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Abstract

We provide semiparametric identification results for a broad class of learning

models in which outcomes of interest depend on i) predictable heterogeneity,

ii) initially unpredictable heterogeneity that may be revealed over time, and

iii) transitory uncertainty. We consider a common environment where the re-

searcher only has access to a short panel on choices and realized outcomes. We

establish point-identification of the outcome equation parameters and the distri-

bution of the three types of unobservables, under the standard assumption that

unpredictable heterogeneity and uncertainty are normally distributed. We also

show that, in the absence of predictable heterogeneity, the model is identified

without making any distributional assumption. We then derive the asymptotic

properties of a sieve MLE estimator for the model parameters, and devise a

tractable profile likelihood based estimation procedure. Monte Carlo simula-

tion results indicate that our estimator exhibits good finite-sample properties.
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1 Introduction

Learning models, in which agents have imperfect information about their environment

and update their beliefs over time, are frequently used in economics. These models

have received particular interest in various subfields in empirical microeconomics, in-

cluding industrial organization and health (see, e.g., Ackerberg, 2003; Coscelli and

Shum, 2004; Crawford and Shum, 2005; Abbring and Campbell, 2005; Chan and

Hamilton, 2006; Yang, 2020; Aguirregabiria and Jeon, 2020, for a survey in the con-

text of oligopoly competition), as well as in labor economics (see, e.g. Miller, 1984;

Antonovics and Golan, 2012; Pastorino, 2015; Hincapié, 2020; Pastorino, 2022) and

economics of education (see, e.g. Arcidiacono, 2004; Zafar, 2011; Stinebrickner and

Stinebrickner, 2012; Stange, 2012; Thomas, 2019; Kinsler and Pavan, 2021; Arcidi-

acono et al., 2023). Since the seminal work of Erdem and Keane (1996), learning

models have also been popular in the marketing literature (see Ching et al., 2013,

for a survey). However, while learning models are often structurally estimated, much

remains to be known about the identification of this important class of models.

In this paper we provide new semiparametric identification results for a general

class of learning models. Importantly, we consider an environment where the re-

searcher has access to a short panel on choices and realized outcomes only. As such,

our results are widely applicable, including in frequent situations where one does not

have access to elicited beliefs data, or to a vector of selection-free measurements of

latent individual heterogeneity. Specifically, we consider throughout our analysis a

potential outcome model of the following form:

Yit(d) = αt(d) + Z⊺
itβt(d) + λ⊺

iFt(d) + ϵit(d), (1)

where Zit is a vector of explanatory variables associated with individual i in period

t, θ := (αt(d), βt(d), Ft(d)) are unknown parameters, λi denotes a vector of latent

individual effects, and ϵit(d) is an idiosyncratic shock. While interactive fixed effects

models of this kind have been the object of much interest in econometrics, a key
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distinctive feature of the setup considered in this paper is the existence of two different

types of individual effects. Namely, we assume the individual effect λi consists of

two components: λk,i which are supposed to be initially known by the agent, and

λu,i which are initially unknown but may be learned over time. We complement

this outcome model with a flexible choice model, in which agent i’s assignment in

period t can depend arbitrarily on contemporaneous and lagged explanatory variables,

assignments and realized outcomes. This framework encompasses most of the decision

models that have been considered in the learning literature.

We first show that the model is point-identified under two alternative sets of

conditions. Our first and main identification result applies to a setup where, consistent

with most of the Bayesian learning models that have been considered in the literature,

we assume that the idiosyncratic shocks from the outcome equations (ϵit(d)), as well

as the unknown heterogeneity component (λu,i), are normally distributed. In contrast,

the distribution of the known heterogeneity component (λk,i) is left unspecified. From

the key observation that the distribution of current realized outcomes conditional on

past choices and outcomes is a mixture of normal distributions, we leverage results

from Bruni and Koch (1985) to establish identification of the joint distribution of

realized outcomes, choices and known heterogeneity component λk,i.

We then also show that a pure learning model with only one type of permanent

unobserved heterogeneity (λu,i) actually remains point-identified without making any

distributional assumption. A crucial distinction from the general case is that this

model is one of selection on observables only, as individual choices depend on beliefs

about λu,i only through prior outcomes, choices and covariates. This feature allows

us to build on insights from the interactive fixed effects literature, in particular Frey-

berger (2018), to establish identification in the pure learning case.

We propose to estimate the model parameters θ via sieve maximum likelihood

estimation. We focus on a particular class of functionals of θ, which includes as spe-

cial cases economically relevant quantities, such as the predictable and unpredictable
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outcome variances. These variances can in turn be used to evaluate the relative

importance of, e.g., uncertainty vs. heterogeneity in the overall lifecycle earnings

variability - a question that has been the object of much interest in labor economics

(see, e.g., Cunha et al., 2005; Huggett et al., 2011; Cunha and Heckman, 2016). We

show that, under mild regularity conditions, the resulting estimators are consistent

and asymptotically normal. Monte Carlo simulation results indicate that our estima-

tor exhibits good finite-sample properties. Importantly for practical purposes, our

proposed estimator only involves a modest computational cost.

Related literatures

Our paper contributes to several strands of the literature. First and foremost, we

add to a set of papers that study the identification of learning models, generally in

the context of specific applications (Abbring and Campbell, 2005; Arcidiacono et al.,

2023; Gong, 2019; Pastorino, 2022). A key difference with most of the papers in this

literature is that we only impose mild restrictions on the choice process. In particular,

we remain agnostic about how choices depend on individual beliefs about λu,i, while

allowing these beliefs to depend arbitrarily on past choices and realized outcomes.

Particularly relevant for us is recent work by Pastorino (2022), which establishes

formal identification results for a econometric learning model. However, beyond the

fact that Pastorino (2022) restricts to the context of workers’ and firms’ learning,

there are two main differences relative to our paper. First, unobserved heterogeneity

in that paper is restricted to be discrete, while we allow for both continuous and

multivariate unobserved heterogeneity. Second, and importantly, the outcomes which

form the basis of learning are assumed to depend on the learned portion of unobserved

heterogeneity only. In contrast, in our setup, outcomes may depend on both known

and unknown components. Our framework also differs from Gong (2019) in important

ways. Notably, while we remain agnostic about how choices depend on agents’ beliefs

about the distribution of λu,i, Gong (2019) assumes that assignment depends on the
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prior mean only. Gong further imposes various restrictions on the updating rule,

while we remain agnostic about how agents form and update their beliefs about λu,i.

Our paper also fits into a literature that focuses on the identification and esti-

mation of dynamic discrete choice models in the presence of permanent unobserved

heterogeneity (see, among others, Heckman and Navarro, 2007; Hu and Schennach,

2008; Kasahara and Shimotsu, 2009; Arcidiacono and Miller, 2011; Hu and Shum,

2012; Sasaki, 2015; Sasaki and Hu, 2018; Aguirregabiria et al., 2021; Bunting, 2022).

Unlike these papers, we focus on a learning framework in which a portion of the

permanent individual unobserved heterogeneity is initially unknown to the agents, so

that decisions may depend on the unknown component only through the sequence

of past outcomes. This asymmetry property plays an important role in our ability

to address the deconvolution problem associated with the coexistence of both types

of unobserved heterogeneity. A second important difference is that, unlike most pa-

pers in this literature (e.g., Hu and Schennach, 2008; Hu and Shum, 2012), we allow

for sample selection in our setting.1 A noteworthy exception is Sasaki (2015) which

considers identifications of a dynamic panel model with selection and latent per-

manent unobserved heterogeneity. Relative to this paper, we allow for multivariate

unobserved heterogeneity and for selection to depend on the entire information set

(namely all realized outcomes and choices).

At a high level, our analysis is also connected to the literature that deals with the

identification of mixture models (see, e.g., Compiani and Kitamura, 2016; Kitamura

and Laage, 2018, and references therein). In particular, central to our main identifi-

cation result is the observation that the distribution of current outcomes conditional

on the sequence of past choices and outcomes is a mixture of normal distributions.

Finally, since the outcome equation in our model involves interactions between

1We note that in the case that beliefs are discrete and first-order Markov, one may be able to use

the arguments of Hu and Shum (2012) to identify the latent beliefs from variation in the (discrete)

choices (c.f., Pastorino, 2022). This approach is not available in our context, since beliefs may be

multivariate and continuous and are excluded from the outcome equation.
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unobserved individual- and time-specific effects, our paper also fits into the literature

that deals with the identification and estimation of panel data models with interactive

fixed effects (see, e.g., Bai, 2009; Gobillon and Magnac, 2016; Freyberger, 2018).

Among these papers, our identification strategy is most closely related to Freyberger

(2018). A fundamental distinction though comes from the fact that Freyberger (2018)

considers a selection-free environment. In contrast, individual choices, along with the

associated selection issues affecting the potential outcomes, play a central role in our

analysis.

Organization of the paper

The remainder of the paper is organized as follows. Section 2 presents the set-up of

the model. Section 3 contains our main identification results, both for the general

case and for the case of a pure learning model. We discuss in Section 4 the estimation

and inference on the parameters of interest, before turning in Section 5 to the im-

plementation of our estimator. We study in Section 6 its finite-sample performances.

Finally, Section 7 concludes. The appendix gathers all the proofs.

Notation: S(A) indicates the support of random variable A. FA indicates the

distribution function of random variable A. For any sequence (a1, a2, . . . , aS) and s ≤

S, we let as = (a1, a2, . . . , as). Upper case letters represent random variables, lower

case represent realized values. A ⊥⊥ B | C indicates that A and B are statistically

independent conditional upon C.

2 Set-up

Throughout the paper we consider a setup where potential outcomes have an inter-

active fixed effect structure of the following form:

Yt(d) = αt(d) + Z⊺
t βt(d) + λkFkt(d) + λ⊺

uFut(d) + ϵt(d), (2)
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where d represents individual i’s assignment in period t, Yt(d) is a scalar potential

outcome variable associated with assignment d, Zt a vector of explanatory variables,

θ = (αt(d), βt(d), Fkt(d), Fut(d)) is a vector of unknown parameters, λ = (λk, λ
⊺
u)

⊺ is

the latent individual effect and ϵt(d) is an unobserved random variable. For exam-

ple, Yt(d) may represent potential log-wages in occupation d. Yt(d) may depend on

some observed individual and possibly time-varying characteristics (Zt) as well as on

multiple dimensions of unobserved abilities (λ), which might play different roles in

different occupations.

Importantly, we allow for two distinct types of latent individual effects. Namely,

λk is assumed to be known by the agent, while λu is initially unknown but may be

gradually revealed over time. For example, worker i’s log-wage in occupation d at time

t, Yt(d), may depend on her unobserved (to the econometrician) occupation specific

productivity, λkFkt(d) + λ⊺
uFut(d). As the worker accumulates more experience, she

may update her belief about λu, and thus about the initially unknown portion of

productivity in each of the possible occupations.

