers differ markedly in the wage offer distribution
and job offer arrival rates they face, which constitutes a source of spurious duration

dependence.
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7 Conclusion

In this paper, we extend the canonical continuous-time job search model with on-
the-job search to allow for preference shocks. Incorporating preference shocks and
using the insights from conditional choice probability methods results in constructive
identification of the model parameters, even in rich nonstationary settings. In terms
of estimation, nonstationary search models typically require solving a nonlinear dif-
ferential equation within the maximization routine. But in our setting no differential
equation needs to be solved to estimate the parameters of the model. As a result,
the computational costs are small for the class of nonstationary search models we

consider.

We illustrate our methods using administrative data from Hungary. Nonstationarities
when unemployed operate through three sources: the offered wage distribution, the
offer arrival rates, and the flow payoff of unemployment. Our model estimates show
that the wage offer distribution becomes worse and offer arrivals slow substantially
as the duration of unemployment increases. Job seekers then become less selective in
the jobs they are willing to accept over the course of unemployment, implying that

the gap between accepted and offered wages shrinks with unemployment duration.

Beyond this particular application, our framework can be applied to a broad class
of job search models which may include heterogeneous job types, involuntary wage
changes, as well as aggregate labor market shocks. Our approach can also be extended
in several other directions. Notably, a natural research avenue would be to extend the
class of job search models considered in this paper to accommodate more general forms
of nonstationarity. For instance, it would be interesting to explore the identification
of a model where both the value of unemployment and the value of employment are
allowed to vary as a function of calendar time, as a more flexible way to capture

aggregate fluctuations. We leave this analysis for future research.
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