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Abstract

We study partially linear models when the outcome of interest and some
of the covariates are observed in two different datasets that cannot be linked.
This type of data combination problem arises very frequently in empirical mi-
croeconomics. Using recent tools from optimal transport theory, we derive a
constructive characterization of the sharp identified set. We then build on this
result and develop a novel inference method that exploits the specific geometric
properties of the identified set. Our method exhibits good performances in finite
samples, while remaining very tractable. We apply our approach to study inter-
generational income mobility over the period 1850-1930 in the United States.
Our method allows us to relax the exclusion restrictions used in earlier work,
while delivering confidence regions that are informative.
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1 Introduction

In this paper, we derive partial identification and inference results for a partially
linear model, in a context where the outcome of interest and some of the covariates
are observed in two different datasets that cannot be merged. Relevant situations
include cases where the researcher is interested in the effect of a particular variable
that is not observed jointly with the outcome variable, as well as cases where the
outcome and covariates of interest are jointly observed but some of the potential
confounders are observed in a different dataset.

Our analysis focuses on a partially linear model of the following form:

E(Y |X) = f(Xc) +X ′
ncβ0, X = (Xnc, Xc), (1)

in a data combination environment where FY,Xc and FXnc,Xc are supposed to be iden-
tified, but the joint distribution FY,X is not. The variable Xc is thus common to both
datasets, whereas the variable Xnc ∈ Rp is only observed in one of the two datasets.
In this setup, β0 = (β01, ..., β0p)′ is generally not point-identified, and as a result we
focus on the identified set of either β0 or β0k for some k ∈ {1, ..., p}; the identified set
of f can then be deduced from that of β0.

We first derive a tractable characterization of the identified set of β0. Unlike many
other models considered in the partial identification literature, our setup does not
deliver a tractable characterization of the identified set through the support function
(see Bontemps and Magnac, 2017; Molinari, 2020, for detailed discussions of support
functions). However, using Strassen’s theorem (Strassen, 1965), a recent result in
optimal transport by Backhoff-Veraguas et al. (2019), and a convenient characteriza-
tion of second-order stochastic dominance, we show that this set is convex, compact,
includes the origin and can be simply constructed from its radial function.1 The
identified set of β0k, then, can also be computed at low computational cost by solving
an unconstrained convex minimization problem.

The characterization of the identified set also implies that point identification may
be achieved if β0 = 0, or under a restriction on the unobserved term Y − f(Xc) −

1The radial function S of a closed, compact convex set C including the origin is defined, for any
q on the unit sphere, by S(q) = maxλq∈C λ.
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X ′
ncβ0. While the latter condition is not directly testable, we show how to assess its

plausibility when one has access to a validation sample in which the outcome and
covariates are jointly observed.

In the partially identified case, the identification region may be reduced by adding
restrictions on f(·). The two-sample two-stage least squares estimator (TSTSLS)
relies on the assumption f(Xc) = X ′

c,iγ0 for some γ0 and Xc = (X ′
c,e, X

′
c,i)′. In this

context, Xc,e (resp. Xc,i) corresponds to the excluded (resp. included) instruments.
This is a leading example that results in point identification. But the exclusion
restriction that E(Y |X) does not depend on Xc,e may not be credible. We show
that alternative restrictions, such as imposing a lower bound on the R2 of the “long
regression” of Y on Xnc and Xc (in a similar spirit as Oster, 2019) or shape restrictions
such as monotonicity or convexity of f , may in practice dramatically reduce the
identified set, and allow to, e.g., identify the sign of β0k.

Our identification result is constructive, and readily leads to a simple, plug-in estima-
tor of the identified sets for β0 or β0k. A difficulty arises, however, as the estimator
of the radial function is generally not asymptotically normal. To construct asymp-
totically valid confidence regions on β0 or confidence intervals on β0k, we propose to
use subsampling (Politis et al., 1999).

Our method is based on a specific characterization of the identified set, and one
may wonder whether alternative characterizations would be more convenient. In
particular, the identified set can also be expressed through an infinite collection of
moment inequalities. Therefore, general approaches for such problems such as that
developed by Andrews and Shi (2017) could in principle be used instead. We show
through simulations the key computational advantage of relying on the method we
propose. With a univariate Xnc, confidence regions are typically computed in seconds,
whereas they take up to 30 seconds with a bivariate Xnc. Compared to the method
of Andrews and Shi (2017), this corresponds to a dramatic reduction by a factor of
more than 1,000 in computational time.

We apply our method to study intergenerational income mobility over the period
1850 to 1930 in the United States, revisiting the analysis of Olivetti and Paserman
(2015). In this context where the main variable and outcome of interest are observed
in two different datasets that cannot be linked, we show that the confidence sets
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obtained using our method are quite informative in practice, while allowing us to
relax the exclusion restrictions underlying the TSTSLS approach used in Olivetti
and Paserman (2015). In the appendix, we consider another application where a
key control variable is observed in a separate database. When incorporating sign
constraints, our bounds are again very informative.

Related literatures

The method we develop in this paper can be used in a broad set of data combination
environments. Two such contexts have attracted much attention in the empirical
literature.

One can use our method to conduct inference on the relationship between a particular
covariate and an outcome variable, in situations where both variables are not jointly
observed. A large literature on intergenerational income mobility often faces the
unavailability of linked income data across generations and relies on exclusion restric-
tions, as in the application we revisit (see Santavirta and Stuhler, 2022, for a recent
survey). Data combination issues are also common in consumption research, where
income (or wealth) and consumption are often measured in two different datasets
(Crossley et al., 2022). More generally, this type of data combination environment
frequently arises in various subfields of empirical microeconomics, including in educa-
tion and returns to skill estimation (Rothstein and Wozny, 2013; Piatek and Pinger,
2016; Garcia et al., 2020; Hanushek et al., 2021), health (Manski, 2018; Robbins et al.,
2022) and labor (Athey et al., 2020). A leading example that has attracted much in-
terest in the literature is one where the researcher seeks to combine experimental data
with another observational dataset, in particular situations where data on long-term
outcomes is not available in the experimental data.

Our approach can also be used to conduct inference on the causal effect of a variable
of interest, in a setup where some of the confounders are observed in an auxiliary
dataset. As such, our paper expands the range of data environments in which un-
confoundedness is a credible assumption, complementing a literature that focuses on
evaluating its reasonableness in the absence of data combination (see, e.g., Altonji
et al., 2005; Oster, 2019; Diegert et al., 2022).
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From a methodological standpoint, our paper is connected to the seminal article of
Cross and Manski (2002) and subsequent work by Molinari and Peski (2006). They
consider the issue of identifying the “long regression”, in our context E(Y |Xc, Xnc),
in the same data combination set-up as here. Importantly though, these two papers
focus on deriving the identification region for E(Y |Xc, Xnc), but do not address the
issue of inference. They also consider a setup where the covariates Xnc have a discrete
distribution with finite support, while we allow Xnc to be continuously distributed.
On the other hand their setup is entirely nonparametric, whereas we focus on a
model that is linear in the covariates Xnc and without interaction terms with Xc.
The linearity assumption plays an important role in our ability to derive a tractable
inference method. The absence of interaction further implies that in our set-up, and
in contrast with these two papers, the identified set shrinks as one considers different
values of Xc.

Our paper is also related to Pacini (2019) and Hwang (2022). Both papers construct
bounds on the best linear predictor of Y onX in a similar data combination framework
as here. We show that if one is ready to impose the usual assumption that the model
is partially linear, large identification gains may be achieved, possibly up to point
identification. Hwang (2022) also considers a set-up where some of the X’s are only
observed with Y but not with Xnc, a case we do not study in this paper.

More generally speaking, our paper relates to the broader literature on data combi-
nation problems in econometrics and statistics. We refer the reader to Ridder and
Moffitt (2007) for a survey of this literature and to Fan et al. (2014), Fan et al. (2016),
Buchinsky et al. (2022), and Athey et al. (2020) for recent contributions. Contrary
to ours, most of these papers impose restrictions that entail point identification.

Within the data combination literature, our paper is technically closest to D’Haultfoeuille
et al. (2021). Though that paper considered the entirely different context of rational
expectation testing, we also relied therein on Strassen’s theorem to obtain a char-
acterization of the null hypothesis of rational expectations. Importantly, we extend
here our previous main result in a highly non-trivial way, by relying in particular
on Backhoff-Veraguas et al. (2019) to handle multivariate Xnc. Also, we previously
based our inference on Andrews and Shi (2017). In contrast, a key contribution of
our paper lies in the novel and tractable inference method that we derive.
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Finally, by developing in this data combination context a feasible inference method
that can be implemented at a very limited computational cost, our paper also adds to
the growing set of papers that propose tractable computational methods for partially
identified models (see Bontemps and Magnac, 2017 and Molinari, 2020 for recent
surveys). In particular, our paper fits into the strand of the literature that uses
tools from optimal transport to devise computationally tractable identification and
inference methods for partially identified models (Galichon and Henry, 2011; Gali-
chon, 2016). By characterizing the sharp identified set based on the radial function,
a novel approach in the partial identification literature, we show that it is possible to
achieve very substantial tractability gains in this context, relative to a more standard
characterization in terms of many moment inequalities.

Organization of the paper

The remainder of the paper is organized as follows. In Section 2 we present our
main identification results for the two-sample partially linear model described above.
Section 3 studies estimation and inference for this model. In Section 4, we apply
our method to intergenerational income mobility in the United States. Section 5
concludes. The Appendix of the paper gathers additional results on robustness to
measurement errors, identification in models with heterogeneous effects of Xnc on
Y , and a test for point-identification. It also presents our second application to the
black-white wage gap in the United States. Monte Carlo simulation results, additional
material on the application, and the proofs are collected in the online Appendix. Some
complements of the proofs appear in supplementary material available in our working
paper version (see D’Haultfœuille et al., 2023). Finally, our inference method can
be implemented using our companion R package, RegCombin, available at CRAN.R-
project.org/package=RegCombin.

2 Identification

Before presenting our main identification results, we introduce some notation that
will be used throughout the paper. We let ∥ · ∥, 0p and Sp denote respectively the
usual Euclidean norm in Rp, the vector 0 and the unit sphere in Rp; we may omit the
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index p in the absence of ambiguity. For any cumulative distribution function (cdf)
F defined on R, we let F−1(t) = inf{x : F (x) ≥ t} denote its generalized inverse
and F = 1 − F be the corresponding survival function. For any random variable A,
we let Supp(A) be its support, FA denote its cdf. and V (A) its variance, if defined.
We also let ≻cv denote the convex ordering, namely, for two random variables A and
B with E[|A|] < ∞ and E[|B|] < ∞, A ≻cv B if E[ϕ(A)] ≥ E[ϕ(B)] for all convex
functions ϕ.2 We write A ̸≻cv B when A ≻cv B does not hold. Finally, for any sets C
and C ′, we denote by ∂C the boundary of C and by dH(C,C ′) the Hausdorff distance
between C and C ′, defined by

dH(C,C ′) = max
(

sup
c′∈C′

inf
c∈C

||c− c′||, sup
c∈C

inf
c′∈C′

||c− c′||
)
.

2.1 Identification without common regressors

2.1.1 A tractable characterization of the identified set

We first consider a linear model and derive the sharp identified set of β0 in the absence
of common regressors observed in both datasets. We suppose that we observe from two
samples that can not be merged the distributions of the outcome, FY , and covariates,
FX . We maintain the following assumption:

Assumption 1. We have E(Y 2) < ∞, E(∥X∥2) < ∞, V (Y ) > 0 and V (X) is
non-singular. Moreover, E(Y |X) = α0 +X ′β0 for some (α0, β0) ∈ R × Rp.

We focus hereafter on the identified set B of β0. Since B is the set of all vectors in
Rp that are compatible with the model and the marginal distributions of Y and X,
we have

B =
{
β ∈ Rp : ∃ r.v. (X̃, Ỹ ) : E(Ỹ0|X̃0) = X̃ ′

0β, X̃
d= X, Ỹ

d= Y
}
, (2)

where, for any random variable A with E[|A|] < ∞, we let A0 = A − E(A) and we
have used that E(Y |X) = α0 + X ′β0 for some α0 is equivalent to E(Y0|X0) = X ′

0β0.
Now, our goal is to express B to make it amenable to (simple) estimation. To this

2Even though we may have E[|ϕ(A)|] = ∞, E[ϕ(A)] is always well-defined because
E[max(0, −ϕ(A))] < ∞, since there exists a, b such that for all x, ϕ(x) ≥ a + bx.
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end, we define, for any α ∈ (0, 1), F and G cdfs with expectation 0, the following
functions:

R(α, F,G) =
∫ 1
α F

−1(t)dt∫ 1
α G

−1(t)dt
, (3)

S(F,G) = inf
α∈(0,1)

R(α, F,G).

These two functions play an important role in our analysis. Remark that, since F and
G are cdfs of mean zero distributions,

∫ 1
α F

−1(t)dt and
∫ 1
α G

−1(t)dt are both positive,
so that the ratio of superquantiles R(α, F,G) is well-defined, with R(α, F,G) > 0 and
S(F,G) ≥ 0. Theorem 1 is our main identification result.

Theorem 1. Suppose that Assumption 1 holds. Then

B =
{
λq : q ∈ S, 0 ≤ λ ≤ S(FY0 , FX′

0q
)
}
. (4)

B includes 0p and is a convex, compact subset of BV = {β ∈ Rp : β′V (X)β ≤ V (Y )}.

We now give a sketch of the proof of (4). Let B′ denote the set on the right-hand side
of (4). First, one can show that by definition of S(FY0 , FX′

0q
),

B′ =
{
β ∈ Rp : ∀α ∈ (0, 1),

∫ 1

α
F−1
X′

0β
(t)dt ≤

∫ 1

α
F−1
Y0 (t)dt

}
.

This, in turn, is equivalent to FX′
0β

dominating FY0 at the second order (see, e.g. De la
Cal and Cárcamo, 2006), implying that

B′ = {β ∈ Rp : Y0 ≻cv X
′
0β} .

The inclusion B ⊂ B′ then follows essentially from Jensen’s inequality. As a side
remark, note that we can also express B′ through infinitely many moment inequality
restrictions:

B′ = {β ∈ Rp : E [max(0, Y0 − t)] ≥ E [max(0, X ′
0β − t)] ∀t ∈ R} . (5)

This equality directly follows from Fubini-Tonelli, applied to the standard character-
ization of the second-order stochastic dominance condition, namely

∫ y
−∞ FY0(t)dt ≥∫ y

−∞ FX′
0β

(t)dt ∀y ∈ R. We return to this alternative characterization of the identi-
fied set in Subsections C.1 and C.4 of the online appendix, where we document the
computational advantages of using our characterization instead.
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The inclusion B′ ⊂ B is more intricate to prove. Assume β ∈ B′. By what precedes,
Y0 ≻cv X

′
0β. Then, by Strassen’s theorem (Theorem 8 in Strassen, 1965),

inf
(Ỹ ,X̃β):Ỹ d=Y, X̃β d=X′β

E
[∣∣∣X̃β

0 − E[Ỹ0|X̃β
0 ]
∣∣∣] = 0. (6)

This result was already used in D’Haultfoeuille et al. (2021) to characterize the re-
strictions on FY and Fψ entailed by the rational expectation hypothesis E(Y |ψ) = ψ,
where ψ denotes the subjective expectations on an outcome Y . Importantly though,
when X is multivariate, (6) is not sufficient to conclude that B′ ⊂ B, as the σ-algebras
generated by X and X ′β are not equal in general. Nonetheless, we prove, using in
particular Theorem 1.3 in Backhoff-Veraguas et al. (2019), that for β ∈ B′,3

inf
(Ỹ ,X̃):Ỹ d=Y, X̃ d=X

E
[∣∣∣X̃ ′

0β − E[Ỹ0|X̃0]
∣∣∣] ≤ inf

(Ỹ ,X̃β):Ỹ d=Y, X̃β d=X′β

E
[∣∣∣X̃β

0 − E[Ỹ0|X̃β
0 ]
∣∣∣] . (7)

Together, (6), (7), and the existence of a minimizer on the left-hand side of (7)
(Theorem 1.2 in Backhoff-Veraguas et al., 2019), imply that we can find random
variables Ỹ and X̃ such that E[Ỹ0|X̃0] = X̃ ′

0β, Ỹ d= Y and X̃
d= X. Thus, β ∈ B.

Turning to the second part of the theorem, 0p ∈ B follows by noting that one can
always rationalize, from the sole knowledge of their marginal distributions, that X
and Y are independent. That B ⊂ BV comes from the inclusion B ⊂ B′, combined
with the fact that Y0 ≻cv X ′

0β implies V (Y ) ≥ V (X ′β). Hence, B is included in
a bounded ellipsoid. The equality B = BV occurs for instance when Y and X are
normally distributed. Otherwise, B may be substantially smaller than BV , as we
illustrate below. In such cases, BV remains a natural benchmark as it is very simple
to characterize using V (Y ) and V (X) only, and straightforward to estimate.

Remark 2.1. Using the exact same reasoning as above, one can prove that without
any linear restriction on the conditional expectation, the identified set for E[Y0|X0]
is {g : Y0 ≻cv g(X0)}. Similarly, if we only impose that m(x) := E[Y0|X0 = x]
belongs to a linear space Z of functions, then the identified set for m is {λq : q ∈ Z :
E[|q(X0)|] = 1, E[q(X0)] = 0, 0 ≤ λ ≤ S(FY0 , Fq(X0))}.4

3We thank Nathael Gozlan for his help in obtaining (7).
4We thank a referee for pointing out this extension.

9



Radial vs. support function characterization of the identified set. A key
takeaway from Equation (4) is that the identified set admits a very simple expression
as a function of S, which is the inverse of the Minkowski gauge function of B (see, e.g.,
Definition 1.2.4 p.137 and Proposition 3.2.4 p.157 Hiriart-Urruty and Lemaréchal,
2012), also known as the radial function of B. This function differs from the support
function σ of B, defined by σ(q, FY0 , FX0) = supb∈B q′b. The difference between these
two functions is illustrated in Figure 1.

Figure 1: Two characterizations of a closed convex set including the origin, either
through its support function σ (green), or through the radial function S (red).

The partial identification literature has largely relied on support functions, as these
are powerful tools that uniquely characterize their convex sets. But the radial function
also uniquely characterizes convex sets if, as is the case here, these sets include the
origin.5 Importantly, this approach allows us to characterize the sharp identified set by
minimizing a simple function over the interval (0, 1). In contrast, the support function
approach will generally be significantly less tractable in our context as it would require
solving a high-dimensional constrained optimization problem. Namely, using the
characterization of the identified set given in Equation (5) above, the support function

5More generally, star-shaped sets are fully characterized by the radial function (and a given point,
0p in our setup). See Molchanov (2017), p.156, for more details on this point.
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can be obtained by solving the following program:

σ(q, FY0 , FX0) = sup
b∈Rp

q′b s.t. inf
t∈R

E [max(0, Y0 − t)] − E [max(0, X ′
0b− t)] ≥ 0, (8)

where the constraint itself involves an optimization problem. Simulation results in-
dicate that using the radial function rather than the support function approach does
result in very large computational gains, see Online Appendix C.4 for details on this.

Partial identification of subcomponents of β0. The support function still plays
a key role in our context when one is interested in a component of β0 = (β0,1, ..., β0,p)′,
say β0,k. The following result shows that we can actually recover this function at a low
computational cost once S is known. Hereafter, we let ek denotes the k-th element
of the canonical basis in Rp and use the convention 1/0 = ∞ and 1/∞ = 0.

Corollary 1. Suppose that Assumption 1 holds. Then, the identified set Bk of β0,k

satisfies Bk = [−σ(−ek, FY0 , FX0), σ(ek, FY0 , FX0)]. Moreover,

σ(ek, FY0 , FX0) = 1
infq∈Rp:qk=1 1/S(FY0 , FX′

0q
) . (9)

The same holds with σ(−ek, FY0 , FX0), after replacing qk = 1 by qk = −1.

We use the expression (9) of the support function, rather than the simpler expression
σ(ek, FY0 , FX0) = supq∈Rp:qk=1 S(FY0 , FX′

0q
), because q 7→ 1/S(FY0 , FX′

0q
) is convex (see

the proof of Proposition 6, which also applies when ε = 0), whereas q 7→ S(FY0 , FX′
0q

)
may not be concave. It follows that one can recover the support function σ, and in
turn the sharp bounds on β0,k, by simply minimizing a convex function over Rp−1.

2.1.2 Point identification

In some cases, our approach yields point identification of the parameters of interest,
or subcomponents of it. Proposition 1 below presents two such cases under which the
identified sets B and B1, respectively, boil down to a singleton.

Proposition 1. Suppose that Assumption 1 holds and let ϕ be a convex function such
that E[ϕ(Y )] < ∞. Then:

1. If for all β ̸= 0p, E[ϕ(X ′β)] = ∞, then B = {β0} = {0p}.
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2. If E[ϕ(X1β1)] = ∞ for all β1 ̸= 0 and E[ϕ(X ′
−1β−1)] < ∞ for all β−1 ∈ Rp−1,

then B1 = {β0,1} = {0}.

Recall from our main identification result above that the identified set B always
includes the origin. The first point of Proposition 1 further establishes point identifi-
cation of β0 = 0p when, basically, Y has lighter tails than any linear index of X. The
second point is similar but focuses on a subcomponent instead: if Y and X ′

−1β−1 have
lighter tails than X1, then β0,1 = 0 is point identified. As an example of function ϕ

for which Proposition 1 holds, one might consider for instance ϕ(x) = |x|a for some
a > 2 (in which case X ′β or X1 have heavy tails), or ϕ(x) = exp(a|x|b) for some
a, b > 0 (in which case X ′β or X1 have exponential tails).

To illustrate Point 1 of Proposition 1, suppose that p = 1, X follows a Laplace
distribution (with density exp(−|x|)/2 on R) and Y ∼ N (0, 1). Then, by using
ϕ(x) = exp(|x|3/2), it follows from Point 1 of Proposition 1 that β0 = 0 is point
identified in this case. On the other hand, the variance restrictions only set identify
β0, with an identified set given by BV = [−1/

√
2, 1/

√
2] ≃ [−0.707, 0.707]. This

example illustrates the (in this case point-) identifying power of higher-order moments
of the distributions of X and Y .

2.2 Identification with common regressors

We now turn to the frequent situation where some regressors are observed in both
datasets. Namely, suppose we observe regressors Xc that are common to both
datasets, and assume that the partially linear model (1) holds:

E(Y |X) = f(Xc) +X ′
ncβ0, X = (Xnc, Xc),

The key here is to note, following Robinson (1988), that this case is equivalent to the
previous setup without common regressors once we compute the following residuals,
for all x in the support of Xc:

Xx = Xnc − E(Xnc|Xc = x),

Y x = Y − E(Y |Xc = x).

12



It directly follows that β0 satisfies E(Y x|Xx) = Xx′β0, which allows us to use the char-
acterization of the identified set without common regressors obtained in Section 2.1.

Let Bc and F denote the identified sets of β0 and f , respectively. We have the
following characterization of Bc and F :

Proposition 2. Suppose that E(Y 2) < ∞, for all x ∈ Supp(Xc), E(XxXx′|Xc = x)
is nonsingular and (1) holds. Then:

Bc =
{
λq : q ∈ S, 0 ≤ λ ≤ S(FY,Xc , FX′

ncq,Xc)
}
,

F = {x 7→ E(Y |Xc = x) − E(Xnc|Xc = x)′β : β ∈ Bc} ,

where S(FY,Xc , FX′
ncq,Xc) = infx∈Supp(Xc) S(FY x|Xc=x, FXx′q|Xc=x). Bc includes 0p, is

compact and convex.

It is possible to extend (1) by including interaction terms. Notably, such specification
allows for heterogeneous effects of Xnc on Y , which can be important in practice
(see, e.g., Hausman, 2016, pp.1110-1111). We consider this extension in Appendix
A.2. Another interesting extension corresponds to cases where E(Y |X) = f(Xc) +
X ′
ncβ0 + X ′

aδ0 and we observe in a first dataset (Y,Xa, Xc) and in a second dataset,
(Xc, Xnc). This setup leads to qualitatively different results. For instance, if there
is no common regressors and (Y,Xa) and Xnc are Gaussian, one can show that the
sharp identified set of (β0, δ0) is not convex and does not include 0p+r (with r the
dimension of Xa). We refer the reader to Hwang (2022) for outer bounds on the best
linear predictor in this setup and leave its study for future research.