Turning to the choice and learning process, the only restriction placed on an

individual’s assignment in period t, which we denote by Dt, is that it does not directly

depend on the unknown component of latent heterogeneity. Specifically, we impose

the following restriction:

Dt ⊥⊥ λu | Zt, Y t−1, Dt−1, λk. (3)

The above conditional independence condition highlights the asymmetry between the

two types of latent effects: assignments may directly depend on the known component

of the latent effect λk, but not on the unknown component of the latent effect λu.

However, we allow the assignment rule to depend arbitrarily on lagged covariates,

outcomes and choices. As a result, we do not restrict how agents form their beliefs

about λu, provided that such beliefs are a measurable function of Zt, Y t−1, Dt−1 and

λk. We also remain agnostic about how assignments depend on agents’ beliefs over

λu.
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In particular, this framework is consistent with a setup where agents are rational

and Bayesian updaters, so that beliefs coincide with the objective distribution of λu

conditional on their information set at a given point in time, which may include

all realized variables and model parameters. Alternatively, this also accommodates

situations where individual decisions may not involve beliefs over the distribution of

λu, or depend instead on myopic beliefs that are formed based on the prior-period

choice and outcome. This further allows for heterogeneous beliefs formation, where,

for instance, some agents may have rational expectations about their unobserved

characteristic λu, while others may have biased beliefs.

Finally, we denote the conditional choice probability (CCP) function as

ht(d
t, zt, yt−1, vk) :=Pr(Dt = d | Zt = zt, Y t−1 = yt−1, Dt−1 = dt−1, λk = vk).

These CCPs play a central role in our identification analysis. In the following section,

we provide sufficient conditions under which the CCPs - which are latent objects

because of the conditioning on λk = vk - are identified. In empirical applications it

is very common to impose some structure on the choice process. In particular, it is

standard to assume that

Dt = argmax
d∈S(Dt)

{vt(d, Zt, λk, Xt) + ηt(d)} ,

where vt is known up to a finite-dimensional vector of parameters, Xt are sufficient

statistics for the conditional distribution of λu at time t, and ηt follows a known

distribution. Having identified the CCPs, one can then apply standard identification

arguments from the dynamic discrete choice literature (Magnac and Thesmar, 2002)

to identify the primitives of the choice model.

2.1 Uncertainty and Learning

The key feature of the model is the distinction between the three forms of unobserved

heterogeneity: (1) permanent heterogeneity that is known to the agent, λk, (2) per-

manent heterogeneity that is initially unknown to the agent, λu, and (3) idiosyncratic
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time-varying shocks, ϵ. This provides a framework for quantifying the importance of

uncertainty in outcomes. At t = 1, the variance in future outcomes can be decom-

posed orthogonally into a component that depends on (λu, ϵ) and a component that

depends on λk. This is the approach taken in Cuhna and Heckman (2005, 2016), who

decompose the variance in lifetime earnings into a component that is predictable at

the time of deciding whether go to college and a component that is not.

In our setup, the importance of uncertainty can change over time as agents learn

about λu by observing realized outcomes and covariates and use this information

to make choices. We provide in Appendix A a class of variance decomposition pa-

rameters which includes both the t = 1 orthogonal decomposition as well as other

decompositions that incorporate these learning and selection effects. These decom-

positions each provide different ways of quantifying the importance of uncertainty

to future wages. Identification of the model implies the identification of all of these

parameters. After establishing identification of the model, we special attention to

estimation and inference of broad class of functionals that encompasses these kinds

of variance decompositions.

3 Identification

We provide in Subsection 3.1 a high-level overview of the proposed identification

strategies. We then discuss identification in the leading case with both known and

unknown unobserved heterogeneity (Subsection 3.2), before turning to the pure learn-

ing case where the only source of permanent unobserved heterogeneity is assumed to

be initially unknown to the agent (Subsection 3.3).

3.1 Overview

The identification of the model discussed in Section 2 boils down to identifying the lin-

ear interactive fixed effects model, Yt(dt) = βt(dt)
⊺Zt+Ft(dt)

⊺λ+ϵt from the distribu-

9



tion of realized outcomes Y T . To illustrate the problem, suppose that S(Dt) = {0, 1}

for all t and Zt is time invariant. Let D :=
∏T

t=1Dt, and Y (1) := (Y1(1), . . . , YT (1)),

and suppose one wants to identify the distribution of Y (1), which is censored for

D = 0. The relationship between the uncensored and censored distributions can be

characterized as follows,

fY |Z,D(y|z, 1)
fD|Z(1|z)

fD|Y (1),Z(1|y, z)
= fY (1)|Z(y|z)

The observed conditional density fY |Z,D(y|z, 1) is weighted by the term
fD|Z(1|z)

fD|Y,Z(1|y,z) ,

which reflects selection.

The sequential nature of the choice process provides one strategy for identifying

these selection weights. Namely, assuming that individuals can only use information

on past outcomes and choices to make their choices yields:

fDt|Y (1)Dt−1,Z(1|yt, 1, z) = fDt|Y t−1(1),Dt−1,Z(1|yt−1, 1, z) (4)

The right hand side is identified from the joint distribution of (Dt, Y t−1, Z) conditional

on Dt−1 = 1. It follows that the inverse selection weight, fD|Y,Z is identified as follows

fD|Y (1),Z(1|y, z) = fDt|Y t−1,Dt−1,Z(1|y, 1, z)fDt−1|Y t−2,Dt−2,Z(1|y, 1, z) · · · fD1|Z(1|z)

We pursue this identification approach in Section 3.3 in a version of the model

we call pure learning. The assumption underlying (4) is motivated by assuming that

agents learn about a latent variable by observing their outcomes. In that context,

choices in period t depend on the agent’s beliefs about the latent variable and therefore

all the prior outcomes and choices.

The exclusion restriction in (4) can break down, however, when agents base their

decisions on variables that are not observed in the data. We propose in Section 3.2

an identification strategy that can be used in such situations. In particular, we show

that maintaining a normality assumption commonly made in the learning literature

is sufficient to identify the joint distribution (Y T , DT , Z) in a first step. One can then

identify the model parameters in a second step, along the lines of the reweighting

strategy discussed above.
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3.2 Known and unknown heterogeneity

This section provides sufficient conditions for identification of the model discussed in

Section 2. The first assumption (KL1) imposes that any correlation in the observed

outcomes and choices over time and across assignments is due to the latent effect λ.

It also imposes that the transition of the control variables, Zt, does not depend on

unobservables.

Assumption KL1. Equation (2) holds. Further, for any d ∈ S(Dt)

Fϵt(d)DtZt|Y t−1Dt−1Zt−1λ = Fϵt(d)FDt|Y t−1Dt−1Ztλk
FZt|Y t−1Dt−1Zt−1 .

Assumption KL2 imposes that the unknown component of the individual effect,

λu, is drawn from a multivariate normal distribution, and that the random shock in

the outcome equation is normally distributed.

Assumption KL2. λu | (Z1 = z1, λk = vk) ∼ N (0,Σu(z1)) and ϵt(d) ∼ N(0, σt(d)
2).

Assumption KL2 leads to a specific functional form for the posterior distribution,

namely the Gaussian conjugate distribution. We summarize this result in Lemma

1. To do so, we define (Et,Σt) recursively as follows. First, (E1,Σ1) = (0,Σu(Z1)).

Second,

Σt+1 =
(
Σ−1

t + Fut(Dt)Fut(Dt)
⊺σ−2

t (Dt)
)−1

Et+1 = Σt+1

(
Σ−1

t Et + Fut(Dt)
Yt − αt(Dt)− Z⊺

t βt(Dt)− λkFkt(Dt)

σ2
t (Dt)

)
.

Lemma 1. Let Assumptions KL1 and KL2 hold. Then λu conditional upon

(Dt−1, Y t−1, Zt, λk) is distributed N(Et,Σt).

Since λu conditional on (Y t−1, Dt−1, Zt, λk) follows a normal distribution with

mean Et and variance-covariance matrix Σt, one can use (Et,Σt) as a sufficient

statistic for λu at time t. Notice that (Et,Σt) is a deterministic function of
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(Dt−1, Y t−1, Zt, λk) and θ1 =
(
(αt, βt, Fkt, Fut, σt)

T
t=1,Σu

)
∈ Θ1. Furthermore, we

can express (Et,Σt) non-recursively
2 as:

Σt+1 =

(
Σ−1

u (Z1) +
t∑

s=1

Fus(Ds)Fus(Ds)
⊺σ−2

s (Ds)

)−1

Et+1 =Σt+1

(
t∑

s=1

Fus
Ys − αs(Ds)− Z⊺

sβs(Ds)− λkFks(Ds)

σ2
s(Ds)

)
Suppose λu ∈ Rp. Our three remaining assumptions are as follows.

Assumption KL3. (A) For some d1, α1(d1) = 0, Fk1(d1) = 1. (B) For some

(d1, d2, . . . , dp), (Fu1(d1)Fu2(d2) . . . Fup(dp)) = Ip×p.

Assumption KL3 is a normalization on the finite dimensional parameters. This

type of assumption is standard in interactive fixed effect models (Freyberger, 2018),

since no scale assumption is placed on the distribution of the unknown latent effects.

For example, one could replace Assumption KL3 (A) by a zero mean restriction on the

latent individual effect λ, and a unitary variance assumption on the known component

of the latent effect λk. We also impose Assumption KL3 (B) since the unknown latent

effect is inherently scale free.

Assumption KL4. (A) Θ1 is a compact set. (B) Supp(λk) is a compact set. (C)

For each t, F ⊺
ut(dt)ΣtFut(dt) + σ2

t (dt) ̸= 0, σt(dt) ̸= 0 and Σu(z1) is non-singular. (D)

fλk|Y t−1,Zt,Dt(vk; y
t−1, zt, dt) > 0 for all for all t and vk in the support of λk. (E) For

each t and dt, the variance-covariance matrix of (1, Zt) conditional on Dt = dt is

non-singular.

Assumption KL4 places support restrictions on various objects of the model. In

particular, Part (B) imposes that the known latent factor λk has compact support.

2Our identification result would go through if one replaces the first part of Assumption KL2 with

λu | (Z1 = z1, λk = vk) ∼ N (0,Σu(vk, z1)) under some regularity conditions on vk 7→ Σu(vk, z1),

including for each vk − ṽk > 0, Σu(z1, vk) − Σu(z1, ṽk) is positive (or negative) semi-definite. For

simplicity, we maintain the stronger Assumption KL2 when establishing identification in Theorem

1 below.
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This holds if the distribution of λk has discrete support although this obviously applies

to a broader set of distributions. We return to this compactness condition in Remark 1

below. Part (C) requires that the distribution of Yt(d) | (Zt, Dt, λk) is non-degenerate.

Part (D) is a “rectangular” support assumption on λk. This assumption is typically

satisfied in dynamic discrete choice models, as they generally impose a large support

assumption on the random utility shocks. Finally, Part (E) imposes that there exists

sufficient variation in Zt conditional on Dt.

Assumption KL5. (A) For each dt there are sequences dt−1, d̃t−1 such that

Fut(dt)
⊺Σt

∑t−1
s=1

(
Fus(ds)

Fks(ds)
σ2
s(ds)

− Fus(d̃s)
Fks(d̃s)

σ2
s(d̃s)

)
̸= 0. (B) For all dt, Fkt(dt) ̸= 0.

(C) For all dt, Fkt(dt) − Fut(dt)
⊺Σt

∑t−1
s=1 Fus(ds)

Fks(ds)
σ2
s(ds)

̸= 0. (D) For each (d2, d1),

Fu2(d2)
⊺Σ2Fu1(d1)

Fk1(d1)

σ2
1(d1)

̸= 0 (E) There are sets {d2,i ∈ S(D2) : i = 1, 2, . . . , p},

{d̃2,i ∈ S(D2) : i = 1, 2, . . . , p} which satisfy

(Fu2(d2,1)Fu2(d2,2) . . . Fu2(d2,p))
−⊺ vec(Fk2(d2,1), . . . , Fk2(d2,p))

̸=
(
Fu2(d̃2,1)Fu2(d̃2,2) . . . Fu2(d̃2,p)

)−⊺
vec(Fk2(d̃2,1), . . . , Fk2(d̃2,p)).

(F) For any dT , {Fut(dt) : t = 1, . . . , T} is linearly independent.

Assumption KL5 is a regularity condition that basically ensures that the latent

individual effect λ alters outcomes sufficiently differently across time and assignments.

This condition is relatively mild as it primarily rules out knife-edge cases where the

cumulative effect of different elements of the individual effect perfectly offset each

other.3 More specifically, Part (A) requires that the aggregate effect of λk on outcomes

for choice dt is different for at least two histories (dt−1, d̃t−1). Part (B) assumes that

the direct effect of λk is non-zero in each period for each assignment. Part (C) states

the aggregate effect of λk on outcomes must be non-zero—that is, that the direct effect

Fkt(dt) is not perfectly offset by the effect mediated through previous choices. Part (D)

ensures that there is a non-zero effect of previous choices in t = 2. Part (E) requires

3This type of assumption is similarly required in latent factor models without selection or learning

in order to rule out degeneracies (see,e.g., Freyberger, 2018, Assumption L4).
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that in t = 2 the relative effect of known and unknown λ changes across choices. In

the special case where λu ∈ R, the condition reduces to Fk2(d2)
Fu2(d2)

̸= Fk2(d̃2)

Fu2(d̃2)
, i.e., that

the ratio of factor loadings is non-constant across assignments. More generally, for

λu ∈ Rp, this condition implies that, at least for t = 2, the set of assignments must

contain at the minimum p+ 1 elements. Finally, part (F) requires that the unknown

factor affects each outcome via a different linear combination.

Define vk 7→ fλk
(vk, z1) to be the distribution function of λk conditional upon the

initial exogenous covariates Z1 = z1. We are now in a position to state our main iden-

tification result for the model parameters θ =
(
(αt, βt, Fkt, Fut, σt)

T
t=1,Σu, h, fλk

)
∈ Θ.

Theorem 1. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T = 2p + 1

periods, and that Assumptions KL1-KL5 hold. Then θ is point identified.

The proof of this theorem relies on the normality of the error term ϵt(d). The first

step is to show that Yt is normally distributed conditional upon lagged outcomes Y t−1,

assignmentsDt, covariates Zt and the known component of the latent individual effect

λk. This implies that that Yt conditional upon (Y t−1, Dt, Zt) is a mixture distribution

parameterized by λk. Then under the compact support and non-degeneracy assump-

tions (Assumptions KL4 (A)-(C)), one can apply a result from Bruni and Koch (1985)

to identify the aforementioned mixture distribution up to an affine transformation of

λk. Next, the normalization and regularity assumptions (Assumptions KL3-KL5) are

used to pin down the affine transformation, leading to identification of the joint distri-

bution of (Y T , DT , ZT , λk). Knowledge of this distribution identifies the components

of the model related to the known component of the latent individual effect, namely(
(αt, βt, Fkt)

T
t=1, h, fλk

)
. Thus it remains to disentangle the effect of the learned com-

ponent (i.e., λu) and uncertainty (i.e., ϵt(d)) in order to identify
(
(Fut, σt)

T
t=1,Σu

)
.

To do so, we show that the joint distribution of (Y T , DT , ZT ) conditional upon λk,

suitability weighted by the assignment probabilities, is a normal-weighted mixture of

normal distributions. This observation leads to identification
(
(Fut, σt)

T
t=1,Σu

)
from
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the second moments of the reweighted distribution. See Section B.1 for the formal

argument.

Remark 1 (Compact support assumption). Assumption KL4 (B) imposes that the

known component of the latent individual effect has bounded support. In applications,

it is common to assume λk has finite support with known cardinality. Assumption

KL4 (B) relaxes this assumption in the sense that the number of support points of

λk need not be known a priori, and indeed may be infinite. The assumption that the

support of the mixing distribution is compact plays an important role in establishing

identification.4

Remark 2 (Normality of unknown factor). As summarized in Lemma 1, an important

advantage of the normality assumptions (Assumption KL2) is the resulting conju-

gate prior with a tractable closed form. For this reason, these assumptions are very

common in the applied literature. In the context of our analysis, the most important

implication of these assumptions is to enable identification of the (latent) distribution

of Yt | (λk, Y
t−1, Dt, Zt) from variation in the realized outcome Yt only. First, the nor-

mality assumptions on ϵt and λu lead to normality of Yt | (λk, Y
t−1, Dt, Zt), using stan-

dard Bayesian arguments. It follows that, for any given (Y t−1, Dt, Zt) = (yt−1, dt, zt),

the distribution of Yt | (Y t−1, Dt, Zt) is a mixture of normal distributions with mixture

weights given by the distribution of λk | (Y t−1, Dt, Zt). Identification then follows

from existing results for mixtures of normal distribution (Bruni and Koch, 1985).

This discussion also highlights why we restrict λk to be a scalar random variable.

Namely, that identification of its distribution is coming from variation in the scalar

outcome variable Yt. If a vector of outcomes were available—that is, if Yt was vector-

valued—then we expect our arguments to easily extend to multivariate λk.

Remark 3 (Invariance to normalization). The normalization assumption (Assump-

tion KL3) is a true normalization in the sense that particular meaningful economic

4Compactness is used in particular to apply the Stone - Weierstrass approximation theorem,

which is a central argument in Bruni and Koch (1985, Theorem 1).
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parameters are invariant to the assumption. In particular, we can show that average

and quantile structural functions are identified without the normalization assump-

tion. To formalize this notion, define Ckt(d) ≡ λ⊺
kFkt(d), Cut(d) ≡ λ⊺

uFut(d) and let

Qα [X] be the α-quantile of the random variable X. Let z ∈ S(Zt) and define the

quantile structural functions

s1,t(z, α) =αt(d) + z⊺βt(d) +Qα[Ckt(d) + Cut(d) + ϵt(d)],

s2,t(z, α1, α2, α3) =αt(d) + z⊺βt(d) +Qα1 [Ckt(d)] +Qα2 [Cut(d)] +Qα3 [ϵt(d)],

and the average structural function as s3,t(z) = αt(d)+Z⊺
t βt(d)+

∫
eFCkt+Cut+ϵt(e)de.

In Appendix B.1 we prove the following corollary:

Corollary 1. Suppose the Assumptions KL1, KL4 and KL5 hold and that (λu | Z1 =

z1, λk = vk) ∼ N
(
µu, Σ̃u(z1)

)
and ϵt(d) ∼ N(ct(d), σt(d)

2). Furthermore, suppose for

some (d1, d2, . . . , dp), (Fu1(d1)Fu2(d2) . . . Fup(dp)) is full rank. Then s1,t, s2,t and s3,t

are identified on the support of Zt.

3.3 Pure learning model

This section considers a special case of the model of Section 2, in which all com-

ponents of the latent individual effect are initially unknown to the decision making

agent. That is, λ = λu. Without needing to distinguish initially known and unknown

heterogeneity, a stronger identification result is achieved. In particular, no parametric

restrictions on the distribution of the unobservables are required.

Assumption L1. For any d ∈ S(Dt),

Fϵt(d)DtZt|Y t−1Dt−1Zt−1λ = Fϵt(d)FDt|Y t−1Dt−1ZtFZt|Y t−1Dt−1Zt−1 .

Assumption L1 adapts Assumption KL1 to reflect there is no initially-known com-

ponent on latent unobserved heterogeneity.
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Assumption L2. (A) The joint density of Y, λ and D,Z admits a bounded density

with respect to the product measure of the Lebesgue measure on S(Y ) × S(λ) and

some dominating measure on S(D) × S(Z). All marginal and conditional densities

are bounded. (B) λ | Z1 has full support. (C) The characteristic function of ϵt(d) is

non-vanishing, E[ϵt] = 0.

Assumption L2 substantially weakens Assumption KL2 by replacing the normality

assumption with a full support assumption. Note that a full support assumption on

Yt(d) is implied by Assumption KL2. Let λ ∈ Rp.

Assumption L3. For some choice sequence (dt : t = 1, 2, . . . , p), (A)

(F1(d1) . . . Fp(dp)) = Ip×p and (B) αt(dt) = 0 for each t = 1, 2, . . . , p.

Assumption L4. (A) For each (yt−1, zt) ∈ S(Y t−1, Zt), Pr(Dt = d | Y t−1 =

yt−1, Zt = zt) > 0 for all d ∈ S(Dt). (B) The variance-covariance matrix of λ | Z1 is

full rank. (C) The variance-covariance matrix of (1, Zt) conditional upon Dt = dt is

non-singular.

Assumption L3 are normalization assumptions, which are standard in interactive

fixed effect models. An alternative normalization could be placed on the expectation

of λ conditional upon Z. Assumption L4 (A) is similar to Assumption KL4 (D). It

requires that for each history (yt−1, dt−1, zt), some units are assigned to Dt = dt for

each dt ∈ S(Dt). This assumption is satisfied in many standard parametric discrete

choice models (e.g., Keane and Wolpin (1997)). At the cost of notational burden, this

assumption could be weakened to hold for certain sequences of choices. In particular,

that for each dt ∈ S(Dt), there is a finite sequence of choice sequences whose first

element is the choice sequence of Assumption L3 (A), whose adjacent elements are

equal on at least p points of their domain, and whose final element maps t to dt.

Assumption L5. For any dT , {Fut(dt) : t = 1, . . . , T} are linearly independent.
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Assumption L5 is a standard assumption in the interactive fixed effect literature

(Assumption N6, Freyberger, 2018). Similar to Assumption KL5, it rules out de-

generacies by ensuring that the outcome in each period Yt(dt) depends on a distinct

linear combination of λu.