2.3 Identifying power of additional restrictions

We now consider additional restrictions that may reduce the identified set, in some
cases resulting in point identification of the parameters of interest.

2.3.1 Lower bound on the R2 of the long regression

A first way to reduce the identified set is to use a lower bound on the predictive
power of Xnc and Xc with respect to Y . To formalize this idea, we assume that
R2
ℓ , the coefficient of determination of the “long” regression of Y on Xnc and Xc is
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higher than a certain threshold. This threshold may be absolute (e.g., 0.1) or relative
to R2

s := V (E(Y |Xc))/V (Y ), the R2 of the “short” regression of Y on Xc, which is
directly identified from the data. This is in the same spirit as Oster (2019), who
suggests fixing R2

ℓ/R
2
s to 1.3. Note that

f(Xc) +X ′
ncβ = E(Y |Xc) + (Xnc − E(Xnc|Xc))′β,

and the two components on the right-hand side are uncorrelated. Thus,

R2
ℓ = V (E(Y |Xc)) + β′E(V (Xnc|Xc))β

V (Y ) = R2
s + β′E(V (Xnc|Xc))β

V (Y ) .

Then, if one imposes a lower bound R2 on R2
ℓ such that R2 ≥ R2

s, the identified set
on β becomesλq : q ∈ S,

(
(R2 −R2

s)V (Y )
q′E(V (Xnc|Xc))q

)1/2

≤ λ ≤ S(FY,Xc , FX′
ncq,Xc)

 ,
provided that E(V (Xnc|Xc)) is nonsingular. This restriction has three key attractive
features. First, one can in practice motivate this restriction based on a “validation
sample”, namely a subset of the population or another population (e.g., a different
country than that under investigation), for which we identify the joint distribution
of the outcome and covariates, and thus the R2 of the “long” regression. Second,
imposing a lower bound such that R2 > R2

s allows one to exclude 0p from the identified
set. Third, the identified set still admits a very simple expression.

2.3.2 Linear shape restrictions

Another way to narrow the identified set Bc with common regressors is to impose
some constraints on f(·). Shape restrictions such as monotonicity or convexity often
follow from economic theory; see Matzkin (1994) and Chetverikov et al. (2018) for
econometric reviews, and Tripathi (2000) and Abrevaya and Jiang (2005) for their
use and testability with partially linear models. We characterize here the identified
set when we impose such restrictions on f .

We model these restrictions by [Rf ](r) ≥ c(r) for all r ∈ R, with R a known linear
operator, c a known, real function and R the domain of [Rf ] and c. For instance,
if Xc is discrete such that Supp(Xc) = {xc,1, ..., xc,K} ⊂ R, with K > 1 and xc,1 <

14



... < xc,K , considering [Rf ](r) = f(xc,r+1) − f(xc,r) for r ∈ R = {1, ..., K − 1} (resp.
[Rf ](r) = (f(xc,r+2) −f(xc,r+1))/(xc,r+2 −xc,r+1) − (f(xc,r+1) −f(xc,r))/(xc,r+1 −xc,r)
for r ∈ R = {1, ..., K−2} with K > 2) and c(r) = 0 corresponds to imposing that f is
non-decreasing (resp. convex). When Xc is continuous, the same two constraints can
be imposed by considering [Rf ](r) = f ′(r) and [Rf ](r) = f ′′(r), with R = Supp(Xc).

This framework also accommodates restrictions on the magnitude of the effect of
Xc on Y . Namely, suppose for simplicity that Xc is binary and consider [Rf ](1) =
−[Rf ](2) = f(xc,2) − f(xc,1) with R = {1, 2} and c(1) = c(2) = c ≥ 0. The
extreme case c = 0 corresponds to Xc having no effect on Y , as in the two-sample
two-stage least squares strategy (see the next subsection for a related, more general
point identification result in this context). More generally, this corresponds to the
constraint that the magnitude of the effect of Xc is bounded by the cutoff c, |f(xc,2)−
f(xc,1)| ≤ c.6 By increasing c, one can therefore study how the identified set varies
when relaxing the exclusion restriction, in a similar spirit to, e.g., Masten and Poirier
(2018).

Hereafter, we denote by mY (·) = E[Y |Xc = ·], mXnc(·) = E[Xnc|Xc = ·] and

Sc(mY ,mXnc , q) = sup
r∈R:

[Rm′
Xnc

q](r)≤0

lim
u↓0

[RmY − c](r) + u

[Rm′
Xnc

q](r) − u2 ,

S
c(mY ,mXnc , q) = inf

r∈R:
[Rm′

Xnc
q](r)≥0

lim
u↓0

[RmY − c](r) + u

[Rm′
Xnc

q](r) + u2 ,

where we let sup ∅ = − inf ∅ = −∞ and we note that the two functions above may be
infinite. We introduce limits to deal with the cases where [Rm′

Xnc
q](r) = 0. Proposi-

tion 3 characterizes the identified sets of β0 and f under such shape restrictions.

Proposition 3. Suppose that the conditions of Proposition 2 hold and [Rf ](r) ≥ c(r)
for all r ∈ R. Then, the identified sets Bcon and F con of β0 and f satisfy

Bcon =
{
λq : q ∈ S+, Scon(q, FY,Xc , FXnc,Xc) ≤ λ ≤ S

con(q, FY,Xc , FXnc,Xc)
}
,

F con = {x 7→ E(Y |Xc = x) − E(Xnc|Xc = x)′β : β ∈ Bcon} ,

6If Xc has K > 2 points of support, the same idea can be generalized by imposing restrictions
on |f(xc,k) − f(xc,j)| for specific pairs (j, k) ∈ {1, ..., K}2, j ̸= k.
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where S+ = S ∩ {(x1, ..., xp) ∈ Rp : x1 ≥ 0} and

Scon(q, FY,Xc , FXnc,Xc) = max
(

− S(FY,Xc , F−X′
ncq,Xc), Sc(mY ,mXnc, q)

)
,

S
con(q, FY,Xc , FXnc,Xc) = min

(
S(FY,Xc , FX′

ncq,Xc), S
c(mY ,mXnc, q)

)
.

Bcon is compact, convex but does not include 0p if for some r ∈ R, [RmY − c](r) < 0.

In contrast to our baseline identification results in the absence of additional restric-
tions, the resulting identified set may exclude the origin. This illustrates the practical
importance of imposing these types of shape restrictions in contexts where these are
likely to hold. Suppose for instance that p = 1, Xc is binary (Supp(Xc) = {0, 1}),
R = {1} and [Rf ](1) = f(1) − f(0), namely we impose that f is non-decreasing. If
f(1) − f(0) < (mXnc(0) − mXnc(1))β0, then mY (1) < mY (0). As a result, 0 ̸∈ Bcon.
The condition f(1) − f(0) < (mXnc(0) − mXnc(1))β0 holds for instance if mXnc is
decreasing and β0 is positive and large enough.

Remark 2.2. While we focus here on the identifying power of each type of restrictions
considered separately, researchers may in some contexts want to jointly impose several
of these restrictions and consider the intersection of the associated identified sets. In
the particular cases of the shape restrictions and the restrictions on the R2 considered
above, the identified sets share the same structure. Thus, the identified set resulting
from both types of constraints can be simply computed by replacing the lower bound on
λ by the maximum of the lower bounds of the initial sets, and proceeding symmetrically
for the upper bound.

2.3.3 Functional form restrictions involving common regressors

One may alternatively be willing to impose functional form restrictions on f . The
following proposition shows that this may yield point identification.

Proposition 4. Suppose that E(Y 2) < ∞, E[∥X∥2] < ∞ and f belongs to a vector
space G. Then, if for all γ ̸= 0, m′

Xnc
γ ̸∈ G, β0 and f are point identified.

This proposition encompasses several popular restrictions. We consider in particular
three such restrictions, for which the key point-identifying condition m′

Xnc
γ ̸∈ G has

a simple interpretation:
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1. f(Xc) = f1(Xi,c), with Xc = (X ′
i,c, X

′
e,c)′. This restriction, which is implicit in,

and central to the two-sample two-stage least squares strategy, states that condi-
tional on (Xnc, Xi,c), Y is mean-independent of Xe,c. In such a case, m′

Xnc
γ ̸∈ G

for all γ ̸= 0 basically means that mXnc(Xc) varies with Xe,c. To see this, con-
sider the simple case where mXnc(Xc) = mi(Xi,c) + ΠXe,c, for some function mi

and a p×q matrix Π. Then, m′
Xnc

γ ̸∈ G is equivalent to Π having rank p, which
is the usual rank condition in linear instrumental variable models.

2. f(Xc) = X ′
cγ0. Under this linearity restriction on f(·), m′

Xnc
γ ̸∈ G for all γ ̸= 0

basically means that mXnc(Xc) is nonlinear in Xc (the two notions are actually
equivalent if Xnc ∈ R). Note that this point identification result fully relies on
the linearity of f(·) combined with the nonlinearity of E(Xnc|Xc), and is thus
akin to, e.g., the identification of sample selection models without instruments
exploiting the nonlinearity of the inverse Mill’s ratio. Also, this result does not
apply when Xc is binary, since in this case mXnc(Xc) is necessarily linear in Xc.

3. f(Xc) = ∑J
j=1 fj(Xj,c), with Xc = (X1,c, ..., XJ,c)′. Under this additivity restric-

tion on f(·), m′
Xnc

γ ̸∈ G for all γ ̸= 0 means that mXnc(Xc) is not additive in
Xc. If for instance Xc = (X1,c, X2,c) with X1,c, X2,c both binary, m′

Xnc
γ ̸∈ G

for all γ ̸= 0 holds if in the regression of Xnc on X1,c, X2,c and X1,c × X2,c, the
coefficient of X1,c ×X2,c is not zero.

2.3.4 Tail conditions

Finally, if one is ready to impose a relative tail condition between the error term
U := Y0 − X ′

0β0 and X ′
0β0, the identified set is considerably reduced. For simplicity,

we assume here that there are no common regressors but Proposition 5 readily extends
to accomodate such regressors.

Proposition 5. Suppose that Assumption 1 holds. Then:

1. If there exists a convex function ϕ such that E[ϕ(Uλ)] < E[ϕ(X ′
0β0λ)] = ∞ for

all λ > 1, the identified set of β0 is included in ∂B;

2. X ∈ R, E[ϕ(Uλ)] < E[ϕ(Xλ)] = ∞ for all λ > 0 and it is known that β0 > 0,
β0 is point identified.

17



With X ∈ R, the condition E[ϕ(Uλ)] < E[ϕ(Xλ)] = ∞ for all λ > 0 holds for
instance if E[|U |a] < E[|X|a] = ∞ for some a > 2. More generally, the condition
E[ϕ(Uλ)] < E[ϕ(X ′

0β0λ)] = ∞ basically imposes that X ′
0β0 has fatter tails than U .

In this sense, this condition is similar to those in Proposition 1 above.

Testability. Note that we cannot test the condition E[ϕ(Uλ)] < E[ϕ(X ′
0β0λ)] =

∞ for some convex function ϕ and all λ > 1, simply because U is not identified.
On the other hand, we can assess the plausibility of β0 ∈ ∂B using a validation
sample, as defined above. Denoting by (Yv, Xv) the variables corresponding to this
validation sample, it becomes possible to test whether the corresponding parameter
βv = V (Xv)−1cov(Xv, Yv) is at the boundary of the identified set one would get from
the sole knowledge of FYv and FXv . Provided that βv ̸= 0, this condition is indeed
equivalent to ∥βv∥ = S(FYv0 , FX′

v0βv/∥βv∥) or, in simpler terms,

S(FYv0 , FX′
v0βv) = 1.

We consider a statistical test of this condition in Appendix A.3, and apply it in
Section 4 below.

2.4 Numerical illustration

We illustrate the previous results by considering the following model:

Y = γ0,0 +X1.3
c γ0,1 +Xnc,1βnc,1 +Xnc,2βnc,2 + U, U |X ∼ N (0, 9).

We set the coefficients as follows: γ0,0 = −0.1, γ0,1 = 0.3, βnc,1 = 1 and βnc,2 = 1.
The variables X are transformations of (N1, N2, N3)′, which is supposed to follow a
multivariate normal distribution with mean 0 and covariance matrix

Σ =


1 −0.3 −0.8

−0.3 1 −0.1
−0.8 −0.1 1

 .

Specifically, the common regressor is given by Xc = ∑K
k=1(k − 1)1{ck−1 ≤ N1 ≤ ck},

K = 4, c0 = −∞, c1, . . . , cK−1, are respectively the quantiles of order 0.1, 0.37, 0.67
and 0.9 of the standard normal, and cK = ∞. We consider two cases for the regressors
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that are observed in one of the datasets only, Xnc. In the first case, (Xnc,1, Xnc,2) =
(N2, exp(N3)) and in the second, (Xnc,1, Xnc,2) = (exp(N2), exp(N3)).

Figure 2 displays several identified sets for each of the two data-generating processes
(DGPs) described above, each of them being associated with particular restrictions.
Namely, the set in red, denoted by BV , is obtained from the variance restrictions only:

BV =
{
β : β′V (X0)β ≤ V (Y 0)

}
∩
{
β : β′V (X1)β ≤ V (Y 1)

}
,

where Xx and Y x are defined as in Section 2.2. Hence, BV is the intersection of
two ellipses. The set in green, Bc, is obtained as in Proposition 2 and relies on the
restrictions E(Y x|Xnc, Xc = x) = Xx′β0 for x ∈ {0, 1}. Finally, the set in blue, Bcon,
is a subset of Bc that imposes both convexity and monotonicity constraints on Xc.

(a) Xnc,1 and ln(Xnc,2) normal (b) Xnc,1 and Xnc,2 lognormal

Note: the sets are obtained using a sample of size 100,000 and taking the convex hull of the set
obtained from a uniform grid of 1,000 directions on the 2 dimensional sphere. Bcon uses both
convexity and monotonicity constraints on Xc.

Figure 2: Identification regions for different distributions of (Xnc,1, Xnc,2)

A couple of comments are in order. In case (a) the restrictions implied by the
model are much more informative than the variance restrictions, because of the non-
normality of Xnc,2, and in particular the fact that it has fatter tails than the residuals
U . The true point is at the boundary of Bc, illustrating Proposition 1 applied con-
ditional on Xc = 0 and Xc = 1. In this case, the shape restrictions are sufficient to
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imply that 02 ̸∈ Bcon but also to rule out that βnc,1 = 0 as well as βnc,2 = 0. The
identified set Bc is reduced further in case (b), as a result of the fatter tails of both
Xnc,1 and Xnc,2. Like in case (a), the shape constraints on f(Xc) allow to reduce
dramatically the identified set.

Figure 3 presents convexity constraints and different constraints on the R2 on the
first DGP. While unlike case (a) of Figure 2, convexity constraints alone fail to reject
02 ̸∈ Bcon, imposing a constraint of the form R2 ≥ rR2

s with r > 1 rejects it by
definition. In the latter case, the identified set is no longer convex, allowing to exclude
some directions from the identified set and providing an informative lower bound on
|βnc,1|. Overall, that the sharp identified sets Bc are much more informative than the
identified set BV based on the variance restrictions highlights the importance of using
all of the restrictions implied by the model. Another takeaway from these numerical
illustrations is that sign constraints can be very informative in practice, resulting in
significant shrinkage of the identified set.

(a) Convexity constraint on f(·) (b) R2
l ≥ rR2

s constraints

Note: For Panel 3(a) and BV and Bc in Panel 3(b), the sets are obtained as in Figure 2. For the
constraints R2

l ≥ rR2
s in Panel 3(b), we use 1,500 directions and no convexification. For this DGP,

the true values of the R2 of the long and short regressions are R2
l = 0.307 and R2

s = 0.107.

Figure 3: Identification regions for different shape restrictions
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2.5 Regularization

An issue for estimation and inference on B is that when α → 0 or α → 1, R(α, F,G)
is a ratio of two terms tending to 0. It follows that its plug-in estimator may become
very unstable. To regularize the problem, we consider an outer set of B based on
the removal of extreme values of α. We will focus on this outer set when we turn to
estimation and inference in Section 3. Specifically, we define, for any ε ∈ (0, 1/2),

Sε(F,G) = min
α∈[ε,1−ε]

R(α, F,G), (10)

Bε =
{
λq : q ∈ S, 0 ≤ λ ≤ Sε(FY0 , FX′

0q
)
}
.

Note that for all F,G, α 7→ R(α, F,G) is continuous on [ε, 1−ε]. Thus, the minimum
in (10) is well-defined. Proposition 6 below describes some properties of Bε and relates
it to the sharp identified set B.

Proposition 6. Suppose that Assumption 1 holds. Then:

1. For all ε ∈ (0, 1/2), Bε includes 0p, is compact and convex;

2. For all 0 < ε < ε′ < 1/2, B ⊂ Bε ⊂ Bε′ and ∩ε∈(0,1/2)Bε = B;

3. Suppose that FY is continuous and U := Y0 −X ′
0β0 satisfies

∀λ > 0, lim
t→∞

sup
s

F ∥X0∥(λt)
FU |X′

0β0=s(t)
= 0, lim

t→∞
sup
s

F ∥X0∥(λt)
F−U |X′

0β0=s(t)
= 0. (11)

Then, there exists ε0 ∈ (0, 1/2) such that for all ε ∈ (0, ε0], B = Bε.

The first part of Proposition 6 states that the regularized set Bε, for all ε ∈ (0, 1/2),
preserves the compactness and convexity of the sharp identified set B. The second
part states that Bε is always a superset of B, which is arbitrarily close to B as ε ↓ 0.
The third part states that if, basically, the tails of ∥X0∥ are thinner than those of
U (Condition (11)), the set Bε coincides with the sharp set B for ε small enough.
Condition (11) holds in particular if X has a bounded support and Supp(U) = R, or
if U is symmetric and has a tail index larger than that of ∥X0∥. Note that B = Bε

may hold even without (11). For instance, if both U and X are normally distributed,
it is easy to check that Bε = B for all ε ∈ (0, 1/2).

21



On the other hand, when U has thinner tails than X ′β0, Bε will be a strict superset of
B for ε large enough. In such cases, and under additional restrictions, we provide up-
per bounds on the Hausdorff distance between B and Bε in Proposition 7. Intuitively,
these bounds inform us about the maximal possible loss, in terms of identification,
that is due to regularization.

Proposition 7. Suppose that Assumption 1 holds and let U := Y0 −X ′
0β0. Then:

1. Assume that X has an elliptical distribution with nonsingular variance matrix Σ,
a density with respect to the Lebesgue measure and lim inf |x|→∞ |x|1+cfX′

0β0(x) >
0 for some c > 1. Suppose also that lim supx→∞ xdF |U |(x) < ∞ for some d > c.
Then, there exists K1 > 0 such that for ε small enough,

dH(B,Bε) ≤ K1ε
1/c−1/d

1+1/d .

2. Assume that β0 = 0p, lim infx→∞ infq∈S x
cFX′

0q
(x) > 0 and lim supx→∞ xdF |U |(x)

< ∞ for some d > c. Then, there exists K2 > 0 such that for ε small enough,

dH(B,Bε) ≤ K2ε
1/c−1/d.

The tail conditions imposed in Proposition 7 are basically the opposite as in Point 3 of
Proposition 6, as they imply that ∥X∥ has fatter tails than U . The assumption that X
has an elliptical distribution in Point 1 allows us to relate Sε(FY0 , FX′

0q
)−S(FY0 , FX′

0q
),

for any q ∈ S, with Sε(FY0 , FX′
0β0) − S(FY0 , FX′

0β0), but it is not necessary to obtain
an upper bound on Sε(FY0 , FX′

0β0) − S(FY0 , FX′
0β0).

In the two cases of Proposition 7, we produce upper bounds on the Hausdorff dis-
tance between B and Bε that are, up to some constants, power of the regularization
parameter ε. The upper bounds are close to 0 when ε is small, in line with Point 2
of Proposition 6. They are also closer to 0 the smaller c is, i.e. the fatter the tails of
X ′β0 (or X ′q) are, or the larger d is, i.e. the thinner the tails of U are.

3 Inference

We now consider the estimation of the identified set, and how to conduct inference
on the parameters of interest β0. As in the previous section, we first consider the case
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without common regressors before showing how to incorporate such regressors and
combine them with additional constraints. We conclude this section by discussing
some computational aspects of our procedure. We illustrate the finite sample perfor-
mances of our inference method in Online Appendix C.

3.1 No common regressors

3.1.1 Estimation of the identification region and confidence region

We rely on random samples from the distributions of Y and X.

Assumption 2. We observe (Y1, ..., YnY
) and (X1, ..., XnX

), two independent samples
of i.i.d. variables with the same distribution as Y and X, respectively.

For any q ∈ S, let F̂Y and F̂X′q denote the empirical cdf of Y and X ′q and let
F̂Y0(t) = F̂Y (t+ Y ) and F̂X′

0q
(t) = F̂X′q(t+X

′
q). We simply estimate R(α, FY0 , FX′

0q
)

and Sε(FY0 , FX′
0q

) by their empirical counterpart R(α, F̂Y0 , F̂X′
0q

) and Sε(F̂Y0 , F̂X′
0q

).
It turns out that these functions can be computed quickly, as detailed in Section 3.3
below. We then also simply estimate the identified set Bε by plug-in:

B̂ε :=
{
λq : q ∈ S, 0 ≤ λ ≤ Sε

(
F̂Y0 , F̂X′

0q

)}
.

Next, we build confidence regions on β0. The asymptotic distribution of Sε
(
F̂Y0 , F̂X′

0q

)
is not Gaussian in general, so we rely on subsampling (Politis et al., 1999). One could
alternatively use the numerical bootstrap, see the discussion pp. 18-19 in the first
version of D’Haultfœuille et al. (2023).

Let n = (nXnY )/(nX + nY ) and let bn denote the size of the subsample. For any
estimator θ̂, let θ̂∗ denotes its subsampling counterpart. For a nominal coverage of
1 − α, the confidence region on β0 we consider is given by

CR1−α(β0) =
{
λq : q ∈ S, 0 ≤ λ ≤ Sε

(
F̂Y0 , F̂X′

0q

)
− ĉα,ε(q)n−1/2

}
,

where ĉα,ε(q) is the quantile of order α of the distribution of b1/2
n [Sε(F̂ ∗

Y0 , F̂
∗
X′

0q
)−Sε(F̂Y0 ,

F̂X′
0q

)], conditional on the data.
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Inference on subcomponents of β0. In practice, one is often interested in con-
ducting inference on subcomponents of β0. In view of (9), the identified (outer) set
Bk,ε of β0,k corresponding to Bε satisfies

Bk,ε = [−σε(−ek, FY0 , FX0), σε(ek, FY0 , FX0)], (12)

where σε(·, FY0 , FX0) denotes the support function associated to q 7→ Sε(FY0 , FX′
0q

)
and ek is the k-th element of the canonical basis of Rp. To construct confidence
intervals on β0k, we first estimate σε(·, FY0 , FX0) by

σε(e, F̂Y0 , F̂X0) = 1
infq∈Rp:q′e=1 1/Sε

(
F̂Y0 , F̂X′

0q

) , (13)

see Corollary 1. Then, denoting by c̃β,ε(e) the quantile of order β ∈ (0, 1) of the distri-
bution of b1/2

n (σε(e, F̂ ∗
Y0 , F̂

∗
X0)−σε(e, F̂Y0 , F̂X0)), conditional on the data, the confidence

interval we consider for β0,k is

CI1−α(β0,k) =
(−σε(−ek, F̂Y0 , F̂X0) + c̃α,ε(−ek)

n1/2

)−

,

(
σε(ek, F̂Y0 , F̂X0) − c̃α,ε(ek)

n1/2

)+
 ,

where x− = min(0, x) and x+ = max(0, x). The rationale for using (·)− and (·)+ is to
ensure that 0 ∈ CI1−α(β0,k): recall that without constraints, 0 ∈ Bk,ε. The advantage,
then, is that we can still use the quantiles of order α while maintaining coverage even
under point identification, as formally shown in Theorem 3 below.