We now define the conditional choice probability function

ht(y
t−1, dt, zt) := Pr(Dt = dt | Y t−1 = yt−1, Dt−1 = dt−1, Zt = zt),

and let h = (h1, h2, . . . , hT ). Since, unlike in Section 3.2, there is no latent variable

that enters the CCP function, h is identified directly from the data. As in Section 3.2,

we place very little structure on the learning process of decision making agents. This

highlights that the core identification results do not rely on structure imposed on the

belief formation process. However it is worth emphasizing that, should there be such

structure, our identification results would enable identification of the belief formation

process. To illustrate this, consider the case that the decision making agents are

rational and Bayesian updaters and that the sufficient statistics for λu at time t are a

known function of the information set and the model parameters. That is, that there

is a known function g such that the sufficient statistics equal g(Y t−1, Dt−1, Zt−1, θ),

where θ are the model parameters. In this case, identification of θ is sufficient for

identification of the beliefs.

To state the identification result, let θ1 =
(
(αt, βt, Ft, )

T
t=1

)
and define fλ(vk, z1)

to be the distribution function of λ conditional upon the initial exogenous covariates.

Finally, define fϵ =
{
fϵt(d) : d ∈ S(Dt), t = 1, . . . , T

}
. Then, the structural parameter

is θ = (θ1, fλ, fϵ, h). The following theorem states that the preceding conditions are

sufficient for point identification of θ.

Theorem 2. Suppose the distribution of (Yt, Dt, Zt)
T
t=1 is observed for T = 2p + 1

and that Assumptions L1-L5 hold. Then θ is point identified.

The key insight that enables identification of θ is that, under Assumption L1, this

is a model of selection on observables. That is, although assignment probabilities
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depend on unobserved beliefs over λ, they do not depend on the unobserved factor

λ itself. It follows that one can control for beliefs at time t by conditioning upon

prior outcomes, choices and covariates. This in turn allows us to express the joint

distribution of (Y t, Dt, Zt), suitably weighted by the assignment probabilities, as a

mixture model over the potential outcomes Y t(dt) conditional upon the latent factor

λ and exogenous covariates Z. From here the arguments of Freyberger (2018) yield

identification of the mixture and component distributions. See Section B.2 for details.

Remark 4 (Auxiliary measurements). In some cases, additional unselected noisy mea-

surements of known abilities are available. See, for instance, Cunha et al. (2005) and

Heckman and Navarro (2007). With this additional data, sufficient conditions for

identification of the distribution of the latent effect are well known in the literature

(Hu and Schennach, 2008; Cunha et al., 2010). If the sufficient conditions are satisfied

conditional on each (Yt, Dt, Zt)
T
t=1, then the joint distribution of

(
(Yt, Dt, Zt)

T
t=1, λk

)
is

identified from the auxiliary measurements. From here, one can redefine Zt = (Zt, λk)

and the conditions of Theorem 2 are sufficient for distribution-free identification of

the model with known and unknown heterogeneity.

4 Estimation

We propose to estimate the model parameters via sieve maximum likelihood. Let

Wi = (Yit, Dit, Zit : t = 1, . . . , T ) and θ∗ ∈ Θ be the true value of the parameters. In

the following we focus on the model of Section 3.2, although similar conditions could

be presented for the model of Section 3.3. The log-likelihood contribution of Wi = w
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is

ℓ(w; θ) = log

∫ T∏
t=1

(
1

σt (dt)
ϕ1

(
yt − αt (dt)− z⊺t βt (dt)− vkFkt (dt)− v⊺uFut (dt)

σt (dt)

)

× ht(y
t−1, dt, zt, vk)

)
×

T−1∏
t=1

gt(zt+1; y
t, dt, zt)

× 1√
|Σu (z1)|

ϕp

(
Σ

− 1
2

u (z1) vu

)
× fλk

(vk; z1) dv (5)

where ϕs is the probability distribution function of the standard multivariate nor-

mal distribution with s components, gt is the distribution of Zt+1 conditional upon

(Y t, Dt, Zt) = (yt, dt, zt). There are four components of the likelihood function: the

outcomes, the assignment probabilities, the distribution of the covariates, and the

distribution of latent factors (λ⊺
u, λk)

⊺.

To estimate θ, let Θn be a finite dimensional sieve space that serves as an approx-

imation to Θ. The sieve maximum-likelihood estimator for θ∗ is defined as

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n) (6)

The following result states that under standard conditions (stated in Appendix

C.1), if our model is identified, θ̂ is consistent for θ∗,

Theorem 3. Let (Yit, Dit, Zit : t = 1, . . . , T )ni=1 be i.i.d. data where T ≥ 2p + 1 and

Assumptions KL1-KL5 and Assumptions E1-E5 hold. Then θ̂ as defined in Equation

(6) is consistent for θ∗.

Researchers are often interested in functionals of the model parameters, such that

the variance decompositions discussed in section 2.1. The variance decompositions

(7), (8), (9), and (10) involve both the finite dimensional parameters of the model as

well as the distribution of λk and the CCPs. Therefore, many of the existing results

on inference on the finite dimensional parameters of a semiparametric model (e.g. Ai

and Chen, 2003) do not directly apply to this setting.

Instead, we next provide an inference result for a plug-in estimator of a more gen-

eral class of functionals of the model parameters. For a functional f , under a set of
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smoothness and regularity conditions similar to those given in Chen and Liao (2014),

we show establish that the plug-in estimator f(θ̂) has an asymptotically normal dis-

tribution and characterize its asymptotic variance.

Theorem 4. Let (Yit, Dit, Zit : t = 1, . . . , T )ni=1 be i.i.d. data where T ≥ 2p + 1 and

that Assumptions KL1-KL5 and Assumptions E1-E13 hold. Then
√
nf(θ̂)−f(θ∗)

∥v∗n∥
→
d

N (0, 1) where v∗n is the sieve Riesz representer of f(θ) and ∥ ·∥ is defined in Equation

(13) in the online appendix.

The asymptotic variance and rate of convergence of the plug in sieve estimator

depend on the ∥v∗n∥. For regular functionals, ∥v∗n∥ converges to a constant, which

implies that the plug-in estimator has a root-n convergence rate. Note, however, that

Theorem 4 also allows for the possibility that the sieve variance v∗n may diverge–that

is, that f is an irregular functional. In either case, consistent estimators for the sieve

variance are available (Chen and Liao, 2014, Section 3).

We leave it to future work to derive primitive conditions under which function-

als such as the variances decompositions discussed in section 2.1 satisfy the high

level conditions of Theorem 4. However, we do provide in Appendix C.2 lower level

conditions under which Theorem 4 holds.

5 Implementation

To implement the sieve maximum likelihood estimation developed in the previous

section, first partition θ into {Fλk|Z1} and θ1 := θ \ {Fλk|Z1}. Integrating over λu in

(5), we obtain ℓ(w; θ) = log
∫
f(w, vk; θ1)dFλk|Z1 where,

f(w, vk; θ1) :=
1√

|V (w, vk; θ)|
ϕ1

(
m(w, vk; θ)

TV (w, vk; θ)
−1m(w, vk; θ)

)
×

T∏
t=1

ht(d
t, zt, yt−1, vk)×

T−1∏
t=1

gt(zt+1 | zt, yt, dt)
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where m(w, vk; θ) and V (w, vk; θ) are the T -dimensional vector and T ×T matrix giv-

ing the expected mean and variance of Y T conditional on (DT , ZT , λk) = (dT , zT , vk).

They are defined as follows. Let Fu(w) =
[
Fu1(dt) · · ·FuT (dT )

]
. Then,

[m(w, vk; θ)]t = αt(dt) + β⊺
t zt + Fk(dt)vk,

V (w, vk; θ) = Fu(w)
TΣuFu(w) + diag(σ2

1(d1), . . . , σ
2
T (dT )),

There are three non-parametric objects in the likelihood function: h, g, and Fλk|Z1 .

These can be estimated non-parametrically using a sieve space, or the researcher can

impose a parametric form on any . The choice of a model or sieve spaces for h and

g are typically context specific. For Fλk|Z1 , we propose using a sieve space closely

related to estimator discussed in Koenker and Mizera (2014) and Fox et al. (2016).

Assume that Z1 has finite support, (z1, . . . , zR). For each n, fix a grid of support

points for λk, Sn = {v̄1n, . . . , v̄qnn}, for some finite qn. Then, we can use the sieve

space for Fλk|Z1 :

Fn =

{
(v; zr) 7→

qn∑
s=1

ωsr1{v ≤ v̄sn}

∣∣∣∣∣ω ∈ ∆R(qn)

}

where ∆k(m) = {x ∈ Rm×k : xij ≥ 0,
∑k

s=1 xis = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ k} is the

k-product m-dimensional simplexes. The space Fn is simply the space of conditional

distributions with support contained in Sn. If Sn becomes dense in R and the number

of terms grows at a suitable rate, this sieve space satisfies the conditions of theorems

3 and 4. This is the sieve space studied in Fox et al. (2016), who show that in several

related settings, the rate of O(n−1 log(n)) is sufficient for consistency.

This sieve space is useful to make computation tractable while estimating Fλk|Z1

nonparametrically by splitting the optimization problem into two steps. Define the

profile log likelihood for θ1 as,

n∑
i=1

ℓ̃(wi; θ1) := max
Fλk|Z1

∈Fn

n∑
i=1

ℓ(wi; θ1, Fλk|Z1)
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For each F ∈ Fn, there exists ω ∈ ∆R(qn) such that ℓ(w; θ1, F ) =

log
∫
f(w, v; θ1)dF (v; z1) = log

∑qn
s=1 ωsr

∑R
r=1 1(z = zr)f(w, v̄sr; θ1). Notice that fix-

ing θ1,
∑R

r=1 1(z = zr)f(w, v̄sr; θ1) is constant, so this maximization problem amounts

to maximizing a convex objective function in ω subject to the linear constraints,

ω ∈ ∆R(qn). This inner problem can solved efficiently and reliably using standard

software for convex optimization. For example, the algorithm proposed in Kim et al.

(2020), is specialized for this setting and implemented in the R package mixsqp.

To solve the original maximum likelihood problem, therefore, we simply maximize

the profile likelihood function over θ1. Separating the maximization problem into this

inner and outer maximization significantly reduces the dimensionality of the problem,

without restricting the distribution of λk.

In order to efficiently solve the the outer likelihood maximization problem, it is

useful to be able to calculate the gradient of the profile likelihood function with respect

to θ1. This involves differentiating through the solution to the inner optimization

problem. In appendix C.3, we provide details of how this derivative is calculated, and

in the accompanying R package, we provide code to calculate the derivative of the

profile likelihood in this setup.

6 Monte Carlo simulations

In this section, we present results from Monte Carlo simulations which illustrate the

computational tractablity and finite-sample performance of the proposed estimator.

The data generating process (DGP) used in the simulations is based on the model

in Section 3.2 with both known and unknown heterogeneity. We include two time-

invariant covariates, one continuous and one discrete, which are independent of λi.

Assignment probabilities are derived from a model in which agents maximize the

following utility function,

ut(d, λk,i, Y
t−1
i , Zi, D

t−1
i ) = ρE(Yt(d)|λk,i, Y

t−1
i , Zi, D

t−1
i ) + ργ1(Dt,i = 2)λk,i + νi,t(d),
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where {νi,t(d) : t = 1, 2, 3, d = 1, 2} are mutually independent with an Extreme Value

Type 1 distribution. This utility function puts a weight on the expected outcome

of their choice and another term which depends on λk. This additional term can

reflect biased beliefs, heterogeneity in preferences, or a combination of both. λk is

distributed as a mixture of truncated normal random variables. The parameter values

used in the simulations are reported in Appendix C.4.

Table 1: Average computational times by sample size

N = 250 N = 500 N = 1000 N = 2000 N = 4000

Computational Time 0:24 0:31 0:55 2:15 3:32

We perform a Monte Carlo experiment, estimating parameters of the model with

200 simulations and sample sizes of 250, 500, 1, 000, 2, 000 and 4, 000. We use the sieve

MLE estimator described in Section 4, maintaining the parametric structure on the

assignment probabilities but estimating Fλk
nonparametrically using the sieve space

described in Section 5. The number of support points in the estimated distributions,

qn, grows at a rate of n1/3, from 62 to 158. There are 32 parameters in θ1.

With this specfication, computation remains tractable for these sample sizes. Av-

erage computational times to solve the profile MLE problem reported in Table 1 run

from half a minute to around three and half minutes.
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Table 2: Bias and Variance (×1, 000) of Finite Parameter Estimators

N = 250 N = 500 N = 1000 N = 2000 N = 4000

sq bias var sq bias var sq bias var sq bias var sq bias var

α1(2) 71.722 87.915 34.056 60.969 12.915 47.132 0.729 19.025 0.042 5.697

α2(1) 0.148 27.977 0.264 12.384 0.116 7.391 0.002 2.878 0.010 1.376

α2(2) 73.516 108.963 34.175 74.416 12.407 57.187 0.463 25.797 0.027 8.115

α3(1) 0.005 36.562 0.455 13.824 0.197 5.311 0.000 2.237 0.013 0.963

α3(2) 47.840 163.156 32.091 82.423 12.025 62.314 0.593 25.979 0.037 7.322

βz1,1(1) 0.513 10.084 0.399 5.220 0.137 3.172 0.016 1.486 0.000 0.721

βz1,1(2) 0.852 15.221 0.304 6.753 0.045 3.349 0.007 1.744 0.002 0.801

βz2,1(1) 0.837 16.296 0.659 7.859 0.392 4.464 0.038 1.849 0.006 0.803

βz2,1(2) 1.378 20.814 0.601 12.059 0.093 5.618 0.003 2.687 0.006 1.215

βz3,1(1) 0.408 9.298 0.243 3.879 0.156 1.886 0.028 1.030 0.007 0.569

βz3,1(2) 0.383 19.188 0.402 9.105 0.083 4.201 0.010 2.096 0.002 0.861

βz1,2(1) 0.606 58.909 0.362 23.238 0.361 11.159 0.027 4.772 0.004 2.295

βz1,2(2) 0.187 46.657 0.218 25.403 0.022 11.158 0.002 5.124 0.010 2.611

βz2,2(1) 0.005 40.411 0.001 19.844 0.001 9.046 0.002 4.347 0.041 2.476

βz2,2(2) 0.038 57.755 0.055 26.567 0.000 12.370 0.000 6.761 0.012 3.295

βz3,2(1) 0.495 40.189 0.079 19.943 0.017 7.637 0.000 3.943 0.022 2.046

βz3,2(2) 0.102 65.654 0.332 32.107 0.014 15.179 0.024 7.111 0.000 3.438

Fk1(1) 2.746 27.521 1.701 12.890 0.624 7.268 0.009 3.684 0.001 1.468

Fk2(1) 1.148 25.977 0.558 10.825 0.226 4.777 0.004 2.594 0.000 1.089

Fk2(2) 0.869 10.978 0.254 5.825 0.073 2.654 0.007 1.383 0.000 0.743

Fk3(1) 3.986 33.663 0.873 13.719 0.178 5.683 0.003 3.069 0.000 1.330

Fk3(2) 5.702 36.861 0.674 12.556 0.224 5.305 0.011 2.408 0.005 1.080

Fu1(2) 0.979 13.945 0.306 4.733 0.170 2.438 0.015 1.330 0.000 0.605

Fu2(1) 0.040 8.317 0.027 5.139 0.036 1.947 0.014 1.003 0.002 0.481

Fu2(2) 1.478 14.880 0.494 6.218 0.130 3.324 0.009 1.522 0.004 0.643

Fu3(1) 0.446 9.912 0.093 5.003 0.062 2.187 0.030 0.968 0.023 0.469

Fu3(2) 0.106 21.919 0.101 8.903 0.112 4.148 0.004 2.140 0.005 0.936

σ2(1) 0.453 2.477 0.091 1.241 0.030 0.672 0.007 0.298 0.001 0.136

σ2(2) 1.228 4.449 0.242 2.237 0.027 1.058 0.016 0.701 0.008 0.332

σ2
u 0.017 72.902 0.052 41.174 0.043 17.906 0.012 9.337 0.010 4.335

γ 3.791 103.555 0.562 34.226 0.192 18.098 0.357 10.611 0.043 5.779

ρ 3.317 121.851 0.165 51.065 0.031 25.777 0.012 11.329 0.077 4.724

All calculations are based on 200 Monte Carlo simulations of the DGP described in the main text. Squared

bias and variance of finite parameter estimates are multiplied times 1, 000

The squared bias and variance of the sieve estimator of the finite parameter sub-

vector, θ1, are presented in Table 2. (Note that all values in Table 2 are multiplied by
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1, 000.) For each of the parameters, the bias becomes negligible for all parameters rel-

ative to variance as sample size grows. For most parameter execpt the intercepts, this

bias is small even for small sample sizes. The variance declines at a rate consistent

with
√
n convergence of the mean squared error. This is consistent with Theorem 4

since the functional mapping the parameter space to a single element of θ1 is known

to be a regular functional.

To present results for the nonparametric estimator of the distribution of known

unobserved heterogeneity Fλk
, we focus on the quantiles of Fλk

. Let qα(F ) be the α

quantile of a random variable with the distribution F . For each value of α ∈ [0, 1],

we calculate the mean and the 5th and 95th percentile of the simulated distribution

of the estimator of qα(fλk
). The results are presented in Figure 1. The red line shows

the CDF of the true distribution of λk, while the blue lines that closely follow the

red line are the mean of the simulated distribution of the quantile estimators for each

sample size. Darker blue lines represent larger sample sizes. The blue lines above and

below the CDF are the 5th and 95th percentiles of the simulated distribution of the

quantile estimators.

The results indicate that the bias of the quantile estimators becomes negligible

in moderate sample sizes. The estimator broadly captures the shape of the true

distribution of λk, and also appears to converge toward the true distribution as the

sample size grows. We do not provide a formal result on the rate of convergence of

this parameter, but we expect this nonparametric estimator to converge at rate a

slower than
√
n. At a sample size of n = 4, 000, the simulated distribution of this

estimator is still relatively disperse.

Finally, Table 3 presents the variance and squared bias of the plug-in functional

estimator for the functionals discussed in section 2.1. We focus on the decomposition

of variance of lifetime earnings into forecastable and non-forecastable components at

time zero. Under the decomposition, and setting the discount rate at .5, for each
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Figure 1: Quantiles of Estimator of λk: 95% Coverage Intervals

-2

0

2

0.00 0.25 0.50 0.75 1.00
α

q α
(F

λ
k
)

Number of Observations 250 500 1000 2000 4000

Note: The red line shows the true distribution of λk. The blue lines show the mean, and

the 5th and 95th percentiles of the simulated distribution of the estimate of qα(fλk
).

choice sequence d = (d1, d2, d3), we calculate two functionals:

unknown : σ2
u

∑
1≤t1,t2≤3

(.95)t1+t2−2Fut1(dt1)Fut2(dt2) +
∑
1≤t≤3

(.95)2t−2σ2
t (dt)

known : V(λk)
∑

1≤t1,t2≤3

(.95)t1+t2−2Fkt1(dt1)Fkt2(dt2)

For moderate sample sizes, the squared bias is small relative to the variance, and like

the estimators of θ1, the variance appears to be consistent with a
√
r convergence

rate.
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Table 3: Bias and Variance of the Period 0 Lifetime Earnings Estimators

N = 250 N = 500 N = 1000 N = 2000 N = 4000

sq bias var sq bias var sq bias var sq bias var sq bias var

(1, 1, 1) known 0.007 0.994 0.000 0.451 0.001 0.214 0.002 0.136 0.001 0.067

(1, 1, 1) unknown 0.001 3.060 0.001 1.512 0.000 0.677 0.001 0.332 0.000 0.154

(1, 1, 2) known 0.003 1.456 0.012 0.697 0.005 0.380 0.001 0.225 0.001 0.095

(1, 1, 2) unknown 0.002 2.324 0.000 1.134 0.001 0.516 0.000 0.268 0.000 0.117

(1, 2, 1) known 0.313 1.774 0.130 0.931 0.041 0.530 0.000 0.282 0.000 0.111

(1, 2, 1) unknown 0.031 1.723 0.003 0.853 0.001 0.368 0.000 0.192 0.000 0.087

(1, 2, 2) known 0.218 3.134 0.173 1.533 0.047 0.876 0.000 0.412 0.000 0.155

(1, 2, 2) unknown 0.011 1.201 0.006 0.599 0.003 0.284 0.000 0.154 0.000 0.062

(2, 1, 1) known 0.235 1.492 0.065 0.819 0.018 0.363 0.000 0.223 0.000 0.097

(2, 1, 1) unknown 0.028 1.755 0.003 0.850 0.007 0.363 0.002 0.165 0.001 0.084

(2, 1, 2) known 0.143 2.432 0.075 1.125 0.021 0.560 0.000 0.324 0.001 0.137

(2, 1, 2) unknown 0.009 1.228 0.007 0.595 0.010 0.265 0.001 0.132 0.000 0.066

(2, 2, 1) known 1.051 3.036 0.295 1.556 0.072 0.734 0.002 0.380 0.000 0.174

(2, 2, 1) unknown 0.103 1.097 0.019 0.450 0.011 0.191 0.002 0.095 0.001 0.046

(2, 2, 2) known 0.482 5.843 0.247 2.771 0.032 1.562 0.003 0.761 0.000 0.330

(2, 2, 2) unknown 0.062 0.786 0.027 0.318 0.015 0.170 0.001 0.088 0.000 0.040

All calculations are based on 200 Monte Carlo simulations of the DGP described in the main text.