Choice of the regularization parameter ε. Because Sε(FY0 , FX′
0q

) ≥ S(FY0 , FX′
0q

),
the confidence regions and intervals above are conservative in general. To gain in effi-
ciency, we suggest using several ε, and, basically, keep the one leading to the smallest
confidence regions or intervals. We distinguish the cases p = 1, where we can adapt
the choice to the direction q ∈ S while preserving the convexity of B̂ε, from the case
p > 1. When p = 1, let us define, for q ∈ S = {−1, 1},

ε(q) = argmin
ε∈E

Sε(F̂Y0 , F̂X′
0q

) − ĉα,ε(q)n−1/2, (14)

where E is a finite grid in (0, 1/2]. Hence, ε(q) simply minimizes the boundary value
of the confidence region in the direction q ∈ S. This idea is similar to that of
Chernozhukov et al. (2013) in the context of intersection bounds.
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Now consider the case p > 1. If one focuses on confidence intervals on β0k, we need
to choose the parameter ε that appears in σε(±ek, FY0 , FX0). To this end, we simply
use ε(q) as given above, with q = ±ek. If we are interested instead in the set B itself,
we recommend using ε = minq∈Q ε(q), where Q is a finite subset of S.

3.1.2 Consistency and validity of the confidence region

The following theorem shows that B̂ε is consistent for Bε, in the sense of the Hausdorff
distance, under mild regularity conditions.

Theorem 2. Suppose that Assumptions 1-2 hold. Then, as n → ∞,

dH
(
B̂ε,Bε

) P−→ 0.

Next, we establish the asymptotic validity of CR1−α(β0) and CI1−α(β0,k), under As-
sumptions 3 and 4 respectively. Assumption 5 (resp. 6) is used to establish the
asymptotic validity of CR1−α(β0) (resp. CI1−α(β0,k)) using ε(q) or ε (resp. ε(±ek)),
as defined above, instead of a fixed ε.

Assumption 3. (Regularity conditions for CR1−α(β0)) E[∥X∥2] < ∞, E[Y 2] < ∞.
Also, for all q ∈ S, there exists ε′ ∈ (0, ε) such that FX′q and FY are continuous and
strictly increasing on [F−1

X′q(ε′), F−1
X′q(1 − ε′)] and [F−1

Y (ε′), F−1
Y (1 − ε′)] respectively.

Assumption 4. (Regularity conditions for CI1−α(β0,k)) E[∥X∥2] < ∞, E[Y 2] < ∞.
Also, there exists ε′ ∈ (0, ε) such that for all (α, α′) ∈ [ε′, 1−ε′]2, there exists a strictly
increasing and continuous function m such that m(0) = 0 and

sup
q∈S

∣∣∣F−1
X′q(α′) − F−1

X′q(α)
∣∣∣ < m(|α′ − α|), (15)∣∣∣F−1

Y (α′) − F−1
Y (α)

∣∣∣ < m(|α′ − α|).

Finally, for all e = ±ek (k = 1, ..., p), either (i) σε(e, FY0 , FX0) > σ(e, FY0 , FX0),
(ii) q 7→ [qSε(FY0 , FX′

0q
)]′e admits a unique maximizer on S, or (iii) for all qm ∈

arg maxq∈S [qSε(FY0 , FX′
0q

)]′e, a 7→ R(a, FY , FX′qm) admits a unique minimizer on
[ε, 1 − ε].

Assumption 5. (Regularity conditions for the validity of CR1−α(β0) based on data-
dependent ε) For all q ∈ S, we either have (i) Sε(FY0 , FX′

0q
) > S(FY0 , FX′

0q
) for all

ε ∈ E, or (ii) a 7→ R(a, FY0 , FX′
0q

) admits a unique minimizer on (0, 1).
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Assumption 6. (Regularity conditions for the validity of CI1−α(β0,k) based on data-
dependent ε) For all e = ±ek (k = 1, ..., p), we either have (i) σε(e, FY0 , FX0) >

σ(FY0 , FX0) for all ε ∈ E or (ii) for all qm ∈ arg maxq∈S [qSεj0
(FY0 , FX′

0q
)]′e, a 7→

R(a, FY0 , FX′
0qm) admits a unique minimizer a(qm) on (0, 1), with a(qm) ∈ [εj0 , 1−εj0 ]

and εj0 := max{ε ∈ E : σε(FY0 , FX′
0q

) = σ(FY0 , FX′
0q

)}.

The second part of Assumption 3 holds if for all q ∈ S, the distributions of X ′q and Y
are continuous with respect to the Lebesgue distribution and their support is a (pos-
sibly unbounded) interval. The first part of Assumption 4 is basically a reinforcement
of Assumption 3 to ensure that some of our results hold uniformly over q. This is
needed when we consider the support function, as this function implies an optimiza-
tion over q. A sufficient condition for (15) is that, for all q ∈ S, X ′q admits a density
fX′q with respect to the Lebesgue measure and inf(q,α)∈S×[ε,1−ε] fX′q(F−1

X′q(α)) > 0.
The conditions (ii) and (iii) in Assumption 4 are sufficient conditions for the conti-
nuity of the asymptotic distribution of n1/2

(
σε(e, F̂Y0 , F̂X0) − σε(e, FY0 , FX0)

)
, which

is necessary for the validity of subsampling.

Assumption 5 can accomodate DGPs where the tails of ∥X0∥ are thinner than those of
U (which may correspond to a 7→ R(a, FY0 , FX′

0q
) admitting a unique minimum) but

also DGPs for which the opposite holds (since in this case we can have Sε(FY0 , FX′
0q

) >
S(FY0 , FX′

0q
) for all ε ∈ (0, 1/2) and q). For instance, one can check that it holds if

Y = c + X + U with c ∈ R, X ⊥⊥ U , and either X follows a Laplace distribution
while U is uniform, or the other way around. But it fails to hold when both X and
Y are Gaussian, since then a 7→ R(a, FY0 , FX′

0q
) is actually constant. Assumption 6

is basically similar to Assumption 5 but somewhat more complicated, as we consider
therein the support function instead of the radial function.

Theorem 3. Fix (ε, α) ∈ (0, 1/2)2 and suppose that nX/(nX + nY ) → µ ∈ (0, 1),
bn → ∞, bn/n → 0 and Assumptions 1-2 hold. Then:

1. If Assumption 3 also holds,

inf
β∈B

lim inf
n→∞

P (β ∈ CR1−α(β0)) ≥ 1 − α, (16)

with equality if B = Bε. Moreover, if Assumption 5 also holds, (16) is still true
if we use ε(q) (when p = 1) or ε (when p > 1) instead of ε.
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2. If Assumption 4 also holds,

lim inf
n→∞

inf
βk∈Bk

P (βk ∈ CI1−α(β0,k)) ≥ 1 − α, (17)

with equality if Bk = Bk,ε. Moreover, if Assumption 6 also holds, (17) is still
true if we use ε(ek) and ε(−ek) instead of ε.

To prove (16)-(17), we first show the weak convergence of

√
n
(
R(α, F̂Y0 , F̂X′

0q
) −R(α, FY0 , FX′

0q
)
)
,

seen as a process indexed by either α or (α, q). The convergence in distribution
of Sε(F̂Y0 , F̂X′

0q
) and σε(e, F̂Y0 , F̂X0), and in turn (16)-(17), then essentially follows by

the Hadamard directional differentiability of the minimum and maximin maps, shown
respectively by Cárcamo et al. (2020) and Firpo et al. (2023).

Our results for a fixed ε > 0 extend to the data-dependent ε(q) and ε, under the
additional conditions provided above. Note that one could avoid these conditions by
using sample splitting, with one subsample used to choose ε(q) or ε and the other to
construct the confidence regions/intervals. One drawback of this alternative solution,
though, is that it increases the size of confidence regions/intervals, to a point that we
may lose the benefits of using a data-dependent rather than a fixed ε.

3.2 Common regressors and possible constraints

We now turn to inference on β0 with common regressors Xc. Recall from Proposition
2 that the identified set on β0 is

Bc =
{
λq : q ∈ S, 0 ≤ λ ≤ S(FY,Xc , FX′

ncq,Xc)
}
,

with S(FY,Xc , FX′
ncq,Xc) = infx∈Supp(Xc) S(FY x|Xc=x, FXx′q|Xc=x).

Let us first assume that Xc has a finite support. Let F̂Y x|Xc=x and F̂Xx′q|Xc=x denote
the empirical estimators of FY x|Xc=x and FXx′q|Xc=x, respectively. Following the same
logic as above, we estimate S(FY,Xc , FX′

ncq,Xc) by

Ŝ(q, FY,Xc , FX′
ncq,Xc) = min

x∈Supp(Xc)
Sε(F̂Y x|Xc=x, F̂Xx′q|Xc=x).
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Let ĉcα,ε(q) be the quantile of order α ∈ (0, 1) of the distribution of b1/2
n (Ŝ∗(q, FY,Xc , FXnc,Xc)

−Ŝ(q, FY,Xc , FXnc,Xc)), conditional on the data. For a nominal coverage of 1 − α, the
confidence region on β0 we consider is

CRc
1−α(β0) =

{
λq : q ∈ S, 0 ≤ λ ≤ Ŝ(q, FY,Xc , FXnc,Xc) − ĉcα,ε(q)n−1/2

}
.

With continuous common regressors, one can adapt the earlier arguments using sieve
estimation. Specifically, suppose that Model (1) holds and consider a linear sieve
approximation of f(·) by a step function xc 7→ ∑Kn

k=1 1 {xc ∈ In,k} γk for some partition
(In,k)k=1...Kn of the support of Xc and with Kn tending to infinity at an appropriate
rate. Then, one can construct a confidence region on β0 by following a similar logic
as above.7

We now discuss how to conduct inference under constraints on the R2 or shape restric-
tions, as considered in Subsections 2.3.1 and 2.3.2 respectively. The main difference
with above is that for a given direction q ∈ S, both the lower and upper bounds on
the identified set need to be estimated. As before, we can estimate them with plug-in
estimators. The only substantive difference is that in the confidence regions, we need
to account for the variability of both bounds. For instance, with shape restrictions,
we can consider the following confidence region:

CRcon
1−α(β0) =

{
λq : q ∈ S, Ŝcon(q, FY,Xc , FXnc,Xc) + ĉcon1−α/2,ε(q)n−1/2 ≤ λ

≤ Ŝcon(q, FY,Xc , FXnc,Xc) − ĉconα/2,ε(q)n−1/2
}
,

where ĉconδ,ε (q) is the quantile of order δ of b1/2
n (Ŝcon∗(q, FY,Xc , FXnc,Xc) −Ŝcon(q, FY,Xc ,

FXnc,Xc)), conditional on the data and similarly for ĉconδ,ε . We conjecture that with a fi-
nite number of constraints, Xc finitely supported and if [Rm′

Xnc
q](r) ̸= 0 for all r ∈ R,

CRcon
1−α(β0) is pointwise asymptotically conservative. Alternatively, one could use the

formulation of our problem with shape constraints as a set of infinitely many moments
inequalities. While generally far less tractable that our baseline approach, confidence
intervals based on the inversion of the test of these many moment inequalities have
uniformly correct asymptotic size (Andrews and Shi, 2017).

7Establishing the asymptotic validity of such a confidence region would require to handle both the
bias stemming from the approximation of f(·) and the increasing complexity of the approximation.
We leave this analysis for future research.
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3.3 Computational aspects

We first discuss how to efficiently compute Sε(F̂Y0 , F̂X′
0q

). Let Y(1) < ... < Y(my)

represent the my ≤ ny distinct, ordered values of the (Yi)i=1,...,ny and let W Y
(j) = #{i :

Yi = Y(j)}/ny. Let us also define IY = {∑i
j=1 W

Y
(j) : i = 1, ...,my − 1}. We define

similarly WX′q
(j) and IX

′q. By construction, the numerator f̂Y (α) :=
∫ 1
α F̂

−1
Y0 (t)dt of

R(α, F̂Y0 , F̂X′
0q

) is linear on all intervals [∑i
j=1 W

Y
(j),

∑i+1
j=1 W

Y
(j)] (i = 0, ...,my − 1).

Moreover, for any α = ∑i
j=1 W

Y
(j) ∈ IY ,

f̂Y (α) =
my∑

j=i+1
W Y

(j)

(
Y(j) − Y

)
. (18)

The same holds for the denominator f̂X′q(α) of R(α, F̂Y0 , F̂X′
0q

). As a result, R(α, F̂Y0 ,

F̂X′
0q

) is of the form (aα + b)/(cα + d) on intervals between two consecutive values
of IY ∪ IX

′q. Now, observe that the minimum of such a function is reached at one
of the endpoints of the interval. As a result, we can compute Sε(F̂Y0 , F̂X′

0q
) using the

following algorithm:

1. Compute f̂Y (·) on IY using (18) and let f̂Y (0) = f̂Y (1) = 0. Proceed similarly
with f̂X

′q(·);

2. Interpolate linearly f̂Y (·) (resp. f̂X′q(·)) on {ε, 1−ε}∪IX′q (resp. {ε, 1−ε}∪IY ).

3. Compute Sε(F̂Y0 , F̂X′
0q

) = minα∈{ε,1−ε}∪IY ∪IX′q f̂Y (α)/f̂X′q(α).

To compute σε(±ek, FY0 , FX0), we solve (13), in which q 7→ 1/Sε(F̂Y0 , F̂X′
0q

) is also
convex. In practice, we use the BFGS quasi-Newton method implemented in the R
package optim, using as a starting point the considered direction e.

Finally, the exact computation of B̂ε and CR1−α(β0) requires the computation of
Sε(F̂Y0 , F̂X′

0q
) and ĉα,ε(q) for all q ∈ S, which is in practice infeasible if p > 1 as S is

infinite. Instead, we suggest to (i) fix a grid S̃ ⊂ S; (ii) compute Sε(F̂Y0 , F̂X′
0q

) and
ĉα,ε(q) for each q ∈ S̃; (iii) construct an approximation of B̂ε and CI1−α by computing
the convex hulls of {Sε(F̂Y0 , F̂X′

0q
)q : q ∈ S̃} and

{(
Sε(F̂Y0 , F̂X′

0q
) − ĉα,ε(q)n−1/2

)
q :

q ∈ S̃
}
, respectively.8 The resulting sets, B̃ε and C̃R1−α(β0) say, are convex, inner

8The convex hull of n points in Rp can be computed efficiently by the quickhull algorithm (Barber
et al., 1996), which requires around np/2 operations.
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approximations of B̂ε and CR1−α(β0), and satisfy, as dH(S, S̃) → 0, dH(B̃ε, B̂ε) → 0
and dH(C̃R1−α(β0),CR1−α(β0)) → 0.

The computation of the estimated set, the confidence regions on β0 and γ0 in the spec-
ification f(Xc) = X ′

cγ0 (where Xc is the vector of all dummy variables associated with
a finitely supported variable) and the confidence intervals on the corresponding sub-
components are implemented in our companion R package RegCombin. The package
also handles shape restrictions and lower bound on the R2 of the long regression, as
well as combinations of these. The RegCombin vignette, available through the descrip-
tion of the package on CRAN, provides additional details about the implementation,
including the choice of the tuning parameters E and bn.

4 Application to intergenerational mobility in the
United States

We now apply our method to conduct inference on the intergenerational income mo-
bility over the period 1850 to 1930 in the United States, revisiting the influential
analysis of Olivetti and Paserman (2015) on this question. We follow their paper and
focus on the father-son and father-son-in-law intergenerational income elasticities.
We conduct our analysis using 1 percent extracts from the decennial censuses of the
United States, over the period 1850 to 1930 (1850-1930 IPUMS).9

An important feature of the historical Census data used in this analysis is that father’s
and son’s (as well as son-in-law’s) incomes are not jointly observed. Olivetti and
Paserman (2015) address this measurement issue by predicting, for any given child
(John, say) observed in one of the Census datasets, their father’s log earnings using the
mean log earnings of fathers whose children have the same first name (namely, John).
Olivetti and Paserman then estimate in a second step the intergenerational elasticity
by regressing son’s log earnings on the predicted father’s log earnings computed from

9We refer the reader to Section 2 of Olivetti and Paserman (2015) for a detailed discussion of
the data used in the analysis. Note that they estimate the evolution of the intergenerational income
mobility over a longer time window (1850 to 1940) than we do. We confine our analysis to the period
1850-1930 as the 1940 portion of the data (1% extract of the IPUMS Restricted Complete Count
Data) is not publicly available.
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the previous step. This procedure boils down to a two-sample two-stage least squares
estimator (TSTSLS).10 The corresponding exclusion restriction that the son’s first
name does not predict his log earnings, once we control for his father’s log earnings,
may nonetheless be problematic; see Santavirta and Stuhler (2022) for a critical review
of the empirical literature using TSTSLS in this context of intergenerational mobility.
For the periods 1860-1880 and 1880-1900 only, the IPUMS Linked Representative
Samples link fathers and sons using information on first and last names, which allows
us to estimate more directly the father-son elasticity using OLS.

Using our notation and consistent with Olivetti and Paserman (2015), the population
parameter of interest here is given by

θ0 := Cov(Y,Xnc)
V (Xnc)

= β0 +
(

Cov(Xc, Xnc)
V (Xnc)

)′

γ0,

where Y denotes the son’s (or son-in-law’s) log-income, Xnc the father’s log-income
and Xc the vector of indicators corresponding to the son’s (or son-in-law’s) first names
observed in both datasets. The second equality follows from (1), since Xc is discrete
and thus f(Xc) = X ′

cγ0 for some γ0. In what follows, we report the upper bound of
the estimated identified set and confidence interval on θ0.

Even though the sample sizes as well as the number of common regressors Xc are quite
large, our method can still be implemented at a very reasonable computational cost.
For instance, for the sample of sons over the first period (1850-1870), the computation
of the confidence intervals only takes less than 4 minutes with our R package. As
expected, computational time is highest for the period 1910-1930 associated with
the largest number of observations, with n > 100, 000 for both samples of Y and
Xnc. Nonetheless, our inference procedure remains tractable in this case too, with a
computational time of about 11 minutes.11 Overall, this illustrates the applicability

10Another limitation of the data used in Olivetti and Paserman (2015) and in this application is
that it does not allow us to directly calculate the intergenerational elasticity in income. Instead, we
follow the baseline specification of Olivetti and Paserman (2015) and proxy income using an index
of occupational standing available from IPUMS (OCCSCORE), which is constructed as the median
total income of the persons in each occupation in 1950.

11These CPU times are obtained using our companion R package, parallelized on 20 CPUs on an
Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM.
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of our method, which can be easily implemented even in this type of rich and high-
dimensional data environment.

Figures 4(a)-4(b) and Table 1 below display the results, for the father-son as well
as father-son-in-law elasticities, obtained using our approach, the TSTSLS and, for
the sample of sons over the years 1860-1880 and 1880-1900, the OLS.12 Specifically,
we report in Figures 4(a)-4(b) the estimated upper bounds of the identified sets (in
solid red) and the confidence intervals (dashed red) obtained with our method, the
TSTSLS estimates and confidence intervals (solid and dashed blue, resp.) as well as,
for 1860-1880 and 1880-1900 and the sample of sons only, the OLS estimates and
confidence intervals (solid and dashed green, resp.).

A first conclusion from these results is that the upper bounds of the confidence inter-
vals associated with our method range, depending on the periods, between 0.48 and
0.61 (0.51 and 0.6) for the sample of sons (sons-in-law). These values of the inter-
generational coefficient are all well below the natural upper bound of 1. Also, even
though the estimates vary depending on the data and econometric specification being
used, most of the existing point estimates of the father-son income elasticity range
between 0.40 and 0.50 (Olivetti and Paserman, 2015). Overall, this clearly indicates
that our method leads to informative inference on the parameter of interest.

Second, consider the two cases where the linked data is available (1860-1880 and 1880-
1900 for the sample of sons). Results in Table 1 indicate that the corresponding OLS
estimates of the intergenerational income elasticities are quantitatively very close to
the estimated upper bound of our identified set. Recall that, from Proposition 5 in
Section 2.3.4, the upper bound of our identified set (θ0, say) plays a special role:
under an additional restriction on the distributions of Xnc and the error term, θ0 is
actually point identified and equal to θ0.13 In other words, the results from these two
periods support the hypothesis that the restriction on the distributions of Xnc and

12In practice we need to restrict the set of first names included in Xc to avoid very uncommon
occurrences that are perfect predictors of the outcome variable Y . In our baseline specification, we
implement this by restricting Xc to the set of first names that account for at least 0.01% of the
observations in the pooled sample, and appear at least 10 times in either of the samples. We discuss
in the following the robustness of our results to alternative cutoffs.

13Proposition 5 is obtained without Xc. Yet, it can be combined with Proposition 2 to show that
β0, and in turn γ0 (and thus θ0 here) are point identified with such Xc.
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the error term guaranteeing point identification of θ0 by θ0 hold.

(a) For sons

(b) For sons-in-law

Note: for readability and because 0 is a natural lower bound, the y-axis starts at 0, even though

the lower bounds of our confidence intervals without restrictions are negative (see Table 1).

Figure 4: Intergenerational income correlation using different methods.
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Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930
Sons

DGM, set [-0.555,0.555] [-0.465,0.465] [-0.473,0.473] [-0.430,0.430] [-0.443,0.443]
DGM, CI. [-0.614,0.614] [-0.517,0.517] [-0.532,0.532] [-0.483,0.483] [-0.499,0.499]

DGM, R2 ≥ 1.3R2
s, set [0.081,0.555] [0.075,0.465] [0.075,0.473] [0.076,0.430] [0.071,0.443]

DGM, R2 ≥ 1.3R2
s, CI. [0.033,0.617] [0.034,0.519] [0.039,0.527] [0.044,0.477] [0.047,0.491]

DGM, R2 ≥ 2R2
s, set [0.163,0.555] [0.151,0.465] [0.153,0.473] [0.164,0.430] [0.159,0.443]

DGM, R2 ≥ 2R2
s, CI. [0.095,0.601] [0.093,0.506] [0.102,0.513] [0.127,0.459] [0.132,0.477]

TSTSLS, pt. 0.350 0.310 0.344 0.495 0.476
TSTSLS, CI. [0.305,0.395] [0.272,0.348] [0.313,0.376] [0.468,0.523] [0.454,0.497]

Test of equality, p-value <0.001 0.001 0.001 0.999 0.014
(Stat.; critical val. 95%) (28.52; 15.16) (25.21; 12.37) (25.92; 28.30) (15.09; 17.69) (8.18; 6.79)

OLS, pt. 0.455 0.472
OLS, CI. [0.414,0.497] [0.443,0.501]

Test pt identification, p-value 0.147 0.003
(Stat.; critical val. 95%) (9.21,17.03) (23.06,6.33)

Number of names Xc 225 261 382 514 598
Sample sizes Y and Xnc (39,734; 34,603) (55,728; 47,014) (85,340; 73,999) (116,986; 102,053) (131,089; 116,328)

Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930
Sons-in-law

DGM, set [-0.531,0.531] [-0.442,0.442] [-0.481,0.481] [-0.454,0.454] [-0.452,0.452]
DGM, CI. [-0.601,0.600] [-0.507,0.507] [-0.554,0.555] [-0.515,0.515] [-0.513,0.513]

DGM, R2 ≥ 1.3R2
s, set [0.089,0.531] [0.085,0.442] [0.075,0.481] [0.073,0.454] [0.062,0.452]

DGM, R2 ≥ 1.3R2
s, CI. [0.030,0.605] [0.036,0.505] [0.029,0.552] [0.037,0.513] [0.033,0.509]

DGM, R2 ≥ 2R2
s, set [0.186,0.531] [0.178,0.442] [0.159,0.481] [0.164,0.454] [0.146,0.452]

DGM, R2 ≥ 2R2
s, CI. [0.115,0.596] [0.114,0.490] [0.105,0.534] [0.122,0.499] [0.113,0.496]

TSTSLS, pt. 0.340 0.400 0.400 0.493 0.414
TSTSLS, CI. [0.299,0.381] [0.364,0.436] [0.365,0.434] [0.469,0.518] [0.395,0.433]

Test of equality, p-value <0.001 0.998 0.012 1 1
(Stat.; critical val. 95%) (23.12; 9.67) (5.87; 18.53) (13.08; 12.94) (8.03; 13.28) (8.33; 13.07)

Number of names Xc 155 212 323 468 545
Sample sizes Y and Xnc (25,760; 33,256) (32,970; 45,800) (49,068; 71,141) (73,425; 99,871) (85,122; 112,763)

Notes: Dependent variable Y is son’s (or son-in-law’s) log income. Common regressors Xc are dummies for the first names appearing more than 0.01% in the

pooled dataset and 10 times in both datasets. “DGM, set” and “DGM, CI.” refer to the estimated identified set and 95% confidence interval, respectively,

obtained with our method. “TSTSLS, pt.” and “TSTSLS, CI.” refer to the TSTSLS point estimate and 95% confidence interval, respectively. The test of

equality between the TSTSLS (βT ST SLS) estimates and DGM (βDGM ) upper bound estimates is performed using subsampling with 1,000 replications. The

statistic (“Stat.”) is n1/2θ̂, where θ̂ = β̂T ST SLS − β̂DGM and n = nynx/(ny + nx), ny and nx being the respective sample sizes of Y and Xnc. The critical

value corresponds to the 1 − α quantile of the distribution of b
1/2
n |θ̂∗ − θ̂|, where θ̂∗ is a subsampled version of θ̂ and bn is the subsample size. The sample

sizes where the joint distribution is observed for both periods 1860-1880 and 1880-1900 are respectively 3,947 and 9,076. The R2 on the short and long

regressions are respectively 0.04 and 0.18 for 1860-1880, and 0.02 and 0.17 for 1880-1900. The test for point identification is performed with the ε selected

in (14), however this choice appears conservative on simulations. Taking ε/2 yields p-values of 0.69 for the period 1860-1880 and 0.04 for 1880-1900.