7 Conclusion

We provide new identification results for a general class of learning models, that

encompasses many of the models that have been considered in the applied literature.

We consider an environment where the researcher has access to panel data on choices

and realized outcomes only. As such, our results are widely applicable, including

in frequent environments where one does not have access to elicited beliefs data or

auxiliary selection-free measurements. We show that the model is point-identified

under two alternative sets of conditions. Our first set of conditions applies to a version

of the learning where we assume that the idiosyncratic shocks from the outcome

equations are normally distributed, a restriction that is very commonly imposed in

empirical Bayesian learning models. We also show that normality can be relaxed in

the case of a pure learning model, and establish identification for this class of models.
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We then derive a sieve MLE estimator for the model parameters and a particu-

lar class of functionals, which includes as a leading special cases the predictable and

unpredictable outcome variances. Notably, these variances can in turn be used to

evaluate the relative importance of uncertainty versus heterogeneity in lifecycle earn-

ings variability (Cunha et al., 2005). Under certain regularity conditions, the resulting

estimators are consistent and asymptotically normal. Importantly for practical pur-

poses, the profile likelihood based estimation procedure proposed in this paper can

be implemented at a modest computational cost.
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A Variance decompositions

We therefore consider a class of variance decomposition parameters which includes

both the t = 1 orthogonal decomposition as well as other decompositions that incor-

porate these learning and selection effects.

To define this class of parameters, consider a weighted sum of potential outcomes,

Y (ω, d) =
∑

t ωtYt(dt) for a sequence of choices d = {dt : t ≤ T} and weights,

ω = {ωt : t ≤ T}. Lifetime earnings as defined in Cunha and Heckman are a special

case of Y (ω, d), with ωt = 1(t ≥ t0)(1− ρ)t0−t, for some discount rate ρ < 1.

Next, define the agent’s information set, It = {Ds, Ys : s < t}∪{Zs : s ≤ t}∪{λk}.

Restricting attention to weighted sums where ωs = 0 for s ≤ t, the variance of

Y (ω, d) conditional on It can be understood as the variance that is due to the agent’s

uncertainty about a particular weighted sum of future potential outcomes at period t.

We refer to this as the posterior variance, because this is derived from the posterior

distribution of λu after performing a Bayesian update with the information up to It.

In particular, Lemma 1 the next section implies that the posterior variance has

the form, V (Y (ω, d)|It) = V u(Dt−1, Zt;ω, d), where,

V u(Dt, Z;ω, d) :=
∑

t1,t2>t

ωt1ωt2Futt(dt1)
TΣt(D

t−1, Z1)Fut2(dt2) +
∑
t1>t

ω2
t1
σ2
t1
(dt1)

where Σt(D
t−1, Z1) is the posterior variance of λu as written in Lemma 1.

At t = 1, the following variance decomposition provides a natural way to quantify

the relative importance of this source of variance:

V(Y (ω, d)|Z1 = z) = V u(∅, z;ω, d) +
∑

t1,t2≥1

ωt1ωt2Fkt1(dt1)Fkt2(dt2)V(λk|Z1 = z) (7)

This corresponds to the decomposition in Cunha and Heckman (2016) and has the

simple interpretation that the first term is the portion of variance in the lifetime

earnings that is due to uncertainty and the second part is due to heterogeneity.

For t > 1, the analysis is more complicated. For any t > 1, V u(Dt−1, z;ω, d) <

V u(∅, z;ω, d), because the realized outcomes are informative about the λu, but agents

35



also select Dt−1 based on their private information and the sequence of observed out-

comes. There are several different possible ways of quantifying the relative importance

of uncertainty which treat selection differently. The following are three alternatives:

V(Y (ω, d)|Dt = d, Z1 = z) = V u(dt, z;ω, d) + V(E(Y (ω, d)|It)|Dt = dt, Z = z) (8)

V(Y (ω, d)|Z1 = z) = E(V u(Dt, z;ω, d)) + V(E(Y (ω, d)|It)|Z = z) (9)

V(Y (ω, d)|Z1 = z) = V u(dt, z;ω, d) + Ṽ(Ẽ(Y (ω, d)|It)|Z = z) (10)

Decomposition (8) compares the variance of uncertainty to the total variance con-

ditional on choosing the sequence dt. This is a natural parameter to consider,

but it does not disentangle selection from learning. In particular, the ratio,

V u(dt, z;ω, d)/V(Y (ω, d)|Dt = dt, |Z1 = z) reflects both the effect of learning in the

numerator and selection in the denominator.

Decomposition (9) compares the total variance Y (ω, d) to the expected posterior

varince of Y (ω, d) after t periods. The expectation of V u(dt, z;ω, d) can be under-

stood as the uncertainty that a randomly choosen person would have in period t

after observering their outcomes and endogenously choosing actions based on that

information and their private information.

Finally decomposition (10) is based on a counterfactual distribution. Here Ẽ and

Ṽ represent the expectation and variance in a counterfactual distribution where Ds

does not depend on Is for s ≤ t. This decomposition compares the variance in Y (ω, d)

which is due to uncertainty vs. known heterogeneity among people randomly assigned

to the choice sequence dt.
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B Identification proofs and auxiliary results

In this section, we use the following notations: ϕ denotes the standard normal p.d.f.;

S(X) represents the support of a random variable X.

B.1 Proofs for Section 3.2

Proof of Lemma 1. We proceed inductively. First, by Assumption KL2 and the

definition of (E1,Σ1), λu | (Z1, λk) ∼ N (E1,Σ1). Second, for t > 1 suppose

λu | (Y t−2, Dt−2, Zt−1) ∼ N (Et−1,Σt−1) and that

fλu|Y t−1Dt−1Ztλk
(vu; y

t−1, dt−1, zt, vk)

∝(1) fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)

× fYt−1Dt−1Zt|Y t−2Dt−2Zt−1λ(yt−1, dt−1, zt; y
t−2, dt−2, zt−1, v)

=fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)fZt|Y t−1Dt−1Zt−1λ(zt; y
t−1, dt−1, zt−1, v)

× fYt−1(dt−1)|Y t−2Dt−1Zt−1λ(yt−1; y
t−2, dt−1, zt−1, v)fDt−1|Y t−2Dt−2Zt−1λ(dt−1; y

t−2, dt−2, zt−1, v)

∝(2) fλu|Y t−2Dt−2Zt−1λk
(vu; y

t−2, dt−2, zt−1, vk)fYt−1(dt−1)|Zt−1λ(yt−1; zt−1, v)

∝(3) exp

(
−1

2
(vu − Et)

⊺Σ−1
t (vu − Et)

)
ϕ

(
yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt)− v⊺uFut(dt)

σt(dt)

)
∝ exp

(
−1

2
(vu − Et)

⊺Σ−1
t (vu − Et)

)
× exp

(
−1

2

(
vu − Fut(dt) (Fut(dt)

⊺Fut(dt))
−1 (yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt))

)⊺
× Fut(dt)Fut(dt)

⊺

σ2
t (dt)

(
vu − Fut(dt) (Fut(dt)

⊺Fut(dt))
−1 (yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt))

))
=(4) exp

(
−1

2
(vu − Et+1)

⊺Σ−1
t+1(vu − Et+1)

)
.

Display (1) follows from Bayes’ theorem. Display (2) holds since Assumption

KL1 has the following three implications: first Zt ⊥⊥ λ | (Y t−1, Dt−1, Zt−1); second

ϵt−1(dt−1) ⊥⊥ (Y t−2, Dt−1, Zt−1, λ) ⇒ ϵt−1(dt−1) ⊥⊥ (Y t−2, Dt−1, Zt−2, ) | (Zt−1, λ) ⇒

Yt−1(dt−1) ⊥⊥ (Y t−2, Dt−1, Zt−2) | (Zt−1, λ); third Dt−1 ⊥⊥ λu | (Y t−2, Dt−2, Zt−1, λk).
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Display (3) holds from the induction assumption and Assumptions KL1 and KL2.

Display (4) follows from the definitions in Lemma 1.

The following corollary of Lemma 1 will be used in the proof to Theorem 1.

Corollary 2. Let Assumptions KL1 and KL2 hold. Then Yt conditional upon

(Y t−1, Dt, Zt, λk) = (yt−1, dt, zt, vk) is distributed

N
(
αt(dt) + z⊺t βt(dt) + λkFkt(dt) + E⊺

t Fut(dt), Fut(dt)
⊺ΣtFut(dt) + σ2

t (dt)
)

Proof of Corollary 2. For t > 1,

fYt|Y t−1DtZtλk
(yt; y

t−1, dt, zt, vk)

=

∫
fYt(dt)|Y t−1DtZtλ(yt; y

t−1, dt, zt, v)fλu|Y t−1DtZtλk
(vu; y

t−1, dt, zt, vk)dvu

=(1)

∫
fYt(dt)|Ztλ(yt; zt, v)fλu|Y t−1Dt−1Ztλk

(vu; y
t−1, dt−1, zt, vk)dvu

∝(2)

∫
ϕ

(
yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt)− v⊺uFut(dt)

σt(dt)

)
× exp

(
(vu − Et)

⊺Σ−1
t (vu − Et)

)
dvu

= ϕ

(
yt − αt(dt)− z⊺t βt(dt)− vkFkt(dt)− E⊺

t Fut(dt)√
F ⊺
ut(dt)ΣtFut(dt) + σ2

t (dt)

)

Equality (1) holds because Assumption KL1 implies Yt(dt) ⊥⊥ (Zt−1, Dt, Y t−1 | Zt, λ)

and Dt ⊥⊥ λu | (λk, Z
t, Y t−1, Dt−1). Equality (2) holds because Assumption KL1 and

KL2 imply Lemma 1 and ϵt(d) | (Zt, λ) ∼ N(0, σt(d)
2). A similar argument applies

for t = 1.

Proof of Theorem 1. The proof is in three parts. First, we use Corollary 2 and Bruni

and Koch (1985) to identify the distribution of Yt | (Dt, Y t−1, Zt, λk) up to an affine

transformation of λk. The second part is to use the normalization (Assumption

KL3) to show that the affine transformation is the identity function. Finally, we

use identification of the distribution of (Y t, Dt, Zt, λk) to identify the distribution of

(Y t, Dt, Zt, λ).
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Part 1. By Corollary 2, fYt|Y t−1DtZt(yt; y
t−1, dt, zt) =∫

fYt|Y t−1DtZtλk
(yt; y

t−1, dt, zt, vk)dfλk|Y t−1DtZt(vk; y
t−1, dt, zt)dvk.