Table 1: Intergenerational income correlation for sons using different methods.
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Besides, the fact that we do not reject at standard levels the null hypothesis of point
identification with our formal test described in Section A.3 for the period 1860-1880
(p-value of 0.147) provides suggestive evidence in this direction.14 Under this as-
sumption, our results are informative not only on the maximal father-son elasticity
coefficient for a given period of time, but also on its evolution. It follows in partic-
ular that our estimates point to a mild decrease in this elasticity coefficient for sons
between 1850 and 1930.

Third, the results from the equality test reported in Table 1 indicate that the TSTSLS
estimates are in several cases statistically distinguishable from the estimated upper
bounds of our identified sets. This includes, for the sample of sons, all periods except
1900-1920, and the periods 1850-1870 and 1880-1900 for the sample of sons-in-law.
Besides, for the sample of sons in particular, the TSTSLS estimates exhibit a sharp
increase, while our estimated upper bound decreases between the periods 1880-1900
and 1900-1920. In that sense, our results offer suggestive evidence that the inter-
generational income correlation might have been more stable at the beginning of the
20th century than what one would infer from the TSTSLS estimates.

Fourth, we also report in Table 1 the estimated identified set and confidence intervals
associated with our method when we impose a lower bound on the R2 of the long
regression, namely R2 ≥ 1.3R2

s or R2 ≥ 2R2
s . Imposing any of these restrictions,

which are satisfied for the periods 1860-1880 and 1880-1900 for which the linked data
is available, results in substantially tighter confidence intervals. In particular, for the
sample of sons, the confidence intervals obtained under the restriction R2 ≥ 2R2

s allow
us to reject values of the intergenerational income elasticity coefficient smaller than
0.13 and larger than 0.48 for the years 1910-1930.

We consider in Tables 8 and 9, and Figure 5 in online Appendix D several robustness
checks. They relate to the set of first names that we include as controls in our estima-
tion procedure (Panel A), the choice of ε (Panel B and Figure 5), and restrictions of
the sample to the set of individuals whose first name is included in the set of controls

14Simulation results available from the authors upon request indicate that our choice of ε tends
to be conservative for the test of point identification. One would not reject either at the 1% level
the null hypothesis for the period 1880-1900 with a less conservative choice of ε (e.g. we obtain a
p-value of 0.04 using ε/2).
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Xc (Panel C). Throughout the tables, we focus on the upper bound of the estimated
identified set (“DGM, set”) and of the confidence interval (“DGM, CI.”).

The main takeaway from Table 8 and Figure 5 is that, for the sample of sons, the
results from our inference procedure are qualitatively, and in most cases quantita-
tively, robust to these different sensitivity analyses. The one case that exhibits more
sensitivity is the specification where we control for the first names that account for at
least 0.02% of the sample, instead of 0.01% in our baseline specification. The upper
bound of our confidence interval for the period 1900-1920 increases in this case from
0.48 to 0.58, the results remaining, however, stable for the other periods. The results
for the sample of sons-in-law (Table 9) are also, for most periods at the exception of
the same limit for 1900-1920, qualitatively, and in some cases quantitatively similar
across specifications. The main difference with the sample of sons is that the choice
of ε does appear to matter more for the sons-in-law, a limitation that one should
keep in mind when interpreting the findings for this subgroup. Nonetheless, to the
extent that our baseline choice of ε (see Section 3.3) is motivated by the theory and
is found to perform well in our Monte Carlo simulation exercises, we do not view this
as particularly worrisome.

5 Conclusion

We study the identification of and inference on partially linear models, in an environ-
ment where the outcome of interest and some of the covariates are observed in two
different datasets that can not be matched. This setup arises in particular when one
is interested in the effect of a variable that is not observed jointly with the outcome
variable, or in cases where potential confounders are observed in a different dataset
from the one including the outcome and regressor of interest. In such situations,
researchers often rely on strong assumptions to point identify their parameters of
interest. Our approach offers a useful alternative when such assumptions are debat-
able. The application shows that in addition to its tractability, our method is able to
deliver informative bounds. Finally, beyond the model considered in this paper, our
analysis suggests that the radial function is an appealing tool in partial identification
problems where the support function proves difficult to compute.
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A Additional theoretical results

A.1 Measurement errors

We have assumed so far that the outcome and covariates are perfectly observed.
However, measurement errors are pervasive in survey data. We now explore the
robustness of the identified set proposed earlier to measurement errors on the outcome
and covariates, which we denote by Y ∗ andX∗. Specifically, consider a situation where
both the covariates and the outcome are measured with error, such that:

X = X∗ + ξX , ξX ⊥⊥ X∗,

Y = Y ∗ + ξY , ξY ⊥⊥ (X∗, Y ∗).
(19)

We introduce a new set, B∗, which is defined as the original identified set B after
replacing the observed measurement error-ridden covariates and outcome (X, Y ) by
their latent counterparts (X∗, Y ∗).

Proposition 8. If Assumption 1 is satisfied with (X, Y ) replaced by (X∗, Y ∗), (19)
holds and for all β ∈ B∗, ξY0 ≻cv ξ

′
X0β, then B∗ ⊂ B.

The proof is in our supplementary material. This proposition establishes that the
identified set is robust to measurement errors in the following sense: if (centered)
measurement errors on the outcome Y ∗ second-order stochastically dominate those
on the linear index X∗

0
′β for all β ∈ B∗, the identified set B based on the observed

covariates X and outcome Y always contains the true value of the parameter of
interest.15 To better understand the above domination condition, suppose that p =
1, ξY ∼ N (0, σ2

Y ) and ξX ∼ N (0, σ2
X). Then, recalling that any β ∈ B∗ satisfies

the variance restriction β2V (X∗) ≤ V (Y ∗), a sufficient condition for the dominance
condition ξY0 ≻cv ξX0β is σ2

Y ≥ [V (Y ∗)/V (X∗)]σ2
X . In our application for instance,

Y ∗ and X∗ are the log earnings of fathers and sons (or sons-in-law), respectively, so
V (Y ∗) ≃ V (X∗) and σ2

Y ≃ σ2
X seem credible. This suggests that the key domination

condition from Proposition 8 is likely to hold in this context.
15 This result and underlying assumptions are closely related to the robustness to measurement

errors on the beliefs of the test of rational expectations proposed in D’Haultfoeuille et al. (2021)
(Subsection 2.2.4).
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A.2 Identification of a model with interaction terms

Let Xc = (X1,c, X−1,c) and Xnc = (X1,nc, X−1,nc). We consider here the following
model

E(Y |X) = f(Xc) +X ′
ncβ0 +X1,ncX1,cδ0.

First define, for x ∈ Supp(X1c) and q ∈ Rp (q ̸= 0p),

Sx(q, FY,Xc , FX) = inf
x−1,c∈Supp(X−1,c|X1,c=x)

S(FY |X−1,c=x−1,c,X1,c=x, FX′
ncq|X−1,c=x−1,c,X1,c=x)

Bx =
{
λq : q ∈ S, 0 ≤ λ ≤ Sx(q, FY,Xc , FX)

}
.

Proposition 2 applied to the subpopulationX1,c = x implies that for all x ∈ Supp(X1,c),
β0 + xδ0e1 ∈ Bx, where e1 = (1, 0, . . . , 0)′ ∈ Rp. Because the converse also holds, the
identified set Bδβ of (δ0, β0) is

Bδβ = {(δ, β) : ∀x ∈ Supp(X1,c), β + xδe1 ∈ Bx}. (20)

The sets Bx are convex and include 0p. Hence, Bδβ is convex too, and also includes
0p+1. Moreover, because Bx are compact, any (δ, β) ∈ Bδβ satisfies, for any (x, x′) ∈
Supp(X1,c)2, x ̸= x′,

|δ||x− x′| ≤ ∥β + xδe1∥ + ∥β + x′δe1∥ ≤ Mx +Mx′ , (21)

for some Mx,Mx′ > 0. Moreover,

∥β∥ ≤ ∥β + xδe1∥ + |x||δ| ≤ Mx + |x|
|x− x′|

(Mx +Mx′),

which implies that Bδβ is also compact. Thus, Bδβ can also be described by its radial
function, which we denote by S(q, FY,Xc , FX). Moreover, it follows from (20) that

S(q, FY,Xc , FX) = inf
x∈Supp(X1,c)

Sx(q−1 + xq1e1, FY,Xc , FX).

A.3 Test for point-identification

We develop here a statistical test that can be used to check whether β0 ∈ ∂B. Fol-
lowing the discussion in Subsection 2.3.4, this boils down to testing for

H0 : S(FYv0 , FX′
v0βv) = 1 against H1 : S(FYv0 , FX′

v0βv) > 1, (22)
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where we recall that the joint distribution of the validation data (Xv, Yv) is observed
and βv = V (Xv)−1cov(Xv, Yv). We consider a statistical test based on i.i.d. data
(Xvi, Yvi)i=1,...,n. The test statistic is

T = b1/2
n

(
Sε(F̂Yv0 , F̂X′

v0β̂v
) − 1

)
,

where β̂v is the OLS estimator of βv. The critical value is then q1−α(T ∗), the quantile
of order 1 − α (defined conditional on the data) of

T ∗ = n1/2
(
Sε(F̂ ∗

Yv0 , F̂
∗
X′

v0β̂
∗
v
) − Sε(F̂Yv0 , F̂X′

v0β̂v
)
)
,

where F̂ ∗
Yv0 , F̂ ∗

X′
v0q

and β̂∗
v are the subsampling counterpart of F̂Yv0 , F̂X′

v0q
and β̂v,

respectively. We establish the asymptotic properties of the test under the following
assumption.

Assumption 7. E[∥Xv∥2+δ] < ∞ for some δ > 0, E[Y 2
v ] < ∞, βv ̸= 0 and

S(FYv0 , FX′
v0βv) = Sε(FYv0 , FX′

v0βv). Also, there exists V ⊂ S, compact and includ-
ing a ball of positive radius centered at βv/ ∥βv∥, and ε′ ∈ (0, ε) such that for all
(α, α′) ∈ [ε′, 1 − ε′]2, there exists c > 0 and a strictly increasing and continuous
function m such that m(0) = 0 and

inf
q∈V

∣∣∣F−1
X′q(α′) − F−1

X′q(α)
∣∣∣ > c|α′ − α|,

sup
q∈V

∣∣∣F−1
X′q(α′) − F−1

X′q(α)
∣∣∣ < m(|α′ − α|),∣∣∣F−1

Y (α′) − F−1
Y (α)

∣∣∣ < m(|α′ − α|).

Up to the condition S(FYv0 , FX′
v0βv) = Sε(FYv0 , FX′

v0βv) on which we come back below,
Assumption 7 is very close to the first part of Assumption 4, but it is weaker as we
require that it holds over V instead of S.

Proposition 9. Suppose that bn → ∞, bn/n → 0 and Assumptions 1-2 and 7 hold.
Then:

1. If H0 in (22) holds, limn→∞ P (T > q1−α(T ∗)) = α.

2. If H1 in (22) holds, limn→∞ P (T > q1−α(T ∗)) = 1.
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The proof is in our supplementary material. Note that ifH0 holds but S(FYv0 , FX′
v0βv) <

Sε(FYv0 , FX′
v0βv), T will tend to infinity and H0 will be rejected. Because we are test-

ing here the validation of the tail condition described above, failing to reject H0 under
the alternative is more of an issue than wrongly rejecting H0. Thus, potential over-
rejection is arguably not as problematic as in other more standard contexts, such as
testing the null of no effect of a treatment.

B Application to the black-white wage gap

We apply our method to estimate the black-white wage gap among young males in
the United States using the 1979 panel of the National Longitudinal Survey of Youth
(NLSY79), revisiting the seminal work of Neal and Johnson (1996) on this question.
Considering the same restrictions as Neal and Johnson (1996) leads to a sample of
size n = 1, 675.16 We focus on the following model :

Y = γc,0 +Xc,1γc,1 +Xc,2γc,2 +Xncβnc + ϵ, E [ϵ|Xc, Xnc] = 0,

where Y is the mean log wage in 1990-1991, Xnc denotes the AFQT and Xc,k, k =
1, 2 are dummy variables for being black or Hispanic. While (Y,Xc, Xnc) is jointly
observed in the NLSY79 dataset, we proceed in the following as if AFQT, which is
used in Neal and Johnson (1996) to control for pre-market factors, was not observed
jointly with wages. This setup, which mimics the data environments in several other
countries, allows us to directly compare the confidence intervals based on our partial
identification approach with the ones obtained from the oracle OLS specification.

Results in Table 2 below show the effect on our bounds when we impose different sets
of constraints, namely i) a negative sign constraint on the coefficient γc,1 associated
with the black indicator as well as a positive sign constraint on the coefficient βnc
associated with the AFQT, ii) the latter constraints combined with the constraint
R2 ≥ 1.3R2

s, and iii) the sign constraints i) combined with a less conservative bound
R2 ≥ 2R2

s. Focusing on the main coefficient of interest γc,1, these results indicate
that imposing these constraints on the R2 results in an identified set and confidence
interval that are quite informative. Notably, the lower bound of the confidence interval

16We refer the reader to Neal and Johnson (1996) for a detailed discussion on the data.
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is equal to −.25 and −.2 respectively in cases ii) and iii), against −.17 (i.e. a 17 log
points wage penalty) for the OLS estimator. Taken together, these results show that
our method is able to deliver confidence intervals that are very informative in practice.

OLS DGM
Constraints Without With signs constraints

Only And R2 ≥ 1.3R2
s And R2 ≥ 2R2

s

(1) (2) (3) (4) (5)
Omitted variable Xnc

AFQT 0.150 [-0.437,0.437] [0,0.154] [0.045,0.154] [0.082,0.154]
CI [0.11,0.19] [-0.522,0.522] [0,0.215] [0.004,0.211] [0.010,0.207]

Common variables Xc

Black -0.076 [-0.664,0.318] [-0.173,0] [-0.123,0] [-0.081,0]
CI [-0.171,0.02] [-0.847,0.507] [-0.304,0] [-0.247,0] [-0.199,0]

Hispanic 0.016 [-0.334,0.266] [-0.034,0.071] [-0.003,0.071] [0.022,0.071]
CI [-0.083,0.116] [-0.506,0.450] [-0.197,0.226] [-0.186,0.225] [-0.174,0.223]

Notes: Y is average log wage in 1990 and 1991, Xnc is the AFQT, Xc are dummies for being Black or Hispanic. The sample

size is n = 1, 675, which is randomly split in two to artificially create a dataset where we observe (Y, Xc) and another one with

(Xnc, Xc). The first column presents the OLS estimates on the full dataset, where the 95% CI have been multiplied by
√

2

to make it comparable with the DGM procedure using only half of it. The second column (2) presents the DGM estimates

without constraints. Column (3) is the DGM estimates with a negative sign constraint on the coefficient of Black and a positive

one on the coefficient of AFQT. Column (4) and (5) gather the DGM estimates with the latter constraints plus a lower bound

constraint R2 of the long regression: R2 ≥ rR2
s, with respectively r = 1.3 and r = 2. The R2 on the short and long regressions

are respectively 0.051 and 0.142.

Table 2: Bounds on the wage gap under different constraints for NLSY79
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Online Appendix

C Monte Carlo simulations

In this section we study the finite sample performances of our inference method
through Monte Carlo simulations. We first consider the baseline case where no com-
mon regressor is available, before evaluating the performance of our method in the
presence of a common regressor. Finally, we discuss the computational time of our
procedure compared to a many moment inequality-based alternative.

C.1 Univariate case without common regressors

We first explore the finite sample performances of our inference method with p = 1
and no Xc, considering the following DGP:

Y = Xncβ0 + U, β0 = 1, Xnc ⊥⊥ U.

Then, we either assume that Xnc ∼ N (0, 1.5) and U ∼ N (0, 1), referred to in the
following as the normal case, or Xnc ∼ Γ(1, 2) and U ∼ Γ(0.4, 2), which we refer to
as the gamma case.

We compare the finite sample performances of our inference method with those based
on Andrews and Shi, 2017, henceforth AS. Specifically, recall from (5) above that

B = {β ∈ Rp : E [max(0, Y0 − t)] ≥ E [max(0, X ′
nc0β − t)] ∀t ∈ R} .

Hence, B is characterized by infinitely many moment inequalities. We then construct
confidence regions for β0 by inverting tests that these moment inequalities hold.17

In Table 3 below, we report the average bounds, across all 500 simulations, of the
estimated identified sets and the 95% confidence intervals associated with each of the

17These tests involve several tuning parameters. Following the recommendation of AS (and using
their notation), we fix ϵ = 0.05 and η = 10−6. To fix b0 and κ, we follow the same procedure as in
D’Haultfoeuille et al. (2021), which yields b0 = 0.5 and κ = 10−4. To construct a confidence region
on β0, we first fix a few directions (q1, ..., qn) in S. Then, for q = qk, we compute by a bisection
method the maximal λ ∈ R+ such that the test of the moment inequalities at β = λq is not rejected.
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five different sample sizes (Column “Bounds”) obtained with our method (“DGM”)
and by applying Andrews and Shi (2017) (“AS”). In order to isolate sampling uncer-
tainty, we report for each sample size and separately for our method and AS what
we call the excess length (“Ex. length”), namely the mean difference between the
length of the confidence sets and that of the identified set. We also report the cover-
age rates across simulations (“Coverage”). Finally, we report the average, across all
simulations, of the estimates of the identified set Bε(q), where ε(q) is given by (14)
and thus varies from one simulation to another.

DGM AS

Sample size Bounds Ex. length Coverage B̂ε(q) Bounds Ex. length Coverage

Normal
Identified set [-1.202,1.202] [-1.202,1.202]

400 [-1.305,1.307] 0.208 0.938 [-1.202,1.202] [-1.374,1.367] 0.337 0.983
800 [-1.280,1.280] 0.156 0.942 [-1.202,1.202] [-1.329,1.328] 0.253 0.985

1,200 [-1.266,1.267] 0.129 0.940 [-1.202,1.202] [-1.301,1.301] 0.198 0.978
2,400 [-1.246,1.247] 0.089 0.948 [-1.202,1.202] [-1.268,1.270] 0.134 0.975
4,800 [-1.234,1.235] 0.065 0.936 [-1.202,1.202] [-1.251,1.250] 0.097 0.980

Gamma
Identified set [-0.025,1.046] [-0.025,1.046]

400 [-0.758,1.357] 1.043 1 [-0.464,1.287] [-0.538,1.343] 0.809 1
800 [-0.603,1.302] 0.834 0.996 [-0.340,1.257] [-0.466,1.313] 0.707 1

1,200 [-0.546,1.28] 0.754 1 [-0.293,1.247] [-0.438,1.302] 0.668 1
2,400 [-0.458,1.243] 0.629 1 [-0.237,1.220] [-0.391,1.277] 0.596 1
4,800 [-0.391,1.213] 0.532 1 [-0.199,1.197] [-0.362,1.258] 0.548 1

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set
or the average of the bounds of the 95% confidence intervals over simulations. “Ex. length” is the
excess length, i.e. the average length of the confidence region minus the length of the identified
set. Column “Coverage” displays the minimum, over β ∈ B, of the estimated probability that
β ∈ CR1−α(β0). Column “B̂ε(q)” displays the average, across all simulations, of the estimates of
the identified set Bε(q), where ε(q) is given by (14). We use 1,000 subsampling (resp. bootstrap)
replications to compute the confidence intervals for the DGM (resp. AS) method.

Table 3: Finite sample performances for p = 1

A couple of remarks are in order. First, as expected, the 95% confidence intervals
shrink with the sample sizes n. For both DGPs and all sample sizes, comparing the
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identified set with the confidence intervals indicates that identification uncertainty
clearly dominates sampling uncertainty. This is especially striking for the normal
case, which yields a substantially wider identified set, but also holds in the gamma
case, where the regressor Xnc has thicker tails. In particular, considering the excess
length in the normal case, the confidence set is only between 8.6% (for n = 400) and
2.7% (for n = 4, 800) wider than the identified set. In the gamma case, the confidence
set ranges between 20.7% and 14.8% larger than the (regularized) identified set (Bε).

Second, the coverage of our confidence intervals is good: coverage rates are always
larger than 93.6%. Third, our inference method generally performs similarly or better
than AS, delivering consistently tighter confidence sets for sufficiently large sample
size. For example, in the normal case, the excess length of the confidence set is
reduced by around 30% to 39% depending on the sample sizes. In the gamma case,
the two methods are close, AS doing slightly better only for sample sizes smaller than
n = 4, 800. These results are consistent with our inference method exploiting the
specific geometric structure of the identified set. This could also be due to the fact
that we do not need to bear the cost, in terms of statistical power, of incorporating
potentially many non-binding inequality constraints.

Finally, the good finite sample performances of our inference method offers supporting
evidence that our choice of the regularization parameter ε(q), given by (14) and
motivated in Section 3.3 above, is appropriate. In the normal case where Bε = B for
all ε, ε(q) remains close to 0.5 for all sample sizes. In contrast, in the gamma case
where the minimum of R(·, FY0 , FX′

0q
) is reached at ε = 0 for both q = 1 and q = −1,

ε(q) tends to 0 as n tends to infinity. Overall, the results suggest that the chosen ε(q)
achieves a good balance between identification (a large ε leading to an increase in Bε)
and statistical uncertainty (a small ε leading to more volatility when estimating Sε
and thus larger quantiles ĉα,ε).

C.2 Multivariate case without common regressor

We now consider the multivariate case (p = 2) with the following DGP:

Y = γ0 +X ′
ncβ0 + U, U |Xnc ∼ N (0, 4). (23)
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We set the coefficients as follows: γ0 = −0.1, β0,1 = 1, and β0,2 = 1. The variables
Xnc follow a multivariate normal distribution with mean 0 and covariance matrix

Σ =
 1 −0.2

−0.2 1

 .
We report in Table 4 below the performances of our inference method, applied to the
first component of β0, for the same sample sizes as above, along with the identified
set of the projection. These results were obtained using 500 simulations. We restrict
to the first component of β0 as the results are very similar for the second component.
The main takeaway of this table is that our inference method exhibits similar finite-
sample performances to the ones discussed in the univariate (p = 1) normal case. In
particular, the excess length of the confidence sets relative to the identified set tends
to be quite small, and declines as n gets larger.

Average Bounds Excess length Coverage

Identified set [-2.367, 2.367]

Sample size
400 [-2.599, 2.599] 0.465 0.94
800 [-2.555, 2.554] 0.376 0.962

1,200 [-2.523, 2.522] 0.312 0.96
2,400 [-2.496, 2.497] 0.26 0.982
4,800 [-2.475, 2.474] 0.217 0.986

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or
the average of the bounds of the 95% confidence intervals over simulations. “Excess length” is the
average length of the confidence region minus the length of the identified set. Column “Coverage”
displays the minimum, over β1 ∈ B1, of the estimated probability that β1 ∈ CI1−α(β0,1). We use
200 subsampling replications to compute the confidence intervals.

Table 4: Finite sample performances for β0,1 with p = 2
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C.3 Case with a common regressor and possible constraints

We now examine the performances of our inference method in the presence of a
common regressor. Namely, we consider the DGP:

Y = Xcγ0 +Xncβ0 + U, U |X ∼ N (0, 4).

We set the coefficients as follows: γ0 = 0.3 and β0 = 1. The covariates are transfor-
mations of (N1, N2)′, which follows a multivariate normal distribution with mean 0
and covariance matrix

Σ =
 1 0.8

0.8 1.5

 .
Specifically, the common regressor is given by Xc = 1 {N1 ≤ 0.3}, and the regressors
observed in one of the datasets only are such that Xnc = N2.

We report in Table 5 the performances of our inference method applied to the pa-
rameters β0 and γ0 along with the identified sets, with or without imposing the sign
constraint γ0 ≥ 0. For β0, coverage ranges between 95.4% and 97%. Similar to the
baseline case without common regressors, the excess length of the confidence interval
relative to the identified set declines as n grows, and becomes quite small for the
largest sample sizes. For instance, for n = 4, 800, our confidence interval is only
4% larger than the identified set, highlighting again the limited role of sampling un-
certainty in this context. The sign constraint reduces considerably the confidence
interval, allowing to reject that β0 = 0 for all the considered sample sizes.

Similar comments apply to the results on γ0. The coverage rate is always over 96.4%.
The length of our confidence intervals is between 8% and 30.5% larger than the one
of the unconstrained identified set. Note that the upper bounds of our confidence
intervals on γ0 are larger with the sign constraint than without it as in the former
case we use critical values based on quantiles of order α/2 and 1 −α/2 to ensure that
the confidence region CRcon

1−α(β0) is asymptotically conservative.

Table 6 illustrates the performances of our inference method on β0, using the same
DGP as above except for γ0 which is set equal to zero, and compare them to the
TSTSLS confidence intervals which are valid under this particular DGP. We imple-
ment our inference method without imposing the constraint that γ0 = 0. A couple
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of remarks are in order. First, the coverage with our method ranges between 94.8%
and 99.4%, with the exception of one case (n = 400 and the constraint γ0 ≥ 0, where
the coverage is 92.2%). Second, while the bounds obtained without imposing the
sign constraint are substantially larger than the TSTSLS ones, which rely on the
constraint γ0 = 0, the non-negativity constraint γ0 ≥ 0 does result in significantly
tighter confidence intervals. In particular, the lower bounds on β0 become close to
the TSTSLS ones, and exclude 0.

Without sign constraint With the constraint γ0 ≥ 0

Average Bounds Excess length Coverage Bounds Excess length Coverage

Parameter β0

Identified set [-2.125, 2.125] [0.768, 2.125]

Sample size
400 [-2.445, 2.445] 0.640 0.966 [0.376, 2.495] 0.761 0.944
800 [-2.339, 2.341] 0.430 0.970 [0.408, 2.376] 0.611 0.978

1,200 [-2.297, 2.300] 0.347 0.962 [0.460, 2.329] 0.512 0.994
2,400 [-2.247, 2.251] 0.248 0.966 [0.541, 2.273] 0.374 0.982
4,800 [-2.206, 2.213] 0.170 0.954 [0.603, 2.229] 0.268 0.976

Parameter γ0

Identified set [-3.738, 1.754] [0, 1.754]

Sample size
400 [-4.578, 2.590] 1.676 0.98 [0, 2.729] 0.975 0.996
800 [-4.306, 2.348] 1.162 0.984 [0, 2.448] 0.694 0.998

1,200 [-4.197, 2.214] 0.919 0.990 [0, 2.296] 0.542 0.996
2,400 [-4.062, 2.076] 0.646 0.976 [0, 2.135] 0.381 0.988
4,800 [-3.967, 1.990] 0.465 0.976 [0, 2.032] 0.278 0.992

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or
the average of the bounds of the 95% confidence intervals over simulations. “Excess length” is the
average length of the confidence region minus the length of the identified set. Column “Coverage”
displays the minimum of the estimated probability that γ ∈ CR1−α(γ0). We use 1,000 subsampling
replications to compute the confidence intervals.

Table 5: Finite sample performances for β0 and γ0 with and without sign constraints
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Without sign constraint With the constraint γ0 ≥ 0 TSTSLS

Average Bounds Excess length Coverage Bounds Excess length Coverage Bounds

Identified set [-2.125, 2.125] [1, 2.125] [1, 1]

Sample size
400 [-2.411, 2.411] 0.571 0.980 [0.642, 2.457] 0.689 0.922 [0.634, 1.426]
800 [-2.342, 2.343] 0.434 0.980 [0.67, 2.377] 0.582 0.964 [0.733, 1.285]

1,200 [-2.296, 2.296] 0.341 0.968 [0.709, 2.324] 0.49 0.982 [0.791, 1.241]
2,400 [-2.241, 2.246] 0.236 0.968 [0.779, 2.267] 0.362 0.994 [0.844, 1.159]
4,800 [-2.200, 2.207] 0.157 0.948 [0.836, 2.223] 0.261 0.970 [0.891, 1.114]

Notes: results obtained with 500 simulations. Column “Bounds” reports either the identified set or
the average of the bounds of the 95% confidence intervals over simulations. “Excess length” is the
average length of the confidence region minus the length of the identified set. Column “Coverage”
displays the minimum of the estimated probability that β ∈ CR1−α(β0). We use 1,000 subsampling
replications to compute the confidence intervals.

Table 6: Finite sample performances for β0 with one common regressor γ0 = 0

C.4 Computational time

First, and following the discussion around Eq. (8), we compare our approach based
on the radial function and the direct computation of the support function based
on (8). We consider the DGP Y = X ′

ncβ + ϵ, where β = (1, . . . , 1)′ ∈ Rp, Xnc ∈
Rp with independent marginals N (0, 2.25) and ϵ|Xnc ∼ N (0, 1). We then compute
σ(±ek, F̂Y0 , F̂X0) for k = 1, ..., p on 100 samples of size n = 2, 000. Our approach turns
out to be 100 times faster when p = 1, because it avoids the double optimization, and
11 (resp. 4) times faster when p = 2 (resp. p = 3).18

Next, we examine the computational time of our inference method and that of AS
when p, the dimension of Xnc, is equal to either 1 or 2, for the DGPs considered in
Sections C.1 and C.2, respectively, and for the five different sample sizes considered
above. Table 7 below reports the computational time for CR1−α(β0) when p = 1, and
for the two confidence intervals CI1−α(β0,1) and CI1−α(β0,2) when p = 2.

18All the computational times are obtained for a single simulation using our companion R package,
on an Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM and a single core. For the support
function approach (8), we use the Constrained Optimization by Linear Approximations (COBYLA)
algorithm for solving the linear optimization program under nonlinear constraints.
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Sample size 400 800 1,200 2,400 4,800

p = 1

AS (s) 241.8 349.2 458.4 823.2 1137.0
DGM (s) 0.70 0.73 0.77 0.86 0.93

p = 2

AS fast (min) 18.3 29.5 40.0 71.7 150.3
AS recommended (min) 177.8 296.5 393.5 702.8 1500.2

DGM (s) 18.9 19.8 20.8 23.9 30.6

Notes: The CPU time for the DGM method when p = 2 corresponds to the computation of the 4
projections associated to ±ek, k = 1, 2. For p = 2, the “AS fast” approximation uses 25 directions
to evaluate the computational time of the AS based method. The average over 50 replications of the
excess length between the confidence intervals obtained with 250 directions and 25 directions over
the length of the confidence intervals obtained with 250 directions (“AS recommended”) is 3.2% for
n = 1, 200. As in Sections C.1-C.2, we use 1,000 subsampling (resp. bootstrap) replications when
p = 1 and 200 replications when p = 2 for the DGM (resp. AS) method.

Table 7: CPU time as function of sample size and dimension p of Xnc.

In the univariate case (p = 1), the computational gains of our method range from
a factor of 342 to 1,217 compared to AS, for n = 400 and n = 4, 800, respectively.
While the computational time associated with our method increases with the sample
size, it remains very modest (less than 1 second) for n = 4, 800.

In the multivariate case (p = 2), we compare our method with two alternative im-
plementations of the AS method. “AS fast” corresponds to an approximation of the
confidence intervals for both components of β0 that uses 25 directions in S to imple-
ment the method, while “AS recommended” corresponds to the computational time
associated with 250 directions. Since our method does not rely on any numerical
approximation of this kind (as we exactly compute 1/ infq∈Rp:qk=1 1/Sε(F̂Y0 , F̂X′

0q
)), it

is arguably more relevant to compare the computational times of our method and the
“AS recommended” implementation. While the computational time of our method
increases with p, it does remain tractable even with fairly large sample sizes, taking
for instance 30.6 seconds only to run for n = 4, 800. In the multivariate case also
our method outperforms both implementations of the AS method. For instance, for
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n = 2, 400, our method runs 1,768 times faster than the recommended implementa-
tion of AS. In this case, computing ε(q) for one direction with our method takes the
same time as in the univariate case (p = 1). The main difference and computational
bottleneck with p > 1 lies in the subsampling of the convex optimization in (13).

To conclude, our approach can be implemented at a very limited computational cost,
and achieves in our context considerable computational gains relative to the alterna-
tive method of AS.
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D Additional results on the application

Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Baseline specification
DGM, set 0.555 0.465 0.473 0.43 0.443
DGM, CI 0.614 0.517 0.532 0.483 0.499

Number of names Xc 225 261 382 514 598

Panel A: Robustness to the set of first names
Threshold 0.005%

DGM, set 0.555 0.465 0.473 0.43 0.443
DGM, CI 0.611 0.521 0.529 0.484 0.499

Number of names Xc 225 261 382 515 626

Threshold 0.02%
DGM, set 0.555 0.465 0.493 0.511 0.477
DGM, CI 0.609 0.522 0.554 0.578 0.54

Number of names Xc 225 261 332 378 415

Panel B: Robustness to the choice of ε
ε/2

DGM, set 0.555 0.442 0.473 0.419 0.415
DGM, CI 0.612 0.49 0.534 0.471 0.467

Number of names Xc 224 259 380 512 596

2ε
DGM, set 0.555 0.465 0.473 0.43 0.443
DGM, CI 0.616 0.52 0.532 0.483 0.5

Number of names Xc 224 259 380 512 596

Panel C: Restricting the sample to the selected first names
DGM, set 0.556 0.465 0.472 0.43 0.442
DGM, CI 0.616 0.517 0.531 0.48 0.499

Sample sizes Y 33,796 46,296 73,961 99,874 111,126
Sample sizes Xnc 29,209 40,431 62,567 85,202 99,270

Notes: Y =son’s log income. The baseline specification restricts Xc to be the dummies for the names appearing in the pooled dataset

more than 0.01%, and 10 times in both datasets. Panel A presents the results when we consider names appearing more than 0.005%

or 0.02% in the pooled dataset. In the baseline specification, the parameter ε is chosen according to the data-driven rule (14). Panel

B presents the results when using 0.5 or 2 times this choice of ε. Panel C presents results when we restrict the samples to the selected

names based on our rule in the baseline case. We report the corresponding modified sample sizes.

Table 8: Robustness checks for the upper bound on intergenerational income corre-
lation for sons.
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Sample: 1850-1870 1860-1880 1880-1900 1900-1920 1910-1930

Baseline specification
DGM, set 0.531 0.442 0.481 0.454 0.452
DGM, CI 0.6 0.507 0.555 0.515 0.513

Number of names Xc 155 212 323 468 545

Panel A: Robustness to the set of first names
Threshold 0.02%

DGM, set 0.531 0.442 0.48 0.573 0.452
DGM, CI 0.604 0.503 0.554 0.658 0.514

Number of names Xc 155 212 316 397 430

Panel B: Robustness to the choice of ε
ε/2

DGM, set 0.455 0.44 0.481 0.434 0.411
DGM, CI 0.51 0.505 0.553 0.495 0.466

Number of names Xc 155 212 323 468 545

2ε
DGM, set 0.531 0.442 0.481 0.454 0.452
DGM, CI 0.599 0.504 0.551 0.517 0.514

Number of names Xc 155 212 323 468 545

Panel C: Restricting the sample to the selected first names
DGM, set 0.534 0.445 0.481 0.456 0.453
DGM, CI 0.61 0.509 0.554 0.52 0.514

Sample sizes Y 20,375 26,418 41,212 61,742 70,656
Sample sizes Xnc 27,096 37,231 57,474 81,551 94,706

Notes: Y =son-in-law’s log income. The baseline specification restricts Xc to be the dummies for the names appearing in the pooled

dataset more than 0.01%, and 10 times in both datasets. Panel A presents the results when we consider names appearing more than

0.02% in the pooled dataset. Results with considering names appearing more than 0.005% in the pooled dataset are identical to the

baseline, hence note reported. In the baseline specification, the parameter ε is chosen according to the data-driven rule (14). Panel B

presents the results when using 0.5 or 2 times this choice of ε. Panel C presents results when we restrict the samples to the selected

names based on our rule in the baseline case. We report the corresponding modified sample sizes.

Table 9: Robustness checks for the upper bound on intergenerational income corre-
lation for sons-in-law.
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(a) For sons

(b) For sons-in-law

Note: the graphs display the value of Sε′(q, F̂Y,Xc
, F̂Xnc,Xc

) for ε′ = cε, where ε is selected via (14)

and c ∈ {0.25, 0.5, 1, 1.5, 2, 3}.

Figure 5: Sε(q, F̂Y,Xc , F̂Xnc,Xc) for different ε.

E Proofs

E.1 Notation

We denote by Pq(Rp) the set of Borel probability measures on Rp with q finite absolute
moments. We assimilate herafter probability measures on Rp with their cdf, so we
may write for instance F ∈ Pq(Rp). We let W1 denote the 1-Wasserstein distance and

12



recall that for (F,G) ∈ P1(R)2,

W1(F,G) = inf
U∼F,V∼G

E [|U − V |] =
∫ 1

0
|F−1(t) −G−1(t)|dt =

∫ ∞

−∞
|F (t) −G(t)|dt.

(24)
We denote by ℓ∞(X ) the space of bounded functions on X for the uniform metric.
Finally, g(x) ≲ h(x) means that g(x) ≤ Ah(x) for some universal constant A > 0.

E.2 Theorem 1

Let B′ denote the set on the right-hand side of (4). We first show that B ⊂ B′. Then,
we show the other inclusion. Finally, we show the other properties of B.

1. B ⊂ B′

Let F be such that 0 <
∫
x2dF (x) < ∞ and

∫
xdF (x) = 0 and define g(α) =∫ 1

α F
−1(t)dt, for any α ∈ [0, 1]. Since F−1 is left-continuous, g admits a left derivative

equal to −F−1(α). As it is decreasing, g is concave. Moreover, g(0) = g(1) = 0. For
some α ∈ (0, 1), F−1(α) ≥

∫
xdF (x) = 0 so g(α) ≥ (1 − α)F−1(α) ≥ 0. Assume that

g(α) = 0. Then, by concavity, g(x) = 0 for all x ∈ [0, 1]. This implies that F−1(x) = 0
for all x ∈ (0, 1), which contradicts

∫
x2dF (x) > 0. Thus, for all α ∈ (0, 1), g(α) > 0.

Then, because E(X ′
0q) = 0 and E[(X ′

0q)2] > 0 (asE(X0X
′
0) is nonsingular),

∫ 1
α F

−1
X′

0q
(t)dt >

0 for all α ∈ (0, 1). This means that 0 ≤ λ ≤ S(FY0 , FX′
0q

) is equivalent to
∫ 1

α
F−1
X′

0(λq)(t)dt ≤
∫ 1

α
F−1
Y0 (t)dt ∀α ∈ (0, 1).

This, in turn, is equivalent to FX′
0(λq) dominating FY0 at the second order (see, e.g.

De la Cal and Cárcamo, 2006). Then, by definition of second-order stochastic domi-
nance,

B′ = {β ∈ Rp : E[ϕ(Y0)] ≥ E[ϕ(X ′
0β)] ∀ϕ convex} .

Now, for any β ∈ B, there exists (X̃, Ỹ ) such that E(Ỹ0|X̃0) = X̃ ′
0β, X̃ d= X and

Ỹ
d= Y . Then, for all convex function ϕ, we have, by Jensen’s inequality,

E[ϕ(Ỹ0)|X̃0] ≥ ϕ(E[Ỹ0|X̃0]) = ϕ(X̃ ′
0β).

As a result, β ∈ B′.
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2. B′ ⊂ B

For any (F,G) ∈ P1(R) × P1(Rp+1), let G1 denote the first marginal of G and define

Ww(F,G1) := inf
FU,V1 :FU =F,FV1 =G1

E [|V1 − E[U |V1]|] ,

Wc(F,G) := inf
FU,V1,V2 : FU =F, FV1,V2 =G

E [|V1 − E(U |V1, V2)|] . (25)

We first prove that Wc(F,G) ≤ Ww(F,G1). To this end, let us define c(x,H) =
|x1 −

∫
ydH(y)|, for any x = (x1, x2) ∈ R×Rp and H ∈ P1(R). Because the function

c satisfies the assumptions of Theorem 1.3. in Backhoff-Veraguas et al. (2019),19 we
have

Wc(F,G) = sup
f∈Φbel

{∫
Rc(f)(x1, x2)dG(x1, x2) −

∫
f(y)dF (y)

}
,

where we define

Φbel =
{
ψ : R → R continuous s.t. ∃(a, b, ℓ, x0) ∈ R4 :

∀x ∈ R, ℓ ≤ ψ(x) ≤ a+ b|x− x0|} ,

Rc(f)(x1, x2) = inf
H∈P1(R)

∫
f(y)dH(y) +

∣∣∣∣x1 −
∫
ydH(y)

∣∣∣∣ .
Let U ∼ F and V = (V1, V2) ∼ G. By definition of Rc(f), we have, for almost all x1,

Rc(f)(x1, x2) ≤ E[f(U)|V1 = x1] + |x1 − E[U |V1 = x1]| .

As a result,∫
Rc(f)(x1, x2)dG(x1, x2) −

∫
f(y)dF (y) ≤E[f(U)] + E [|V1 − E(U |V1)|] −

∫
f(y)dF (y)

=E [|V1 − E(U |V1)|] .

Since this holds for all (U, V1) with U ∼ F and V1 ∼ G1,∫
Rc(f)(x1, x2)dG(x1, x2) −

∫
f(y)dF (y) ≤ Ww(F,G1).

Taking the supremum over f ∈ Φbel, we obtain Wc(F,G) ≤ Ww(F,G1).

Now, let β ∈ B′. By Strassen’s theorem (Theorem 8 in Strassen, 1965; see also
Theorem 3.1 in Gozlan et al., 2018), we have Ww(FY0 , FX′

0β
) = 0. As a result,

19 We use, with their notation, t = 1 Y = R and dY (y, y′) = |y − y′|, so that their Pt
dY

is simply
P1(R) here.
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Wc(FY0 , FX′
0β,X0) = 0. Because the function c satisfies the assumptions of Theorem

1.2 in Backhoff-Veraguas et al. (2019), there exists a minimizer reaching the infimum
in (25). This implies that there exist random variables (Ỹ , X̃β, X̃) with F

Ỹ
= FY ,

F
X̃β ,X̃

= FX′β,X and satisfying X̃β
0 = E[Ỹ0|X̃β

0 , X̃0]. The equality F
X̃β ,X̃

= FX′β,X

implies that X̃β = X̃ ′β almost surely. Then, E[Ỹ0|X̃0] = X̃ ′
0β and in view of (2),

β ∈ B. The result follows.

3. Other properties of B

Let X̃, Ỹ be independent variables such that X̃ d= X and Ỹ
d= Y . Then

E[Ỹ0|X̃0] = E[Ỹ0] = 0 = X̃ ′
00p.

Hence, 0p ∈ B. Now, let (β1, β2) ∈ B2 and t ∈ [0, 1]. For any convex function ϕ, we
have

ϕ(X ′
0(tβ1 + (1 − t)β2)) ≤ tϕ(X ′

0β1) + (1 − t)ϕ(X ′
0β2).

Hence, because (β1, β2) ∈ B′2,

E [ϕ(X ′
0(tβ1 + (1 − t)β2))] ≤ E [ϕ(Y0)] ,

which also implies that tβ1 + (1 − t)β2 ∈ B′ ⊂ B. Thus, B is convex. The inclusion
B ⊂ BV follows from B ⊂ B′ and the convexity of x 7→ x2 which implies B′ ⊂ BV .

This last point also implies that B is bounded, as a subset of BV . Thus, to prove
that B = B′ is compact, it suffices to show that it is closed. First, remark that in the
definition of B′, we can replace “ϕ convex” by “ϕ continuous and convex” (in fact, we
can focus on the functions x 7→ max(0, x − t) for t ∈ R). Let (βn)n∈N be such that
βn ∈ B′ and βn → β. By Fatou’s lemma,

E [ϕ(X ′
0β)] = E

[
lim inf

n
ϕ(X ′

0βn)
]

≤ lim inf
n

E [ϕ(X ′
0βn)] ≤ E [ϕ(Y0))] .

Thus, β ∈ B′ = B, and B is closed.

E.3 Corollary 1

By definition, Bk = {bk : ∃β ∈ B : βk = bk}. Because B is convex and compact,
Bk is a compact interval [bk, bk], with bk = infβ∈B e

′
kβ and bk = supβ∈B e

′
kβ. Thus,

bk = σ(ek, FY0 , FX0) and, similarly, bk = −σ(−ek, FY0 , FX0).
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Next, remark that solutions β of supβ∈B e
′
kβ are at the boundary of B and are thus

of the form β = S(FY0 , FX′
0q

)q for some q ∈ S such that qk := e′
kq > 0. Thus,

σ(ek, FY0 , FX0) = sup
q∈S:qk>0

qkS(FY0 , FX′
0q

)

= sup
q∈S:qk>0

S
(
FY0 , FX′

0q/qk

)
= sup

q∈Rp:qk>0
S
(
FY0 , FX′

0q/qk

)
= sup

q∈Rp:qk=1
S
(
FY0 , FX′

0q

)
= 1

infq∈Rp:qk=1 1/S
(
FY0 , FX′

0q

) ,
where the second equality follows by definition of S. The same reasoning applies to
σ(−ek, FY0 , FX0).

E.4 Proposition 1

Point 1. Let ψ(y) = ϕ(y/2). By convexity of ϕ, ψ(Y0) ≤ [ϕ(Y ) + ϕ(−E(Y ))]/2.
Thus, E[ψ(Y0)] < ∞. Now, let b ̸= 0. By convexity again, ϕ(X ′b/4) ≤ {ϕ(X ′

0b/2) +
ϕ[E(X ′

0b/2)]}/2. Since E[ϕ(X ′b/4)] = ∞, this implies E[ψ(X ′
0b)] = ∞. Because

B = {β : Y0 ≻cv X
′
0β}, b ̸∈ B. Thus B = {0}. The result follows since β0 ∈ B.