I.e., the nonparametrically identified fYt|Y t−1DtZt(yt; y
t−1, dt, zt) is a mixture of Gaus-

sians. To identify the component and mixture distributions, we will apply Bruni and

Koch (1985, Theorem 3). First, for any t, dt and z1, define

Λ =
{
vk 7→ (αt(dt) + z⊺t β(dt) + vkµ1(θ

t) + µ2(θ
t), σ(θt)) : θt ∈ Θt

}
,

where θt = (αt, βt, F t
k, F

t
u, σ

t,Σu), Θ
t is the corresponding subset of Θ, and

µ1(θ
t) =

(
Fkt(dt)− F ⊺

ut(dt)Σt

t−1∑
s=1

Fus(ds)
Fks(ds)

σ2
s(ds)

)
,

µ2(θ
t) = Fut(dt)

⊺Σt

t−1∑
s=1

Fus(ds)
yis − αs(ds)− z⊺isβs(ds)

σ2
s(ds)

,

σ(θt) = Fut(dt)
⊺ΣtFut(dt) + σ2

t (dt).

For example, for t = 1, σ(θ1) = Fu1(d1)
⊺Σu(z1)Fu1(d1) + σ2

1(d1). Notice that

λkFkt(dt) + E⊺
t Fut(dt) = λkµ1(θ

t) + µ2(θ
t). Under Assumptions KL4(A,B,C) and

KL5(C), 4, Λ ⊂ Λ4 where Λ4 is defined in Bruni and Koch (1985, p. 1344). Thus

Bruni and Koch (1985, Theorem 3) applies and

(
(αt(dt) + z⊺t β(dt) + π(vk)µ1(θ

t) + µ2(θ
t), σ(θt), dfλk|Y t−1DtZt(π(vk); y

t−1, dt, zt)
)
(11)

is identified with π an unknown non-constant affine function which may depend on

the history (yt−1, dt, zt).

To conclude this part, we show that if π is identity for each history

(ds, ys−1, zs) s = 1, 2, . . . , t, then fY tDtZtλk
(yt, dt, zt, vk) is point identified (i.e.,

(αt(dt), βt(dt), µ1(θ
t), µ2(θ

t), σ(θt), dfλk|Y t−1DtZt(vk; y
t−1, dt, zt)) is point identified).

For t = 1, as (µ1(θ
1), µ2(θ

1)) = (Fk1(d1), 0) identification follows immediately from

display (11) and Assumption KL4(E).
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Now suppose (αs(ds), βs(ds), µ1(θ
s), µ2(θ

s), σ(θs), dfλk|Y s−1DsZs(vk; y
s−1, ds, zs)) is

point identified for each s < t. From equation (11),

(
(αt(dt) + z⊺t β(dt) + vkµ1(θ

t) + µ2(θ
t), σ(θt), dfλk|Y t−1DtZt(vk; y

t−1, dt, zt)
)

is identified for every (dt, yt−1, zt). µ1(θ
t) is identified from variation in vk. Assump-

tion KL4(E) implies identification of

(
αt(dt) + µ2(θ

t), β(dt)
)
.

Then µ2(θ
t) =

∑t−1
s=1 (ys − αs(ds)− z⊺sβs(ds))

∂
∂ys

(αt(dt) + µ2(θ
t)), from which fol-

lows identification of αt(dt).

Part 2. To show the affine function π is identity, we proceed in three steps. First,

we show π is identity for the normalized choice D1 = d1, which provides identification

of S(λk). Second, we use knowledge of S(λk) to prove the affine function must satisfy

| ∂
∂v
π(v)| = 1 for any history (yt−1, dt, zt). Third, we use restrictions on the panel

dimension to conclude π is identity for each history (yt−1, dt, zt).

First, Let t = 1 and d1 as in Assumption KL3(A), then since µ1(θ
1) = Fk1(d1)

and µ2(θ
1) = 0, from Part 1 we have identified:

(
z⊺1β(d1) + π(vk), σ(θ1), dfλk|D1Z1(π(vk); d

1, z1)
)
,

with π(vk) = π0+π1vk. Since Fk1(d1) = 1, π1 = 1. We now show π0 = 0. First notice

that π0 does not depend on (d1, z1) since the support of λk | (D1 = d1, Z1 = z1) is

the same for each (d1, z1). Now suppose that for any z1, z
⊺
1β(d1)+ π0 = z⊺1 β̃(d1)+ π̃0.

In particular for z̃1 ̸= z1, (z1 − z̃1)
⊺(β(d1)− β̃(d1)) = 0. By Assumption KL4(E), we

conclude β(d1)− β̃(d1) = 0. This in conjunction with α1(d1) = 0 gives π0 = π̃0 = 0.

Second, for each fixed (yt−1, dt, zt), dfλk|Y t−1DtZt(π(vk); y
t−1, dt, zt) is identified

from part 1. Then, by Assumption KL4(D),

S(λk) = df−1
λk|Y t−1DtZt [R+] = (dfλk|Y t−1DtZt ◦ π)−1[R+],
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where R+ = {x ∈ R : x > 0}. And since π is bijective,

(π ◦ df−1
λk|Y t−1DtZt)[R+] = df−1

λk|Y t−1DtZt [R+].

In particular

π(sup dF−1
λk|Y t−1DtZt [R+]) = sup df−1

λk|Y t−1DtZt [R+],

π(inf df−1
λk|Y t−1DtZt [R+]) = inf df−1

λk|Y t−1DtZt [R+].

The only affine functions that satisfy these identities are π+(v) = v and π−(v) =

(v̄ + v)− v for v = inf df−1
λk|Y t−1DtZt [R+] and v̄ = sup df−1

λk|Y t−1DtZt [R+].

Third, it remains to show that π = π+. To do so, it will be useful to define:

µ̃ts(d
t−1) = Σt

Fus(ds)

σ2
s(ds)

It will also be useful to denote µj(d
t) = µj(θ

t), to emphasize the dependence of µj

on dt. Then notice µ1(d
t) = Fkt(dt) − Fut(dt)

∑t−1
s=1 µ̃ts(d

t−1)Fks(ds) and µ2(d
t) =

Fut(dt)
⊺
∑t−1

s=1 µ̃ts(d
t−1) (Yis − αs(ds)− Z⊺

isβs(ds)).

The proof is inductive. First consider t = 1. From Assumption KL3(A),

Fk1(d1) = 1. For d̃1 ̸= d1, given part 1 and ∂
∂x
|π(x)| = 1, Fk1(d̃1) is identified

up to sign as ∂
∂vk

(
α1(d̃1) + z⊺1β(d̃1) + Fk1(d̃1)π(vk)

)
. Similarly, for d2 = (d2, d1),

µ1(d
2) = Fk2(d2)−Fu2(d2)

⊺µ̃21(d
1)Fk1(d1) is identified up to sign and Fu2(d2)

⊺µ̃21(d
1)

are identified as ∂
∂x

(α2(d2) + β(d2)
′z2 + π(vk)µ1(d

2) + µ2(d
2)) for x = vk and x = y1,

respectively (since µ2(d
2) = Fu2(d2)

⊺µ̃21(d
1)(y1 − α1(d1)− z⊺1β1(d1)) and µ1(d

2) does

not depend on y1). Repeating this argument for the choice sequence (d̃1, d2) yields

identification of (Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1)) up to sign and Fu2(d2)
⊺µ̃21(d̃

1).

Summarizing, we have identification of Fu2(d2)
⊺µ̃21(d

1), Fu2(d2)
⊺µ̃21(d̃

1),

and (−1)j1Fk1(d̃1), (−1)jd2 (Fk2(d2) − Fu2(d2)
⊺µ̃21(d

1)), and (−1)j̃d2 (Fk2(d2) −

Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1)) with (j1, j̃d2 , jd2) ∈ {0, 1}3. We show only the correct choice

of sign will satisfy

Fu2(d2)
⊺µ̃21(d̃

1)(−1)j1Fk1(d̃1) + (−1)j̃d2 (Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1))

= Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) + (−1)jd2 (Fk2(d2)− Fu2(d2)
⊺µ̃21(d

1)Fk1(d1)).
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Suppose jd2 = 0. It is straightforward to show the following implications:

(j1, j̃d2) = (1, 1) =⇒ Fk2(d2) = 0,

(j1, j̃d2) = (0, 1) =⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1) = 0,

(j1, j̃d2) = (1, 0) =⇒ Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1)) = 0.

The three implications contradict Assumptions KL5 (B), (C) and (D), respectively.

Now suppose jd2 = 1, then

(j1, j̃d2) = (0, 0) =⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) = 0,

(j1, j̃d2) = (1, 1) =⇒ Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) = 0,

(j1, j̃d2) = (0, 1) =⇒ Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1)− Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) = 0,

(j1, j̃d2) = (1, 0) =⇒ Fk2(d2)− Fu2(d2)
⊺µ̃21(d̃

1)Fk1(d̃1)− Fu2(d2)
⊺µ̃21(d

1)Fk1(d1) = 0.

The first three implications contradict Assumptions KL5 (C), (D) and (A), re-

spectively. Finally, we show that the final equality contradicts Assumption KL5

(E). For each d ∈ {d2,i ∈ S(D2) : i = 1, 2, . . . , p} ∪ {d̃2,i ∈ S(D2) : i =

1, 2, . . . , p} of Assumption KL5 (E), by considering the sequences (d1, d), (d̃1, d),

(−1)jd(Fk2(d) − Fu2(d)
⊺µ̃21(d

1)Fk1(d1)) and (−1)j̃d(Fk2(d) − Fu2(d)
⊺µ̃21(d̃

1)Fk1(d̃1))

is identified with (jd, j̃d) ∈ {(1, 0), (0, 0)}. Since Fk1(d̃1) ̸= 0 by Assumption KL5

(B), for the sign of Fk1(d̃1) to be constant across sequences, we can rule out all signs

except
(
j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , p)

)
∈ {(0, (0, 0, 0, 0)p) , (1, (1, 0, 1, 0)p)}. If(

j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , p)
)
= (1, (1, 0, 1, 0)p), then

0 = vec (Fk2(d2,1), . . . , Fk2(d2,k))− (Fu2(d2,1) . . . Fu2(d2,k))
⊺
(
µ̃21(d̃

1)Fk1(d̃1) + µ̃21(d
1)Fk1(d1)

)
= vec

(
Fk2(d̃2,1), . . . , Fk2(d̃2,k)

)
−
(
Fu2(d̃2,1) . . . Fu2(d̃2,k)

)⊺ (
µ̃21(d̃

1)Fk1(d̃1) + µ̃21(d
1)Fk1(d1)

)
,

which contradicts Assumption KL5(E).

For the induction step, suppose π is identity for each his-

tory (ds, ys−1, zs) s = 1, . . . , t − 1 and consider choice sequences

dt−1 = ((dt−2)⊺, dt−1)
⊺ and d̃t−1 = ((dt−2)⊺, d̃t−1)

⊺ for dt−1 ̸= d̃t−1.
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From part 1, (αt(dt) + βt(dt)
′zt + µ1(d

t−2, d, dt)π(vk) + µ2(d
t−2, d, dt))

is identified for d = dt−1, d̃t−1 and π ∈ {π+, π−}.