Point 2. Let β = (β1, β−1) ∈ B. Since B = {β : Y0 ≻cv X
′
0β}, we have, as above,

∞ > E[ψ(Y0)] ≥ E[ψ(X ′
0β)]. Moreover, by convexity of ψ,

ψ(X1β1/3) ≤ 1
3
{
ψ(X ′

0β) + ψ(−X ′
−1β−1) + ψ[E(X ′β)]

}
.

Moreover, by assumption, E[ψ(−X ′
−1β−1)] < ∞. Thus,

E[ϕ(X1β1/6)] = E[ψ(X1β1/3)] < ∞,

which, by assumption, implies β1 = 0. The result follows since β0,1 ∈ B1.

E.5 Proposition 3

By Proposition 2 and linearity of R, we have

Bcon =
{
λq : q ∈ S+ : −S(FY,Xc , F−X′

ncq,Xc) ≤ λ ≤ S(FY,Xc , FX′
ncq,Xc),
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∀r ∈ R : [RmY − c](r) ≥ λ[Rm′
Xnc

q](r)
}
.

Remark that when [Rm′
Xnc

q](r) > 0, [RmY − c](r) ≥ λ[Rm′
Xnc

q](r) is equivalent to
λ ≤ [RmY − c](r)/[Rm′

Xnc
q](r). This implies that

λ ≤ inf
r∈R:

[Rm′
Xnc

q](r)>0

[RmY − c](r)
[Rm′

Xnc
q](r) .

When [Rm′
Xnc

q](r) = 0, there are two cases: either [RmY − c](r) ≥ 0, in which case
we have no constraint on λ (equivalently, λ ≤ ∞); or [RmY − c](r) < 0, in which case
λq ̸∈ Bcon for any λ ∈ R (equivalently, λ ≤ −∞). This can be summarized by

λ ≤ inf
r∈R:

[Rm′
Xnc

q](r)≥0

lim
u↓0

[RmY − c](r) + u

[Rm′
Xnc

q](r) + u2 .

The reasoning is similar for the lower bound, yielding the final expression for Bcon.
The expression of F con follows as in Proposition 2.

Finally, Bcon is closed and convex, as the intersection of Bc and {β ∈ Rp : ∀r ∈
R, [RmY − c](r) ≥ [Rm′

Xnc
β](r)}, which are both closed and convex. Since Bc is

bounded, it is also bounded and thus compact. Finally, because 0p ∈ Bc, 0p ∈ Bcon if
and only if [RmY − c](r) ≥ 0 for all r ∈ R.

E.6 Proposition 4

First, E(Y |Xc) = f(Xc) + m(Xc)′β0. Assume that (f̃ , β̃) also rationalizes the data
and the model. Then

[f − f̃ ](Xc) = m(Xc)′[β̃ − β0].

Because f − f̃ ∈ G, we must have β̃ = β0 and in turn f̃ = f .

E.7 Proposition 5

Point 1. Fix c > 0. For any M > 0, let

ϕM(x) = ϕ(x)1 {|x| ≤ M} + ϕ′
+(−M)(−M − x)+ + ϕ′

−(M)(x−M)+,

where ϕ′
+ (resp. ϕ′

−) denotes the right (resp. left) derivative of ϕ. Because ϕM(x) ≤
K1+K2|x| for someK1, K2 > 0, we have E[ϕM(X ′

0β0(1+c))] < ∞. Also, ϕM(x) ↑ ϕ(x)
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as M ↑ ∞. Then, by the monotone convergence theorem,

lim
M→∞

E[ϕM(X ′
0β0(1 + c))] = E[ϕ(X ′

0β0(1 + c))] = ∞.

On the other hand, E[ϕM((1/c+ 1)U)] ≤ E[ϕ((1/c+ 1)U)] < ∞. Thus, there exists
Mc such that

E[ϕMc((1/c+ 1)U)] < E[ϕMc(X ′
0β0(1 + c))].

Moreover, using Y0 = X ′
0β0 + U and convexity of ϕMc , we obtain

ϕMc(Y0) ≤ 1
1 + c

ϕMc(X ′
0β0(1 + c)) + c

1 + c
ϕMc((1/c+ 1)U).

Combining the two inequalities, we obtain20

E[ϕMc(Y0)] < E[ϕMc(X ′
0β0(1 + c))].

Because ϕMc is convex, this implies that β0(1 + c) ̸∈ B. Since c > 0 was arbitrary,
β0 ∈ ∂B. The result follows.

Point 2. By convexity, ϕ(Xλ/2) ≤ [ϕ(X0λ)+ϕ(E(X)λ)]/2 for all λ > 0. Therefore,
for such λ, E[ϕ(X0λ)] = ∞. SinceX ∈ R and β0 > 0, this implies E[ϕ((X ′

0β0)λ)] = ∞
for all λ > 1. Thus, the condition of Point 1 holds and the identified set of β0 is
included in ∂B, which is of the form {b, β0} for some b ≤ 0 (since 0 ∈ B). Because it
is known that β0 > 0, the identified set is {β0}.

E.8 Proposition 6

1. Bε is compact and convex.

We showed in the proof of Theorem 1 that for all α ∈ (0, 1),
∫ 1
α F

−1
X′

0q
(t)dt > 0 and∫ 1

α F
−1
Y0 (t)dt > 0. Then, by continuity of α 7→

∫ 1
α F

−1
Y0 (t)dt/

∫ 1
α F

−1
X′

0q
(t)dt,

Sε(FY0 , FX′
0q

) = min
α∈[ε,1−ε]

∫ 1
α F

−1
Y0 (t)dt∫ 1

α F
−1
X′

0q
(t)dt

> 0.

Hence, pε(q) := 1/Sε(FY0 , FX′
0q

) is well-defined and

pε(q) = max
α∈[ε,1−ε]

∫ 1
α F

−1
X′

0q
(t)dt∫ 1

α F
−1
Y0 (t)dt

.

20Using ϕ instead of ϕMc
would not work: E[ϕ(Y0)] ≥ E[ϕ(X ′

0β0)], so we may have E[ϕ(Y0)] = ∞.
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Besides, for any random variables U and V , and λ ∈ [0, 1],∫ 1

α
F−1
λU+(1−λ)V (t)dt ≤

∫ 1

α
F−1
λU (t)dt+

∫ 1

α
F−1

(1−λ)V (t)dt

= λ
∫ 1

α
F−1
U (t)dt+ (1 − λ)

∫ 1

α
F−1
V (t)dt,

where the first inequality follows from Theorem 1.1 in Embrechts and Wang (2015).
As a result, for any α ∈ (0, 1), the function q 7→

∫ 1
α F

−1
X′

0q
(t)dt is convex. Because the

maximum of convex functions is also convex, the function pε is convex on Rp. As
such, it is also continuous. This implies that Bε = {q ∈ Rp : pε(q) ≤ 1} is convex and
closed. Finally, by continuity of q 7→ Sε(FY0 , FX′

0q
),

sup
q∈S

Sε(FY0 , FX′
0q

) = max
q∈S

Sε(FY0 , FX′
0q

) < ∞,

which implies that Bε is bounded, and thus compact.

2. For all 0 < ε < ε′ < 1/2, B ⊂ Bε ⊂ Bε′ and ∩ε∈(0,1/2)Bε = B.

The first result follows since by definition, Sε(F,G) ≤ Sε′(F,G) for any 0 < ε < ε′ <

1/2. Now,

∩ε∈(0,1/2)Bε =
{
λq : q ∈ S, 0 ≤ λ ≤ inf

ε∈(0,1/2)
Sε(FY0 , FX′

0q
)
}
.

Thus, to prove ∩ε∈(0,1/2)Bε = B, it suffices to show that infε∈(0,1/2) Sε(F,G) = S(F,G).
First, infε∈(0,1/2) Sε(F,G) ≥ S(F,G) since Sε(F,G) ≥ S(F,G) for all ε ∈ (0, 1/2).
Now, fix η > 0. By definition, there exists α0 ∈ (0, 1) such that

S(F,G) > R(α0, F,G) − η.

Hence, there exists ε ∈ (0, 1/2) such that

S(F,G) > Sε(F,G) − η ≥ inf
ε∈(0,1/2)

Sε(F,G) − η.

Since η is arbitrary, we have S(F,G) ≥ infε∈(0,1/2) Sε(F,G). The result follows.

3. Under the stated conditions, there exists 0 < ε0 < 1/2 such that Bε0 = B.

We first show that for all q, as α → 1, R(α, FY0 , FX′
0q

) → ∞. First, E(X ′
0β0) = 0

implies that P (X ′
0β0 ≥ 0) > 0. Next, for all λ and M , there exists t0 such that for
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all t ≥ t0 and all s, FU |X′
0β0(t|s) > (M/P (X ′

0β0 ≥ 0))F ∥X0∥(λt). Then, for all t ≥ t0,

F Y0(t) =E[FU |X′
0β0(t−X ′

0β0|X ′
0β0)]

≥E[FU |X′
0β0(t−X ′

0β0|X ′
0β0)1 {X ′

0β0 ≥ 0}]

≥E[FU |X′
0β0(t|X ′

0β0)1 {X ′
0β0 ≥ 0}] (26)

≥MF ∥X0∥(λt).

In other words,

∀λ > 0, lim
t→∞

F ∥X0∥(λt)
F Y0(t)

= 0. (27)

If sup Supp(X ′
0q) < ∞, (26) together with Supp(U) = R implies that sup Supp(Y0) =

∞ and thus F−1
∥X0∥(α) = o(F−1

Y0 (α)). Now, if sup Supp(∥X0∥) = ∞, F−1
∥X0∥(α) → ∞ as

α → 1. Thus,

∀λ > 0, lim
α→1

F ∥X0∥(F−1
∥X0∥(α))

F Y0(λF−1
∥X0∥(α))

= 0.

Now, remark that by continuity of FY0 , F ∥X0∥(F−1
∥X0∥(α)) ≤ 1 − α = F Y0(F−1

Y0 (α)).
Therefore,

∀λ > 0, lim
α→1

F Y0(F−1
Y0 (α))

F Y0(λF−1
∥X0∥(α))

= 0.

Since F Y0 is decreasing, this implies that there exists α0(λ) such that, for all α ≥
α0(λ),

F−1
Y0 (α) > λF−1

∥X0∥(α).

Because λ was arbitrary, this proves F−1
∥X0∥(α) = o(F−1

Y0 (α)). Then, by integration, we
obtain, as α → 1,

R(α, FY0 , F∥X0∥) → ∞.

The exact same reasoning shows that as α → 0, R(α, FY0 , F∥X0∥) → ∞. Now,
let us define M := supq∈S S1/4(FY0 , FX′

0q
). We proved in Point 1 above that q 7→

S1/4(FY0 , FX′
0q

) is continuous, implying that M < ∞. Then, by what precedes, there
exists ε0 ∈ (0, 1/4) such that

inf
α∈(0,ε0)∪(1−ε0,1)

R(α, FY0 , F∥X0∥) > M.

Moreover, by the Cauchy-Schwarz inequality, R(α, FY0 , FX′
0q

) ≥ R(α, FY0 , F∥X0∥). As
a result,

inf
q∈S

inf
α∈(0,ε0)∪(1−ε0,1)

R(α, FY0 , FX′
0q

) > M.
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By definition, for all q ∈ S, Sε0(FY0 , FX′
0q

) ≤ S1/4(FY0 , FX′
0q

) ≤ M . Then,

S(FY0 , FX′
0q

) = min
(

inf
α∈(0,ε0)∪(1−ε0,1)

R(α, FY0 , FX′
0q

), Sε0(FY0 , FX′
0q

)
)
,

= Sε0(FY0 , FX′
0q

).

This proves that B = Bε0 .

E.9 Proposition 7

In both cases, it suffices to prove the result for ε small enough.

Proof of Point 1

The proof proceeds in two steps. First, we obtain an upper bound Sε(FY0 , FX′
0β0) −

S(FY0 , FX′
0β0). Then, we obtain the bound on dH(B,Bε).

Step 1: upper bound on Sε(FY0 , FX′
0β0) − S(FY0 , FX′

0β0).

First, observe that R(·, FY0 , FX′
0β0) is differentiable and

Sε(FY0 , FX′
0β0) − S(FY0 , FX′

0β0)

≤ max
(
R(ε, FY0 , FX′

0β0) − inf
α∈[0,ε)

R(α, FY0 , FX′
0β0),

R(1 − ε, FY0 , FX′
0β0) − inf

α∈[1−ε,1)
R(α, FY0 , FX′

0β0)
)

≤
∫

[0,ε]∪[1−ε,1]

∣∣∣∣∣∂R∂α (α, FY0 , FX′
0β0)

∣∣∣∣∣ dα. (28)

Now, F−1
X′

0β0
(α0) > 0 for some α0 < 1. Then, for α ≥ α0,∣∣∣∣∣∂R∂α (α, FY0 , FX′

0β0)
∣∣∣∣∣ = 1∫ 1

α F
−1
X′

0β0
(t)dt

∣∣∣−F−1
Y0 (α) +R(α, FY0 , FX′

0β0)F−1
X′

0β0
(α)

∣∣∣
=

|F−1
X′

0β0
(α)|∫ 1

α F
−1
X′

0β0
(t)dt

∣∣∣∣∣∣R(α, FY0 , FX′
0β0) −

F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣
≤ 1

1 − α

∣∣∣∣∣∣R(α, FY0 , FX′
0β0) −

F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣ . (29)
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Let wα(t) = F−1
X′

0β0
(t)/

∫ 1
α F

−1
X′

0β0
(u)du. For t ≥ α0, wα(t) > 0. Then, for α ≥ α0,∣∣∣∣∣∣R(α, FY0 , FX′

0β0) −
F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

α
wα(t)

F−1
Y0 (t)

F−1
X′

0β0
(t)
dt−

F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣ (30)

=

∣∣∣∣∣∣
∫ 1

α
wα(t)

 F−1
Y0 (t)

F−1
X′

0β0
(t)

− 1
 dt−

 F−1
Y0 (α)

F−1
X′

0β0
(α)

− 1
∣∣∣∣∣∣

≤2 sup
t∈[α,1]

∣∣∣∣∣∣ F
−1
Y0 (α)

F−1
X′

0β0
(α)

− 1

∣∣∣∣∣∣
≲(1 − α)

1/c−1/d
1+1/d , (31)

where the last inequality follows from Lemma 2 in the supplementary material. Com-
bining (29) and (31), we obtain, for ε ≤ 1 − α0,∫ 1

1−ε

∣∣∣∣∣∂R∂α (α, FY0 , FX′
0β0)

∣∣∣∣∣ dα ≲ ε
1/c−1/d

1+1/d . (32)

Similarly, note that
∫ 1
α F

−1
X′

0β0
(t)dt = −

∫ α
0 F

−1
X′

0β0
(t)dt ≥ −αF−1

X′
0β0

(α) and F−1
X′

0β0
(α1) < 0

for some α1. Then, for α ≤ α1, we obtain, instead of (29),∣∣∣∣∣∂R∂α (α, FY0 , FX′
0β0)

∣∣∣∣∣ ≤ 1
α

∣∣∣∣∣∣R(α, FY0 , FX′
0β0) −

F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣ . (33)

The same reasoning as to get (31) but usingR(α, FY0 , FX′
0β0) =

∫ α
0 F

−1
Y0 (t)dt/

∫ α
0 F

−1
X′

0β0
(t)dt,

wα(t) = F−1
X′

0β0
(t)/

∫ α
0 F

−1
X′

0β0
(u)du and, again, Lemma 2 yields, for α ≤ α1,∣∣∣∣∣∣R(α, FY0 , FX′

0β0) −
F−1
Y0 (α)

F−1
X′

0β0
(α)

∣∣∣∣∣∣ ≲ α
1/c−1/d

1+1/d . (34)

Thus, for ε ≤ α1, ∫ ε

0

∣∣∣∣∣∂R∂α (α, FY0 , FX′
0β0)

∣∣∣∣∣ dα ≲ ε
1/c−1/d

1+1/d . (35)

Then, (28), (32) and (35) imply that for ε ≤ min(1 − α0, α1),

Sε(FY0 , FX′
0β0) − S(FY0 , FX′

0β0) ≲ ε
1/c−1/d

1+1/d . (36)

Step 2: upper bound on dH(B,Bε).

X has an elliptical distribution with nonsingular variance matrix Σ. As a result, for
all q ∈ S, there exists σ(q) such that X ′

0q
d= σ(q)X ′

0β0, with

σ(q)2 = q′Σq
β′

0Σβ0
≥ λΣ

β′
0Σβ0

,
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where λΣ > 0 denotes the smallest eigenvalue of Σ and the inequality can be reached.
Then,

dH(B,Bε) ≤ sup
q∈S

Sε(FY0 , FX′
0q

) − S(FY0 , FX′
0q

)

= sup
q∈S

Sε(FY , Fσ(q)X′
0β0) − S(FY , Fσ(q)X′

0β0)

=
[
Sε(FY0 , FX′

0β0) − S(FY0 , FX′
0β0)

]
sup
q∈S

[1/σ(q)]

=
[
β′

0Σβ0

λΣ

]1/2 [
Sε(FY0 , FX′

0β0) − S(FY0 , FX′
0β0)

]
≲ ε

1/c−1/d
1+1/d ,

where the first inequality uses the definition of the Hausdorff distance and B ⊂ Bε,
the first equality follows since X ′

0q
d= σ(q)X ′

0β0, the second equality uses the definition
of R, S and Sε and the last inequality is due to (36).

Proof of Point 2

First, our assumptions imply that, for α ≥ α0 (resp. α ≤ α1) and all q ∈ S,
F−1
X′

0q
(α) ≳ (1 − α)−1/c (resp. F−1

X′
0q

(α) ≳ α−1/c) and F−1
U (α) ≲ (1 − α)−1/d (resp.

F−1
U (α) ≲ α−1/d), hence using β0 = 0p,

∀α ≥ α0, sup
q∈S

F−1
Y0 (α)

F−1
X′

0q
(α)

≲ (1 − α)1/c−1/d, ∀α ≤ α1, sup
q∈S

F−1
Y0 (α)

F−1
X′

0q
(α)

≲ α1/c−1/d.

Now, remark that (28), (29), and (33) still hold with X ′
0β0 replaced by X ′

0q, q ∈ S.
Then, using (30), we obtain, instead of (31) and (34), for α ∈ (0, α0] ∪ [α1, 1),

sup
q∈S

∣∣∣∣∣∣R(α, FY0 , FX′
0q

) −
F−1
Y0 (α)

F−1
X′

0q
(α)

∣∣∣∣∣∣ ≤ 2 sup
q∈S

sup
t∈[α,1]

F−1
Y0 (t)

F−1
X′

0q
(t)

≲ (1 − α)1/c−1/d1 {α ≥ α0} + α1/c−1/d1 {α ≤ α1} .

As a result, for ε ≤ min(1 − α0, α1),

dH(B,Bε) ≤ sup
q∈S

Sε(FY0 , FX′
0q

) ≲ ε1/c−1/d,

where in the first inequality we used Sε(FY0 , FX′
0q

) − S(FY0 , FX′
0q

) ≤ Sε(FY0 , FX′
0q

).
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E.10 Theorem 2

Recall that F̂Y0(t) = 1
nY

∑nY
i=1 1

{
Yi − Y ≤ t

}
and F̂X′

0q
(t) is defined similarly. The

proof proceeds in two steps. We first prove that for all q ∈ S, Sε(F̂Y0 , F̂X′
0q

) P−→
Sε(FY0 , FX′

0q
). Then, we show that dH(B̂ε,Bε) P−→ 0.

Step 1: Sε(F̂Y0 , F̂X′
0q

) P−→ Sε(FY0 , FX′
0q

), for all q ∈ S.

The idea is to apply the continuous mapping theorem, with the metric

d((F,G), (F ′, G′)) = W1(F, F ′) +W1(G,G′),

where we recall that W1 is the 1-Wasserstein distance. To this end, we first show
that (F̂Y0 , F̂X′

0q
) converges to (FY0 , FX′

0q
) for this metric. It suffices to prove that

W1(F̂Y0 , FY0) P−→ 0, the proof being similar for X ′
0q. Remark that F̂Y0(t) = F̂Y (t+Y )

and FY0(y) = FY (y + E(Y )). Then,

W1(F̂Y0 , FY0) =
∫ ∞

−∞
|F̂Y (t+ Y ) − FY (t+ Y ) + FY (t+ Y ) − FY (t+ E(Y ))|dt

≤W1(F̂Y , FY ) +
∫ ∞

−∞
|FY (t+ Y ) − FY (t+ E(Y ))|dt

=W1(F̂Y , FY ) + |Y − E(Y )|,

where the first equality follows by (24) and the last equality by Fubini’s theorem.
Because E[|Y |] < ∞, we have, by the law of large numbers |Y − E(Y )| P−→ 0 and
also (see (1.3) in Del Barrio et al., 1999) W1(F̂Y , FY ) P−→ 0.

Thus, the first step follows if we prove that Sε is continuous for the metric d. First,
by Lemma 3, R is continuous with respect to the metric d′ on [ε, 1 − ε] × D2, where
D denote the set of cdfs with mean 0 and d′ is defined by

d′((α, F,G), (α′, F ′, G′)) = |α′ − α| +W1(F, F ′) +W1(G,G′). (37)

Now, because the product topology is induced by d′, R is continuous on the product
[ε, 1 − ε] × D2. Since [ε, 1 − ε] is compact, it follows from Berge maximum theorem
(see, e.g., Theorem 9.14 in Sundaram, 1996) that Sε is also continuous with respect
to the metric d. The result follows.
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Step 2: Convergence of the set B̂ε.

We showed in the proof of Proposition 6 that Sε(FY0 , FX′
0q

) > 0 for all q ∈ S. Then,
let pε(q) = 1/Sε(FY0 , FX′

0q
) and p̂ε(q) = 1/Sε(F̂Y0 , F̂X′

0q
). By the continuous mapping

theorem, for all q ∈ S, p̂ε(q) P−→ pε(q). Moreover,

p̂ε(q) = max
α∈[ε,1−ε]

1/R
(
α, F̂Y0 , F̂X′

0q

)
. (38)

Note that for any (FY , FX) and α ∈ [ε, 1 − ε], q 7→ 1/R(α, FY0 , FX′
0q

) is convex (see
the proof of Point 1 in Proposition 6). Then, (38) implies that p̂ε is also convex. As
a result, by the convexity lemma of Pollard (1991),

sup
q∈S

|p̂ε(q) − pε(q)| P−→ 0. (39)

By construction, p̂ε (resp. pε) is the gauge function of the set B̂ε (resp. Bε). The
gauge function of a nonempty, compact and convex set H containing the origin is
defined as the support function of its polar set (see, e.g., Corollary 3.2.5 p.149 in
Hiriart-Urruty and Lemaréchal, 2012). Thus, using Theorem 3.3.6 p.155 in Hiriart-
Urruty and Lemaréchal (2012) and denoting respectively by B̂◦

ε and B◦
ε the polar sets

of B̂ε and Bε, we obtain

dH
(
B̂◦
ε ,B◦

ε

)
= sup

q∈S
|p̂ε(q) − pε(q)| .

Thus, by (39), dH
(
B̂◦
ε ,B◦

ε

) P−→ 0. The result follows because convergence of polar
sets for the Hausdorff distance implies convergence of the sets themselves for the same
distance, see Theorem 7.2 in Wijsman (1966).

E.11 Theorem 3

1. Asymptotic validity of the confidence region

Let us define ι(G) = infα∈[ε,1−ε] G(α). By definition,

Sε(F̂Y0 , F̂X′
0q

) = ι
[
R(·, F̂Y0 , F̂X′

0q
)
]
.

Moreover, by Theorem 2.1 of Cárcamo et al. (2020), ι is Hadamard directionally differ-
entiable. Then, by Lemma 4 in the supplementary material and the functional delta
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method for Hadamard directionally differentiable functions (see, e.g., Proposition 2.1
in Cárcamo et al., 2020), we have

n1/2
(
Sε(F̂Y0 , F̂X′

0q
) − Sε(FY0 , FX′

0q
)
)

d−→ ι′R(·,FY0 ,FX′
0q)(F), (40)

where, in view of Corollary 2.3 in Cárcamo et al. (2020), ι′f (h) = inf{h(x) : x ∈
argminα∈[ε,1−ε]f(α)} for any continuous functions f and h.

Now, let us show that ĉα,ε P−→ cα,ε. Denote by H the cdf of ι′R(·,FY0 ,FX′
0q)(F). Note that

−ι′R(·,FY0 ,FX′
0q) is convex. Then, by Theorem 11.1 in Davydov et al. (1998), its cdf H

is continuous and strictly increasing in a neighborhood of every point of its support
except perhaps at r := inf{r ∈ R : H(r) > 0}. By Problem 11.3 in Davydov et al.
(1998), we also have that H(r) > 0 for any r ∈ R. Thus, H is continuous and strictly
increasing on R. Since −cα,ε is the quantile of order 1 − α of −ι′R(·,FY0 ,FX′

0q)(F) and

using (40), it follows from Theorem 2.2.1 in Politis et al. (1999) that ĉα,ε P−→ cα,ε.

Finally, fix β ∈ Bε, so that β = λq with λ ∈ [0, Sε(FY0 , FX′
0q

)]. By definition, β ∈
CR1−α(β0) if and only if

n1/2
(
Sε(F̂Y0 , F̂X′

0q
) − λ

)
− ĉα,ε ≥ 0. (41)

Suppose first that λ < Sε(FY0 , FX′
0q

). Since Sε(F̂Y0 , F̂X′
0q

) is consistent for Sε(FY0 , FX′
0q

)
and ĉα,ε = OP (1), (41) holds with probability approaching one and lim infn→∞ P (β ∈
CR1−α(β0)) = 1. Now, suppose that λ = Sε(FY0 , FX′

0q
). Then, by what precedes,

n1/2
(
Sε(F̂Y0 , F̂X′

0q
) − λ

)
− ĉα,ε

d−→ ι′R(·,FY0 ,FX′
0q)(F) − cα,ε.

Moreover, by continuity of the cdf of ι′R(·,FY0 ,FX′
0q)(F) at cα,ε,

P (ι′R(·,FY0 ,FX′
0q)(F) − cα,ε ≥ 0) = 1 − α.

Thus, lim infn→∞ P (β ∈ CR1−α(β0)) = 1−α. Equation (16) follows since β ∈ Bε ⊂ B.

Now, suppose that Assumption 5 holds and let us prove that (16) is still true if ε
is replaced by ε(q) (if p = 1) or ε (if p > 1). We can focus on β ∈ ∂Bε, β =
Sε(FY0 , FX′

0q
)q. If Sε(FY0 , FX′

0q
) > S(FY0 , FX′

0q
) for all ε ∈ E , we get, for ε′ = ε(q) or

ε′ = ε,

Sε′(F̂Y0 , F̂X′
0q

) ≥ min
ε∈E

Sε(F̂Y0 , F̂X′
0q

) P−→ min
ε∈E

Sε(FY0 , FX′
0q

) > S(FY0 , FX′
0q

),
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where the convergence holds by the convergence in probability of Sε(F̂Y0 , F̂X′
0q

) for
any ε ∈ E and the continuous mapping theorem. Equation (16) follows. Suppose
instead that a 7→ R(a, FY0 , FX′

0q
) admits a unique minimizer a0 on (0, 1). Up to

replacing a0 by 1 − a0, we can suppose without loss of generality that a0 ≤ 0.5. Let
E = {ε1, ..., εJ}, with ε1 < ... < εJ < 1/2. Reasoning as above, we have

√
n


Sε1(F̂Y0 , F̂X′

0q
) − Sε1(FY0 , FX′

0q
)

...
SεJ

(F̂Y0 , F̂X′
0q

) − SεJ
(FY0 , FX′

0q
)

 d−→


ι′ε1,R(·,FY0 ,FX′

0q)(F)
...

ι′εJ ,R(·,FY0 ,FX′
0q)(F)

 ,

where, compared to (40), we let the dependence of ι′ on ε explicit. If ε1 > a0, then for
any ε ∈ E , Sε(FY0 , FX′

0q
) > S(FY0 , FX′

0q
), and the reasoning above applies. Otherwise,

let εj0 = max{ε ∈ E : ε ≤ a0} (where we simply let εJ+1 = 1 if j0 = J). Then,
with probability approaching one, ε(q) ∈ {ε1, ..., εj0}. Moreover, the expression of
ι′ε,R(·,FY0 ,FX′

0q) and that a 7→ R(a, FY0 , FX′
0q

) admits a unique minimizer a0 imply that
ι′ε1,R(·,FY0 ,FX′

0q)(F) = · · · = ι′εj0 ,R(·,FY0 ,FX′
0q)(F) = F(a0). As a result,

(
ĉα,ε1 , ..., ĉα,εj0

) P−→ (cα, ..., cα) ,

where cα is the quantile of order α of F(a0). Combining these results yield, for all
j ∈ {2, ..., j0},

Sεj
(F̂Y0 , F̂X′

0q
) − ĉα,εj

n−1/2 = Sε1(F̂Y0 , F̂X′
0q

) − ĉα,ε1n
−1/2 + oP (n−1/2).

In turn, this implies that

Sε(q)(F̂Y0 , F̂X′
0q

) − ĉα,ε(q)n
−1/2 = Sε1(F̂Y0 , F̂X′

0q
) − ĉα,ε1n

−1/2 + oP (n−1/2),

which ensures that using ε(q) leads to asymptotically correct coverage in this case.
Finally, remark that by definition of ε(q) (and letting the dependence of the confidence
region on ε explicit),

P
(
S(FY0 , FX′

0q
)q ∈ CRε

1−α(β0)
)

≥ P
(
S(FY0 , FX′

0q
)q ∈ CRε(q)

1−α(β0)
)
,

which ensures the validity of using ε instead of a fixed ε.
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2. Asymptotic validity of the confidence interval

Let βk ∈ Bk. First assume that βk ≤ 0. Because 0 ∈ CI1−α(β0,k), βk ̸∈ CI1−α(β0,k)
only if

βk < −σε(−ek, F̂Y0 , F̂X0) + n−1/2c̃α,ε(−ek).

In turn, this event implies that En holds, with

En :=
{
n1/2

(
−σε(−ek, F̂Y0 , F̂X0) + σ(−ek, FY0 , FX0)

)
> −c̃α,ε(−ek)

}
. (42)

Hence, supβk∈Bk∩R− P (βk ̸∈ CI1−α(β0,k)) ≤ P (En). Reasoning similarly for βk ≥ 0,
we obtain

sup
βk∈Bk

P (βk ̸∈ CI1−α(β0,k)) ≤ max
[
P (En) , P

(
En

)]
,

where we let En :=
{
n1/2

(
σε(ek, F̂Y0 , F̂X0) − σ(ek, FY0 , FX0)

)
< c̃α,ε(ek)

}
. As the rea-

soning is similar for En and En, it suffices to prove that lim supn→∞ P (En) ≤ α, with
equality if σ(−ek, FY0 , FX0) = σε(−ek, FY0 , FX0). To this end, first remark that

σε(−ek, FY0 , FX0) = sup
q∈S

inf
α∈[ε,1−ε]

[
R(α, FY0 , FX′

0q
)q
]′

(−ek).

Let us define κ(f) := supq∈S infα∈[ε,1−ε] f(q, α) andG(q, α) := [R(α, FY0 , FX′
0q

)q]′(−ek).
By Lemma B.1 in Firpo et al. (2023), κ is Hadamard directionally differentiable.
Moreover, by Lemma 4 in the supplementary material, the process (q, α) 7→ [Fn(q, α)q]′

(−ek) converges weakly to a Gaussian process (F̃, say). Then, as above,

n1/2
(
σε(−ek, F̂Y0 , F̂X0) − σε(−ek, FY0 , FX0)

)
d−→ κ′

G(F̃), (43)

where the expression of κ′ is given by (3.10) in Firpo et al. (2023).

Now, suppose that (i) in Assumption 4 holds: σε(−ek, FY0 , FX0) > σ(−ek, FY0 , FX0).
By, e.g., Theorem 2.2.1 in Politis et al. (1999), the subsampling counterpart of (43)
holds. This implies that c̃α,ε(−ek) = OP (1). Combined with (42) and (43), this
implies that P (En) → 0.

Next, suppose that (ii) in Assumption 4 holds. Then, in view of (3.10) in Firpo et al.
(2023) and since G and F̃ are continuous, κ′

G(F̃) = minα∈[ε,1−ε] F̃(q̃, α), where q̃ is
the only q ∈ S such that infα∈[ε,1−ε] G(q̃, α) = κ(G). Because F̃(q̃, ·) is Gaussian, the
same reasoning as in Point 2 above applies, and c̃α,ε(−ek) P−→ csα,ε(−ek), the quantile
of order α of κ′

G(F̃). Then, P (En) → α.
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Finally, suppose (iii) in Assumption 4 holds. We then obtain, still using (3.10) in
Firpo et al. (2023),

κ′
G(F̃) = max

qm∈arg maxq∈S [qSε(FY0 ,FX′
0q)]′(−ek)

F̃(qm, aε(qm)), (44)

where for each qm ∈ arg maxq∈S [qSε(FY0 , FX′
0q

)]′(−ek), aε(qm) is the only a ∈ (ε, 1−ε)
such that R(aε(qm), FY , FX′qm) = infα∈[ε,1−ε] R(α, FY , FX′qm). Because F̃(·, aε(·)) is
Gaussian, the same reasoning as above applies once more and again, P (En) → α.

To conclude the proof, we show the validity of using ε(e) instead of a fixed ε under
Assumption 6. We do this by proving that we still have lim supn→∞ P (Eε(e)

n ) ≤ α,
now indexing En by ε to avoid any ambiguity. If (i) of Assumption 6 holds for all
ε ∈ E , we have, by what precedes,

P (Eε(e)
n ) ≤ P (∪ε∈EE

ε
n) ≤

∑
ε∈E

P (Eε
n) → 0. (45)

Otherwise, (ii) in Assumption 6 holds. Let εj0 be as in Assumption 6 and let us first
show that for all j ∈ {1, · · · , j0}, Qj = Qj0 , with Qj := arg maxq∈S [Sεj

(FY0 , FX′
0q

)q]′(−ek).
First, for all qm ∈ Qj and using that q′

m(−ek) ≥ 0,

[Sεj0
(FY0 , FX′

0qm)qm]′(−ek) ≥ [Sεj
(FY0 , FX′

0qm)qm]′(−ek)

= σεj
(−ek, FY0 , FX0)

= σεj0
(−ek, FY0 , FX0).

Thus, qm ∈ Qj0 and Qj ⊂ Qj0 . Conversely, for any qm ∈ Qj0 , by assumption,

Sεj
(FY0 , FX′

0qm) = min
a∈[εj ,1−εj ]

R(a, FY0 , FX′
0qm)

= R(a(qm), FY0 , FX′
0qm)

= Sεj0
(FY0 , FX′

0qm).

As a result,

[Sεj
(FY0 , FX′

0qm)qm]′(−ek) = [Sεj0
(FY0 , FX′

0qm)qm]′(−ek)

= σεj0
(−ek, FY0 , FX0)

= σεj
(−ek, FY0 , FX0),

29



implying that qm ∈ Qj. Thus, Qj0 ⊂ Qj and then Qj0 = Qj. Now, by (44) but
making the dependence on ε explicit, we have, for all j ≤ j0,

κ′
εj ,G

(F̃) = max
qm∈Qj

F̃(qm, aεj
(qm)).

Hence, κ′
ε1,G(F̃) = · · · = κ′

εj0 ,G
(F̃). Reasoning as in Point 2 above, we obtain P (Eεj

n ) =
P (Eε1

n ) + o(1). Then,

P (Eε(e)
n ) =

J∑
j=1

P (Eεj
n , ε(e) = εj)

=
j0∑
j=1

P (Eεj
n , ε(e) = εj) + o(1)

=
j0∑
j=1

P (Eε1
n , ε(e) = εj) + o(1)

≤ P (Eε1
n ) + o(1),

where the second equality holds since when ε(e) > εj0 , σε(e)(−ek, FY0 , FX0) > σ(−ek,
FY0 , FX0) and we can apply the same reasoning leading to (45). The result follows
since by what precedes, lim infn→∞ P (Eε1

n ) ≤ α.
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Supplementary material
(not for publication)

1. Complements on the proof of Proposition 7

Lemma 1. For any random variables U1 and U2, α ∈ (0, 1) and β ∈ (0, 1 − α), we
have:

F−1
U1+U2(α) ≤ F−1

U1 (α + β) + F−1
U2 (1 − β). (46)

Proof: Fix α ∈ (0, 1) and β ∈ (0, 1 − α). We have

P (U1 + U2 ≤ F−1
U1 (α + β) + F−1

U2 (1 − β))

≥ P (U1 ≤ F−1
U1 (α + β), U2 ≤ F−1

U2 (1 − β))

≥ P (U1 ≤ F−1
U1 (α + β)) + P (U2 ≤ F−1

U2 (1 − β)) − 1

≥ α.

Equation (46) follows by definition of quantiles.

We now establish an upper bound on |F−1
Y0 (α)/F−1

X′
0β0

(α) − 1| for α or 1 − α small:

Lemma 2. Under the assumptions of Proposition 7.1 and with α0 and α1 as in the
proof of Proposition 7, we have:

∀α ≥ α0,

∣∣∣∣∣∣ F
−1
Y0 (α)

F−1
X′

0β0
(α)

− 1

∣∣∣∣∣∣ ≲ (1 − α)
1/c−1/d

1+1/d , ∀α ≤ α1,

∣∣∣∣∣∣ F
−1
Y0 (α)

F−1
X′

0β0
(α)

− 1

∣∣∣∣∣∣ ≲ α
1/c−1/d

1+1/d .

Proof: we focus hereafter on the case α ≥ α0; the other case can be treated similarly.
Fix γ > 1 and note that by Lemma 1, we have

F−1
Y0 (α) ≤ F−1

X′
0β0

(α + (1 − α)γ) + F−1
U (1 − (1 − α)γ).

Moreover, since X ′
0β0 = Y0 − U ,

F−1
X′

0β0
(α− (1 − α)γ) ≤ F−1

Y0 (α) + F−1
−U(1 − (1 − α)γ).

Thus,

F−1
X′

0β0
(α− (1 − α)γ) − F−1

X′
0β0

(α)
F−1
X′

0β0
(α)

− F−1
−U(1 − (1 − α)γ)

F−1
X′

0β0
(α)

1



≤
F−1
Y0 (α)

F−1
X′

0β0
(α)

− 1 ≤
F−1
X′

0β0
(α + (1 − α)γ) − F−1

X′
0β0

(α)
F−1
X′

0β0
(α)

+ F−1
U (1 − (1 − α)γ)

F−1
X′

0β0
(α)

. (47)

Now, the tail conditions imply that F−1
X′

0β0
(α) ≳ (1−α)−1/c and F−1

U (α) ≲ (1−α)−1/d.
As a result, we get, for some h(α) ∈ (0, (1 − α)γ),

F−1
Y0 (α)

F−1
X′

0β0
(α)

− 1 ≤ (1 − α)γ

fX′β0(F−1
X′

0β0
(α + h(α))) F−1

X′
0β0

(α)
+ F−1

U (1 − (1 − α)γ)
F−1
X′

0β0
(α)

≲ (1 − α)γ(1 − α− h(α))−1−1/c(1 − α)1/c + (1 − α)1/c(1 − α)−γ/d

≲ (1 − α)γ−1 + (1 − α)1/c−γ/d.

Choosing γ = (1 + 1/c)/(1 + 1/d) yields

F−1
Y0 (α)

F−1
X′

0β0
(α)

− 1 ≲ (1 − α)
1/c−1/d

1+1/d .

The exact same reasoning with the lower bound in (47) finally yields the result.

2. Complements on the proof of Theorem 2

Lemma 3. R is continuous for the metric d′ defined by (37).

Proof: First, remark that for all a, a′, b, b′ > 0, we have∣∣∣∣∣a′

b′ − a

b

∣∣∣∣∣ ≤ 1
b

[
|a′ − a| +

∣∣∣∣∣a′

b′ − a

b

∣∣∣∣∣ |b′ − b| + a

b
|b′ − b|

]
. (48)

Therefore, if |b′ − b| < b, ∣∣∣∣∣a′

b′ − a

b

∣∣∣∣∣ ≤ |a′ − a| + a/b |b′ − b|
b− |b′ − b|

.

Fix α ∈ [ε, 1 − ε], F and G and let G′ be such that W1(G,G′) < (1/4)
∫ 1
α G

−1(t)dt.
Let also α′ ∈ [ε, 1 − ε] be such that∣∣∣∣∣

∫ α′

α
G−1(t)dt

∣∣∣∣∣ < 1
2

∫ 1

α
G−1(t)dt.

Then,∫ 1

α
G−1(t)dt =

∫ α′

α
G−1(t)dt+

∫ 1

α′
G−1(t)dt < 1

2

∫ 1

α
G−1(t)dt+

∫ 1

α′
G−1(t)dt.

2



Thus,
∫ 1
α G

−1(t)dt < 2
∫ 1
α′ G−1(t)dt. Moreover, sinceW1(F, F ′) =

∫ 1
0 |F−1(t)−F ′−1(t)|dt,

we have ∣∣∣∣∫ 1

α′
G′−1(t) −G−1(t)dt

∣∣∣∣ ≤ W1(G,G′) < 1
2

∫ 1

α′
G−1(t)dt.

Let cF = |F−1(ε)| ∨ |F−1(1 − ε)| and define cG similarly. Then, using (48), we get

|R(α′, F,G) −R(α, F,G)| ≤

∣∣∣∫ α′

α F−1(t)dt
∣∣∣+R(α, F,G)

∣∣∣∫ α′

α G−1(t)dt
∣∣∣∫ 1

α G
−1(t)dt−

∣∣∣∫ α′

α G−1(t)dt
∣∣∣

≤ |α′ − α| (|F−1(α)| ∨ |F−1(α′)| +R(α, F,G)|G−1(α)| ∨ |G−1(α′)|)
1/2

∫ 1
α G

−1(t)dt

≤ 2|α′ − α| (cF +R(α, F,G)cG)∫ 1
α G

−1(t)dt
. (49)

Next, for any F ′, using again (48),

|R(α′, F ′, G′) −R(α′, F,G)| ≤

∣∣∣∫ 1
α′ F−1(t) − F ′−1(t)dt

∣∣∣+R(α′, F,G)
∣∣∣∫ 1
α′ G−1(t) −G′−1(t)dt

∣∣∣∫ 1
α′ G−1(t)dt−

∣∣∣∫ 1
α′ G′−1(t) −G−1(t)dt

∣∣∣
≤ W1(F, F ′) +R(α′, F,G)W1(G,G′)

1/4
∫ 1
α G

−1(t)dt

≤ 4∫ 1
α G

−1(t)dt

[
W1(F, F ′) +

(
2|α′ − α| (cF +R(α, F,G)cG)∫ 1

α G
−1(t)dt

+R(α, F,G)
)
W1(G,G′)

]
. (50)

The result follows by Inequalities (49) and (50) and the triangle inequality.

3. Complements on the proof of Theorem 3

Lemma 4. Fix ε ∈ (0, 1/2) and suppose that nX/(nX + nY ) → µ ∈ (0, 1) and
Assumptions 1-2 and 4 hold. Then, Fn, as a process indexed by (q, α) ∈ S × [ε, 1 − ε],
converges weakly to a Gaussian process F. The same holds but for Fn indexed by
α ∈ [ε, 1 − ε] only if Assumption 4 is replaced by Assumption 3.

Proof: First, R(α, FY0 , FX′
0q

) = θ1(q, α)/θ2(q, α), where θ1(q, α) =
∫ 1
α F

−1
Y0 (t)dt,

θ2(q, α) =
∫ 1
α F

−1
X′

0q
(t)dt and we suppress the dependence of θ1 and θ2 in FY0 and

FX′
0q

for simplicity. Moreover, R(α, F̂Y0 , F̂X′
0q

) = θ̂1(q, α)/θ̂2(q, α) with θ̂1(q, α) =∫ 1
α F̂

−1
Y0 (t)dt and θ̂2(q, α) =

∫ 1
α F̂

−1
X′

0q
(t)dt. The map (U, V ) 7→ U/V , from ℓ∞(S ×

[ε, 1 − ε])2 to ℓ∞(S × [ε, 1 − ε]), is Hadamard differentiable at any (U, V ) such that
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inf(q,α)∈S×[ε,1−ε] V (q, α) > 0. Now, θ2(·, α) is continuous (see the proof of Proposition
6). θ2(q, ·) is also continuous. Thus,

inf
(q,α)∈S×[ε,1−ε]

θ2(q, α) = min
(q,α)∈S×[ε,1−ε]

θ2(q, α) > 0.

Hence, by the functional delta method, Fn converges weakly as long as

n1/2
(
θ̂1(q, α) − θ1(q, α), θ̂2(q, α) − θ2(q, α)

)
converges weakly. By independence of the two samples, it suffices to show the weak
convergence of each component. We focus on the second hereafter, as the proof
is similar (and actually simpler) for the first. Also, it suffices to show the weak
convergence of n1/2

X

(
θ̂2(q, α) − θ2(q, α)

)
, as n/nX → 1 − µ by assumption.

Let us define

θ̃2(q, α) = 1
nX

nX∑
i=1

(
X ′
iq −X ′q

)
1
{
F̂X′q(X ′

iq) > α
}
.

Because FX′q is continuous, almost surely there are no ties and θ̂2(q, α) = θ̃2(q, α) for
all α ∈ {0/nX , ..., (nX − 1)/nX}. Elsewhere, if α = [ti+ (1 − t)(i+ 1)]/nX , t ∈ (0, 1),
we have θ̂2(q, α) = tθ̃2(q, i/nX) + (1 − t)θ̃2(q, (i+ 1)/nX). As a result,

n
1/2
X sup

α∈[ε,1−ε]

∣∣∣θ̂2(q, α) − θ̃2(q, α)
∣∣∣ ≤

supi=⌊nε⌋,...,⌈n(1−ε)⌉

∣∣∣(X ′q)(i) −X ′q
∣∣∣

n
1/2
X

≤

∣∣∣(X ′q)(n) − (X ′q)(1)

∣∣∣
n

1/2
X

P−→0,

where the convergence follows by, e.g., Problem 2.3.4 in Van der Vaart and Wellner
(1996). Hence, it suffices to show the weak convergence of n1/2

X (θ̃2(q, α) − θ2(q, α)).
By, e.g. Lemma 21.1 in Van der Vaart (2000),

θ2(q, α) = E [(X ′q − E(X ′q))1 {FX′q(X ′q) ≥ α}] .

As a result,
n

1/2
X

(
θ̃2(q, α) − θ2(q, α)

)
= GnX

gq,α +RnX
(q, α),
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where GnX
denotes the empirical process associated to (X1, ..., XnX

) and

gq,α(x) =
[
F−1
X′q(α) − E(X ′q)

]
1 {FX′q(x′q) ≤ α} − (1 − α)x′q

+ (x′q − E(X ′q))1 {FX′q(x′q) > α} ,

RnX
(q, α) = 1

n
1/2
X

nX∑
i=1

{(
X ′
iq −X ′q

) [
1 {FX′q(X ′

iq) ≤ α} − 1
{
F̂X′q(X ′

iq) ≤ α
}]

−
[
F−1
X′q(α) − E(X ′q)

]
(1 {FX′q(X ′

iq) ≤ α} − α)
}

+
n

1/2
X

(
X ′q − E(X ′q)

)
nX

nX∑
i=1

(1 {FX′q(X ′
iq) ≤ α} − α) .

We first prove that the class G = {gq,α : (q, α) ∈ S × [ε, 1 − ε]} is Donsker. The class
I0 = {x 7→ 1 {x′q ≤ u} : (q, u) ∈ S × R} is Donsker by Problem 2.6.14 and Theorem
2.6.8 in Van der Vaart and Wellner (1996). Then, I1 = {x 7→ 1 {FX′q(x′q) ≤ α} :
(q, α) ∈ S ×[ε, 1−ε]} ⊂ I0 is also Donsker (see, e.g., Theorem 2.10.1 in Van der Vaart
and Wellner, 1996). Similarly, I2 = {x 7→ 1 {FX′q(x′q) > α} : (q, α) ∈ S ×[ε, 1−ε]} is
Donsker. I2 also has a finite integral entropy and an envelope of 1. Since {x 7→ x′q :
q ∈ S} also has a finite integral entropy with envelope x 7→ ∥x∥, and E[∥X∥2] < ∞,
the class I3 = {x 7→ (x′q)1 {FX′q(x′q) > α} : (q, α) ∈ S × [ε, 1 − ε]} is also Donsker
(see Example 19.19 in Van der Vaart, 2000). Because {x 7→ (1 − α)x′q : (q, α) ∈
S × [ε, 1−ε]} is also Donsker and sums of Donsker classes are also Donsker, we finally
get that G is Donsker.

Next, we consider the remainder term RnX
(q, α). Let Ii(q, α) = 1 {FX′q(X ′

iq) ≤ α}
and Îi(q, α) = 1

{
F̂X′q(X ′

iq) ≤ α
}
. We have RnX

(q, α) = R1nX
+R2nX

+R3nX
, with

R1nX
(q, α) = 1

n
1/2
X

nX∑
i=1

(Ii(q, α) − Îi(q, α))
[(
X ′
iq −X ′q

)
−
(
F−1
X′q(α) − E(X ′q)

)]
,

R2nX
(q, α) =

(
F−1
X′q(α) − E(X ′q)

)
n

1/2
X

nX∑
i=1

[
α− Îi(q, α)

]
,

R3nX
(q, α) =

n
1/2
X

(
X ′q − E(X ′q)

)
nX

nX∑
i=1

(Ii(q, α) − α) .

We now prove that for all k ∈ {1, 2, 3},

sup
(q,α)∈S×[ε,1−ε]

RknX
(q, α) = oP (1). (51)
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Consider R2nX
first. By definition of the empirical cdf., we have, for all (q, α),∣∣∣∣∣

nX∑
i=1

(
Îi(q, α) − α

)∣∣∣∣∣ = ⌈nXα⌉ − nXα < 1. (52)

As a result,

sup
(q,α)∈S×[ε,1−ε]

|R2nX
(q, α)| ≤

F−1
∥X∥(1 − ε) + E(∥X∥)

n
1/2
X

× sup
(q,α)∈S×[ε,1−ε]

∣∣∣∣∣
nX∑
i=1

(
Îi(q, α) − α

)∣∣∣∣∣
≤
F−1

∥X∥(1 − ε) + E(∥X∥)
n

1/2
X

,

where the first inequality follows from the triangle and Cauchy-Schwarz inequalities
and |F−1

X′q(ε)| ∨ |F−1
X′q(1 − ε)| ≤ F−1

∥X∥(1 − ε). Hence, (51) holds for k = 2.

Next, consider R3nX
. We have

sup
(q,α)∈S×[ε,1−ε]

|R3nX
(q, α)| ≤ n

1/2
X ∥X − E(X)∥ × sup

(q,α)∈S×[ε,1−ε]

∣∣∣∣∣ 1
nX

nX∑
i=1

(Ii(q, α) − α)
∣∣∣∣∣ .

The first term is an OP (1). Recall that the class I1 is Donsker; hence it is also
Glivenko-Cantelli. Therefore, the second term is an oP (1). Therefore, (51) holds for
k = 3.

Finally, consider R1nX
. We first decompose it further into R11nX

+R12nX
, with

R11nX
(q, α) = −n1/2

X (X ′q − E(X ′q))
nX

nX∑
i=1

[Ii(q, α) − Îi(q, α)],

R12nX
(q, α) = 1

n
1/2
X

nX∑
i=1

(Ii(q, α) − Îi(q, α))
(
X ′
iq − F−1

X′q(α)
)
.

That R11nX
is uniformly negligible follows by writing Ii(q, α) − Îi(q, α) = Ii(q, α) −

α + α − Îi(q, α), reasoning as for R3nX
and using (52). For R12nX

, remark that by
definition of Ii(q, α) and continuity of X ′

iq, Ii(q, α) = 1
{
X ′
iq ≤ F−1

X′q(α)
}
. Similarly,

but accounting for the discontinuity of F̂X′q, we have

Îi(q, α) =

∣∣∣∣∣∣∣
1
{
X ′
iq < F̂−1

X′q(α)
}

if nXα ̸∈ N,

1
{
X ′
iq ≤ F̂−1

X′q(α)
}

otherwise.

As a result,
nX∑
i=1

∣∣∣Ii(q, α) − Îi(q, α)
∣∣∣ =

(
21
{
F−1
X′q(α) ≥ F̂−1

X′q(α)
}

− 1
)(nX∑

i=1
Ii(q, α) − Îi(q, α)

)
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=
∣∣∣∣∣
nX∑
i=1

Ii(q, α) − Îi(q, α)
∣∣∣∣∣ .

Moreover, |Ii(q, α) − Îi(q, α)| = 1 only if X ′
iq ∈ J , the interval [F̂−1

X′q(α), F−1
X′q(α)] if

F̂−1
X′q(α) < F−1

X′q(α) and [F−1
X′q(α), F̂−1

X′q(α)] otherwise. As a result,

|R12nX
| ≤ 1

n
1/2
X

nX∑
i=1

∣∣∣Ii(q, α) − Îi(q, α)
∣∣∣ ∣∣∣X ′

iq − F−1
X′q(α)

∣∣∣
≤
∣∣∣F̂−1
X′q(α) − F−1

X′q(α)
∣∣∣× ∣∣∣∣∣ 1

n
1/2
X

nX∑
i=1

(Ii(q, α) − Îi(q, α))
∣∣∣∣∣ . (53)

By (52) and the fact that I1 is a Donsker class,

sup
(q,α)∈S×[ε,1−ε]

∣∣∣∣∣ 1
n

1/2
X

nX∑
i=1

(Ii(q, α) − Îi(q, α))
∣∣∣∣∣ = OP (1).

Thus, the result holds as long as

sup
(q,α)∈S×[ε,1−ε]

∣∣∣F̂−1
X′q(α) − F−1

X′q(α)
∣∣∣ = oP (1). (54)

To prove this, note first that the class {x 7→ 1 {x′q ≤ α} : (q, α) ∈ S × [ε, 1 − ε]} is
Glivenko-Cantelli (as it is Donsker). Hence,

sup
(q,α)∈S×[ε,1−ε]

∣∣∣FX′q(α) − F̂X′q(α)
∣∣∣ = oP (1). (55)

Now, let Uq = FX′q(X ′q) and Uq,1 < ... < Uq,nX
denote the corresponding order statis-

tic. Remark that F̂−1
X′q(α) = F−1

X′q(Uq,⌈nXα⌉). Also, note that inf(q,α)∈S×[ε,1−ε] Uq,⌈nXα⌉ <

ε′ implies that for some q0 ∈ S, F̂X′q0(F−1
X′q0

(ε′)) ≥ ⌈nXα⌉/nX and thus

sup
(q,α)∈S×[ε,1−ε]

∣∣∣FX′q(α) − F̂X′q(α)
∣∣∣ > ε− ε′.

In view of (55), this occurs with probability approaching zero. The same is true for
the event sup(q,α)∈S×[ε,1−ε] Uq,⌈nXα⌉ > 1−ε′. Hence, with probability approaching one,

ε′ ≤ inf
(q,α)∈S×[ε,1−ε]

Uq,⌈nXα⌉ ≤ sup
(q,α)∈S×[ε,1−ε]

Uq,⌈nXα⌉ ≤ 1 − ε′. (56)

Moreover, under this event,∣∣∣F̂−1
X′q(α) − F−1

X′q(α)
∣∣∣ =

∣∣∣F−1
X′q(Uq,⌈nXα⌉) − F−1

X′q(α)
∣∣∣
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<m
(
|Uq,⌈nXα⌉ − α|

)
≤m

(
|FX′q((X ′q)⌈nXα⌉) − F̂X′q((X ′q)⌈nXα⌉)|

+
∣∣∣F̂X′q((X ′q)⌈nXα⌉) − α

∣∣∣)
<m

(
sup
q∈S

sup
t∈R

|FX′q(t) − F̂X′q(t)| + 1
nX

)
.

Using (55) and the continuity of m finally yields (54).

Finally, let us prove the weak convergence of Fn as a process indexed by α ∈ [ε, 1 − ε]
only, but under the weaker Assumption 3. It suffices to remark that all steps above
still hold, except (54). Now, given that q is fixed, we only need to establish the weaker

sup
α∈[ε,1−ε]

∣∣∣F̂−1
X′q(α) − F−1

X′q(α)
∣∣∣ = oP (1). (57)

Because F−1
X′q is continuous on [ε, 1 − ε] (as the inverse of FX′q is strictly increasing

on its support by Assumption 3), it is uniformly continuous on [ε, 1 − ε]. Now, note
that ∣∣∣F̂−1

X′q(α) − F−1
X′q(α)

∣∣∣ =
∣∣∣F−1
X′q(Uq,⌈nXα⌉) − F−1

X′q(α)
∣∣∣ .

Moreover, supα∈[ε,1−ε]

∣∣∣Uq,⌈nXα⌉ − α
∣∣∣ = oP (1). This implies that (57) holds.

4. Proof of Proposition 9

Our proof heavily draws on and use the same notation as in Theorem 3. It proceeds in
four steps. First, we show that h(β, α) := E

[
Xv01

{
FX′

v0β
(X ′

v0β) ≥ α
}]

is continuous.
Second, we prove that θ3(t, α) := θ2(tβ̂v + (1 − t)βv) (t ∈ [0, 1]) is differentiable as a
function of t ∈ (0, 1). Third, we show that

√
n
(
θ̂(β̂v, α) − θ(βv, α)

)
converges to a

Gaussian process. Finally, we prove the two points of the proposition.

Step 1: Continuity of h.

More precisely, we prove below that h is continuous at any (β1, α1) ∈ K×[ε, 1−ε], with
K convex compact including βv in its interior and such that {β1/∥β1∥ : β1 ∈ K} ⊂ V .
By the triangle inequality, for any (β1, α1) ∈ K× [ε, 1−ε] and (β2, α2) ∈ K× [ε, 1−ε],

∥h(β1, α1) − h(β2, α2)∥ ≤ ∥h(β1, α1) − h(β1, α2)∥ + ∥h(β1, α2) − h(β2, α2)∥. (58)
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Regarding the first term, and assuming without loss of generality that α1 ≤ α2, we
have

∥h(β1, α1) − h(β1, α2)∥ =
∥∥∥E [Xv01

{
α2 ≥ FX′

v0β1(X ′
v0β1) ≥ α1

}]∥∥∥
≤E

[
∥Xv0∥2

]1/2
(α2 − α1)1/2. (59)

Turning to the second term, we have

∥h(β1, α2) − h(β2, α2)∥ ≤E
[
∥Xv0∥2

]1/2 [
P
(
FX′

v0β1(X ′
v0β1) ≥ α2 > FX′

v0β2(X ′
v0β2)

)
+P

(
FX′

v0β2(X ′
v0β2) ≥ α2 > FX′

v0β1(X ′
v0β1)

)]1/2
.

As both probabilities are similar, we only consider the first one, P1 say. To simplify
notation, let δ = β2 − β1, Uk := X ′

v0βk, Fk := FX′
v0βk

(k = 1, 2) and Fδ := FX′
v0δ

. Fix
η ∈ (0, 1 − α2) and let δ be such that

∥δ∥ ≤ c∥β1∥η2

2(ηF−1
∥Xv0∥(1 − η/2) + E [∥Xv0∥])

, (60)

where c is defined in Assumption 7. Then, we have

P1 ≤ P (U1 ∈ [α2, α2 + η)) + P
(
U1 ≥ F−1

1 (α2 + η), U2 < F−1
2 (α2)

)
= η + P

(
U1 ≥ F−1

1 (α2 + η), X ′
v0δ < F−1

2 (α2) − F−1
1 (α2 + η)

)
≤ η + P

(
X ′
v0δ < F−1

1 (α2 + η/2) + F−1
δ (1 − η/2) − F−1

1 (α2 + η)
)

≤ η + P
(
X ′
v0δ < −c∥β1∥η/2 + F−1

∥Xv0∥(1 − η/2)∥δ∥
)

≤ η + P
(
∥Xv0∥ > c∥β1∥η/(2∥δ∥) − F−1

∥Xv0∥(1 − η/2)
)

≤ η + E [∥Xv0∥]
c∥β1∥η/(2∥δ∥) − F−1

∥Xv0∥(1 − η/2)

≤ 2η. (61)

The second inequality follows from Lemma 1. The third uses Fδ(x) ≤ F∥Xv0∥(x/∥δ∥),
which implies F−1

δ (1−η/2) ≤ F−1
∥Xv0∥(1−η/2)∥δ∥, and F−1

1 (y)−F−1
1 (x) > c∥β1∥(y−x)

for y > x, which follows from Assumption 7 and β1/∥β1∥ ∈ V . The fourth inequality
follows from the Cauchy-Schwarz inequality, and the fifth uses Markov’s inequality
and the fact that by (60), c∥β1∥η/(2∥δ∥) − F−1

∥Xv0∥(1 − η/2) > 0. The last inequality
follows from (60). By combining (58), (59) and (61), we obtain that h is continuous.
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Step 2: Differentiability of t 7→ θ3(t, α) on (0, 1).

Specifically, we prove the result with probability approaching one. We show it by
applying the envelope theorem in Milgrom and Segal (2002). To this end, first remark
that by Proposition 3 in Horowitz and Manski (1995),

θ2(β, α) = max
FXv0,W :W∼Be(1−α)

E[(X ′
v0β)W ],

where Be denotes Bernoulli distributions. As a result,

θ3(t, α) = max
FXv0,W :W∼Be(1−α)

∫
x′(tβ̂v + (1 − t)βv)wdFXv0,W (x,w).

By the dominated convergence theorem, the function t 7→ fα(t, FXv0,W ) :=
∫
x′(tβ̂v +

(1 − t)βv)wdFXv0,W (x,w) is differentiable and

∂fα
∂t

(t, FXv0,W ) =
[∫

xwdFXv0,W (x,w)
]′

(β̂v − βv).

Since t 7→ ∂fα/∂t(t, FXv0,W ) is constant, the family {∂fα/∂t(·, FXv0,W ) : W ∼ Be(1 −
α)} is equicontinuous and thus the family of functions {fα(·, FXv0,W ) : W ∼ Be(1−α)}
is equidifferentiable at any t ∈ (0, 1) (see Milgrom and Segal, 2002, p.587). Moreover,
by the Cauchy-Schwarz inequality,

sup
FXv0,W :W∼Be(1−α)

∣∣∣∣∣∂fα∂t (t, FXv0,W )
∣∣∣∣∣ ≤

(
E[∥Xv0∥2](1 − α)

)1/2
∥β̂v − βv∥.

Because β̂v is consistent, with probability approaching one, β̂v ∈ K and since K is
convex, {tβ̂v + (1 − t)βv} ⊂ K. Then, the first step above implies that

t 7→
[∫

x1
{
F
X′

v0(tβ̂v+(1−t)βv)[x
′(tβ̂v + (1 − t)βv)] ≥ α

}
dFXv0(x)

]′ (
β̂v − βv

)
.

is continuous on [0, 1]. Hence, the conditions in Theorem 3 of Milgrom and Segal
(2002) hold. Combined with Theorem 1 therein, this implies that t 7→ θ3(t, α) is
differentiable and

∂θ3

∂t
(t, α) =

[∫
x1

{
F
X′

v0(tβ̂v+(1−t)βv)[x
′(tβ̂v + (1 − t)βv)] ≥ α

}
dFXv0(x)

]′ (
β̂v − βv

)
.
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Step 3: Convergence to a Gaussian process of
√
n
(
θ̂(β̂v, α) − θ(βv, α)

)
.

First, note that

n1/2
(
β̂v − βv

)
= V (Xv)−1

(
1
n1/2

n∑
i=1

Xviεvi

)
+ oP (1), (62)

where εvi := Yv0i −X ′
v0iβv. Let θ(q, α) = (θ1(q, α), θ2(q, α)) and define θ̂(q, α) accord-

ingly. By (62), the Cramér-Wold device, stability of Donsker classes by addition and
the first part of the proof of Theorem 3, the process Gn :=

√
n
(
θ̂(., .) − θ(., .), β̂v − βv

)
converges weakly to a Gaussian process on V × [ε, 1−ε]. Then, when

∥∥∥β̂v∥∥∥ ̸= 0, which
occurs with probability approaching one, we have

√
n
(
θ̂(β̂v, α) − θ(βv, α)

)
=
∥∥∥β̂v∥∥∥√

n
(
θ̂(q̂, α) − θ(q̂, α)

)
+

√
n
(
θ(β̂v, α) − θ(βv, α)

)
, (63)

where we let q̂ = β̂v/
∥∥∥β̂v∥∥∥. First, consider the second term. By the second step and

the mean value theorem,

θ2(β̂v, α) − θ2(βv, α) =θ3(1, α) − θ3(0, α)

=h(β̃, α)′
(
β̂v − βv

)
,

with β̃ = tβ̂v+(1−t)βv for some t ∈ [0, 1]. Now, by the first step, h is continuous on the
compact set K × [ε, 1 − ε], which includes β̃ with probability approaching one. Thus,
by the maximum theorem and the continuous mapping theorem, supα∈[ε,1−ε] |h(β̃, α)−
h(βv, α)| P−→ 0. As a result,

√
n
(
θ2(β̂v, α) − θ2(βv, α)

)
= h(βv, α)′√n

(
β̂v − βv

)
+ ε′

n(α), (64)

where supα∈[ε,1−ε] |ε′
n(α)| P−→ 0.

Now let us turn to the first term in (63). We show below that

sup
α∈[ε,1−ε]

∫
[g
β̂v ,α

(x) − gβv ,α(x)]2dFX(x) P−→ 0. (65)

Then,
∥∥∥β̂v∥∥∥ P−→ ∥βv∥ and the proof of Theorem 19.26 in Van der Vaart (2000) imply

that ∥∥∥β̂v∥∥∥√
n
(
θ̂(q̂, α) − θ(q̂, α)

)
= ∥βv∥

√
n
(
θ̂(q0, α) − θ(q0, α)

)
+ εn(α), (66)
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where supα∈[ε,1−ε] |εn(α)| P−→ 0. Convergence of Gn combined with equations (63),
(64) and (66) imply that

√
n
(
θ̂(β̂v, α) − θ(βv, α)

)
converges in distribution to a Gaus-

sian process G.

To prove (65), given the definition of gβ,α, it suffices to prove

sup
α∈[ε,1−ε]

[
F −1
X′

vβ̂v
(α) − F −1

X′
vβv

(α)
]2

P−→ 0, (67)

sup
α∈[ε,1−ε]

∫ ∣∣∣1{F
X′

vβ̂v
(x′
vβ̂v) ≤ α

}
− 1

{
FX′

vβv (x′
vβv) ≤ α

}∣∣∣ dFX(x) P−→ 0, (68)

sup
α∈[ε,1−ε]

∫ (
x′
vβ̂v1

{
F
X′

v β̂v
(x′
vβ̂v) > α

}
− x′

vβv1
{
FX′

vβv (x′
vβv) > α

})2
dFX(x) P−→ 0. (69)

We prove that the three terms inside the three suprema are continuous as functions of
(β̂v, α). The results then follow by the maximum and continuous mapping theorems.
First remark that since FX′

vβ is strictly increasing that for all (β, α) ∈ K × [ε, 1 − ε],

F−1
X′

vβ
(α) = argmina∈[−M,M ]E[ρα(X ′

vβ − a)],

for some M > 0 large enough and ρα(x) = (α− 1 {x ≤ 0})x. By the dominated con-
vergence theorem, the function (β, α, a) 7→ E[ρα(X ′

vβ − a)] is continuous. Hence,
by the maximum theorem, (β, α) 7→ F−1

X′
vβ

(α) is continuous. Then, let λ(β) :=
maxα∈[ε,1−ε](F−1

X′
vβ

(α)−F−1
X′

vβv
(α))2. By what precedes, (β, α) 7→ (F−1

X′
vβ

(α)−F−1
X′

vβv
(α))2

is continuous, which implies (67).

The continuity of (β, α) 7→ E
[∣∣∣1{FX′

vβ(X ′
vβ) ≤ α

}
− 1

{
FX′

vβv(X ′
vβv) ≤ α

}∣∣∣] follows
from the exact same reasoning as the continuity of h. Finally, we prove the continuity
of

j : (β, α) 7→ E
[(
X ′
vβ1

{
FX′

vβ(X ′
vβ) > α

}
−X ′

vβv1
{
FX′

vβv(X ′
vβv) > α

})2
]

on K × [ε, 1 − ε]. Using a2 − b2 = (a− b)(a+ b), the Cauchy-Schwarz inequality and
(∑k

i=1 ai)2 ≤ k
∑k
i=1 a

2
i , we obtain

|j(β1, α1) − j(β2, α2)|

≤61/2
{
E
[(
X ′
vβ11

{
FX′

vβ1(X ′
vβ1) > α1

}
−X ′

vβ21
{
FX′

vβ2(X ′
vβ2) > α2

})2
]

+E
[
(X ′

vβv)2
∣∣∣1 {FX′

vβv(X ′
vβv) > α1

}
− 1

{
FX′

vβv(X ′
vβv) > α2

}∣∣∣]}1/2

×
{
E
[
(X ′

vβ1)2 + (X ′
vβ2)2 + 2(X ′

vβv)2
]}1/2

.
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Thus, it suffices to bound the first and second terms, corresponding to the first
and second lines. Regarding the second, by applying Hölder’s inequality and using
E[∥X∥2+δ] < ∞, we just need to bound

E
[∣∣∣1 {FX′

vβv(X ′
vβv) > α1

}
− 1

{
FX′

vβv(X ′
vβv) > α2

}∣∣∣] ,
which can be done as in Step 1 above. Regarding the first term, we also reason as
in Step 1, with the sole difference that because of the square, we use again Hölder’s
inequality and E[∥X∥2+δ] < ∞.

Step 4: Conclusion.

Because (F1, F2) 7→ F1/F2 is Hadamard differentiable for all (F1, F2) such that F2

does not vanish, the functional delta method implies that the process

Hn(α) := n1/2
(
R(α, F̂Yv0 , F̂X′

v0β̂v
) −R(α, FYv0 , FX′

v0βv)
)

defined on [ε, 1 − ε], also converges to a Gaussian process H. By the directional
Hadamard differentiability of ι, we obtain

n1/2
(
Sε(F̂Yv0 , F̂X′

v0β̂v
) − Sε(FYv0 , FX′

v0βv)
)

d−→ L := ι′R(·,FYv0 ,FX′
v0βv

)(H).

Moreover, by the same argument as in the proof of Theorem 3, the distribution of
L is continuous. Combined with Theorem 2.2.1 in Politis et al. (1999), this implies
that q1−α(T ∗) P−→ c1−α, the quantile of order 1 − α of L. Finally, under the null
hypothesis, because Sε(FYv0 , FX′

v0βv) = S(FYv0 , FX′
v0βv) = 1, we have

T = n1/2
(
Sε(F̂Yv0 , F̂X′

v0β̂v
) − Sε(FYv0 , FX′

v0βv)
)
.

As a result, P (T > q1−α(T ∗)) → P (L > c1−α) = α. The second result also follows
since T → ∞ under the alternative.

5. Proof of Proposition 8

Remark that for any random variables A,B and C such that A ≻cv B, A ⊥⊥ C and
B ⊥⊥ C, we have A+C ≻cv B +C. Fix β ∈ B∗. By assumption, ξY0 ≻cv ξ

′
X0β. Thus,

X∗
0

′β + ξY0 ≻cv X
∗
0

′β + ξ′
X0β = X ′

0β. (70)
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Now, because β ∈ B∗, we also have, by Theorem 1, Y ∗
0 ≻cv X

∗
0

′β. Hence, by indepen-
dence, Y ∗

0 + ξY0 ≻cv X
∗
0

′β + ξY0 . Combined with (70), this yields Y0 ≻cv X
′
0β. Hence,

β ∈ B and B∗ ⊂ B.
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