By the preceding arguments, (Fut(dt)
∑t−1

s=1 µ̃ts(d
t−1)Fks(ds)),

Fut(dt)
∑t−1

s=1 µ̃ts(d̃
t−1)Fks(d̃s). (−1)j1

(
Fkt(dt)− Fut(dt)

⊺
∑t−1

s=1 µ̃ts(d
t−1)Fks(ds)

)
, and

(−1)j2
(
Fkt(dt)− Fut(dt)

⊺
∑t−1

s=1 µ̃ts(d̃
t−1)Fks(d̃s)

)
is identified with (j1, j2) ∈ {0, 1}2

As before we show that only that only (j1, j2) = (0, 0) is consistent with the

identity

(−1)j1

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

)
+ Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

= (−1)j2

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

)
+ Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

For this, consider

(j1, j2) = (0, 1) =⇒

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s)

)
= 0,

(j1, j2) = (1, 0) =⇒

(
Fkt(dt)− Fut(dt)

t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)

)
= 0,

(j1, j2) = (1, 1) =⇒ Fut(dt)
t−1∑
s=1

µ̃ts(d
t−1)Fks(ds)− Fut(dt)

t−1∑
s=1

µ̃ts(d̃
t−1)Fks(d̃s) = 0,

which contradict Assumptions KL5 (C), (C) and (A), respectively. Thus π is the

identity function for the history (dt, yt−1, zt).

Part 3. From parts 1 and 2, fY TDTZTλk
, and thus h, is identified. First,

fY TDTZTλk

(
yT , dT , zT , vk

)
=

∫
fY T (dT )DTZTλ

(
yT , dT , zT , v

)
dvu

=

∫
fYT (dT )|ZT ,λ (yT ; zT , v) fDT |Y T−1DT−1ZTλk

(dT ; y
T−1, dT−1, zT , vk)

× fZT |Y T−1DT−1ZT−1(zT ; y
T−1, dT−1, zT−1) . . . fY1(d1)|Z1λ (y1; z1, v)

× fD1|Z1λk
(d1; z1, vk)fλu|Z1λk

(vu; z1, vk)fZ1λk
(z1, vk)dvu.
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This implies that on the support of fY TDTZTλk
,

fY TDTZTλk

(
yT , dT , zT , vk

)
fD1Z1λk

(d1, z1, vk)
∏T

t=2 fDtZt|Y t−1Dt−1Zt−1λk
(dt; yt−1, dt−1, zt, vk)

=

∫ T∏
t=1

fYt(dt)|Ztλ (yt; zt, v) fλu|λkZ1(vu; vk, z1)dvu.

I.e., the function is equal to the probability density function of a jointly normal

random variable with mean

(αt(dt) + z⊺t βt(dt) + vkFkt(dt))
T
t=1 ,

and covariance matrix

Fu(d)
⊺Σu(z1)Fu(d) + diag

(
σ2
t (dt) : t = 1, . . . , T

)
,

where Fu(d) = (Fu1(d1)Fu2(d2) . . . FuT (dT )). From parts 1 and 2, the components

of the mean function are identified. The components of the covariance matrix are

identified under Assumptions KL3 (B) and KL5 (F).

Proof of Corollary 1. Fix (d1, d2, . . . , dp) as in the statement and define Fu =

(Fu1(d1)Fu2(d2) . . . Fup(dp)), λ̃u = F ⊺
u (λu − µu), ϵ̃t(d) = ϵt(d) − ct(d), λ̃k = b +

Fk1(d1)λk where b = α1(d1) + Fu1(d1)
⊺µu + c1(d1). Finally, define F̃kt(dt) =

Fk1(d1)
−1Fkt(dt), F̃ut(dt) = F−1

u Fut(dt), and α̃t(d) = αt(d)−F̃kt(d)b+Fut(d)
⊺µu+ct(d).

We then have that

Yt(d) = α̃t(d) + Z⊺
t βt(d) + λ̃⊺

uF̃ut(d) + λ̃kF̃kt(d) + ϵ̃t(d),

E[ϵ̃t(d)] = 0 and E[λ̃u | Z1 = z, λk = vk] = 0 so that the reparameterized model sat-

isfies Assumption KL2 (with Σu(Z1) = F ⊺
u Σ̃u(Z1)Fu). Also, F̃k1(d1) = 1, α̃1(d1) = 0

and F̃p ≡
(
F̃u1(d1)F̃u2(d2) . . . F̃up(dp)

)
= Ip×p so the reparameterized model satisfies

Assumption KL3. By Theorem 1, θ̃ =
(
(α̃t, βt, F̃kt, F̃ut, σ

2
t )

T
t=1,Σu, h̃, Fλ̃k

)
is identi-

fied, where h̃ and Fλ̃k
are the CCPs and conditional distribution of λ̃k, respectively.
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This, in turn, implies the identification of the distribution of Cjt for j = k, u. Finally,

α̃t + z⊺βt +Qα[C̃kt + C̃ut + ϵ̃]

=αt − F̃ktb+ Futµu + ct + z⊺βt +Qα[C̃kt + C̃ut + ϵ̃]

=αt − F̃ktb+ Futµu + ct + z⊺βt +Qα[Ckt + F̃ktb+ Cut − F ⊺
utµu + ϵt − ct]

=αt + z⊺βt +Qα[Ckt + Cut + ϵt]

B.2 Proofs for Section 3.3

In this section denote L = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|da < ∞}

and LA = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|fA(a)da < ∞} for a random

variable A with p.d.f. fA.

Proof. Let z ∈ S(Z) be given and fix a choice sequence d = (d1, d2, . . . , dT ) whose

first p elements satisfy Assumption L3, and define W1 = (Y1, . . . , Yp), W2 = Yp+1

and W3 = (Yp+2, . . . , YT ). Let L123 : LW3 → L and L13 : LW3 → L be defined as

[L123m](w1) =∫
fY DZ(y, d, z)

fD1Z1(d1, z1)
∏T

t=2 fDtZt|Y t−1Dt−1Zt−1(dt, zt; yt−1, dt−1, zt−1)
m(w3)dw3,

and [L13m](w1) =
∫
[L123m](w1)dw2. In addition, define

L1λ : L → L [L1λm](w1) =

∫ p∏
t=1

fYt(dt)|Ztλ(yt; zt, v)m(v)dv,

Lλ3 : LW3 → L [Lλ1m](v) =

∫ T∏
t=p+2

fYt(dt)|Ztλ(yt; zt, v)fλ|Z1(v; z1)m(w1)dw1,

Dλ : LΛ → LΛ [Dλm](v) = fYp+1(dp+1)|Zp+1λ(yp+1; zp+1, v)m(v).
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The following derivation shows L123 = L1λDλLλ3. First,

fY DZ(y, d, z) =

∫
fY DZλ(y, d, z, v)dv

=

∫
fYT (dT )|ZTλ(yT ; zT , v)fDTZT |Y T−1DT−1ZT−1(dT , zT ; y

T−1, dT−1, zT−1)

× fYT−1(dT−1)|ZT−1λ(yT−1; zt−1, v) . . . fD1Z1(d1, z1)fλ|Z1(v; z1)dv.

Then, by Assumption L4 (A),

fY DZ(y, d, z)

fD1Z1(d1, z1)
∏T

t=2 fDtZt|Y t−1Dt−1Zt−1(dt, zt; yt−1, dt−1, zt−1)

=

∫ T∏
t=1

fYt(dt)|Ztλ(yt; zt, v)fλ|Z1(v; z1)dv,

and therefore that

[L123m](w1) =

∫ (∫ T∏
t=1

fYt(dt)|Ztλ(yt; zt, v)fλ|Zt(v; zt)dv

)
m(w3)dw3

=

∫ p+1∏
t=1

fYt(dt)|Ztλ(yt; zt, v)

(∫ T∏
t=p+2

fYt(dt)|Ztλ(yt; zt, v)fλ|Zt(v)m(w3)dw3

)
dv

=

∫ p∏
t=1

fYt(dt)|Ztλ(yt; zt, v)
(
fYp+1(dp+1)|Zp+1λ(yp+1; zp+1, v)[Lλ3m](v)

)
dv

=

∫ ∫ p∏
t=1

fYt(dt)|Ztλ(yt; zt, v)[DλLλ3m](v)dv

=[L1λDλLλ3m](w1),

and L123 = L1λDλLλ3. Similarly, L13 = L1λLλ3.

From here, Assumptions L1, L2, L3, L4 (B), and L5 imply the arguments of

Theorem 1 Freyberger (2018) apply5, so that Ft(dt), fYt(dt)|Ztλ(·; zt, ·) and fλ|Z1(·; z1)
5The listed assumptions imply the assumptions of Freyberger (2018, Theorem 1) with the primary

exception of Assumption L1 that differs from Assumption N5 in Freyberger (2018) by allowing period

t variables to impact the evolution of period t′ covariates for t′ > t. However, since Assumption L1

implies fYt(dt)|Ztλ(y; z, v) = fϵt(dt)(y − αt(dt) − βt(dt)
⊺z − F ⊺

t v), Freyberger (2018, Lemma 1) and

D’Haultfoeuille (2011) may be applied with small modification.
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are identified for each t for the given (dt, z). Given identification of fYt(dt)|Ztλ(·; zt, ·)

for each zt ∈ S(Zt) and Ft(dt), Assumption L4 (C) implies identification of αt(dt) and

βt(dt) and thus fϵt(dt).

Next, given an arbitrary t and dt, define d̃ by replacing the tth element of d with

dt. Then let ρ be a permutation (1, 2, . . . , T ) 7→ (t1, t2, . . . , tT ) such that t 7→ t1 and

define W̃1 = (Yt1 , Yt2 , . . . , Ytp), W̃2 = (Ytp+1 , Ytp+1 , . . . , YtT ),

L̃2λ : L → L [L̃2λm](w̃2) =

∫ T∏
i=p+1

fYti (dti )|Ztiλ
(yti ; zti , v)fλ|Z1(v; z1)m(v)dv,

L̃λ1 : LW̃1
→ L [L̃λ1m](v) =

∫ p∏
i=1

fYti (dti )|Ztiλ
(yti ; zti , v)m(w̃1)dw̃1,

and L̃21 : LW̃1
→ L as

[L̃21m](w̃2) =

∫
fY DZ(y, d, z)

fD1Z1(d1, z1)
∏T

t=2 fDtZt|Y t−1Dt−1Zt−1(dt, zt; yt−1, dt−1, zt−1)
m(w̃1)dw̃1.

As before, L̃21 = L̃2λL̃λ1. Since L̃2λ and L̃21 are identified and injective, L̃λ1 is

identified by L̃−1
2λ L̃21 = L̃λ1 and thus αt(dt), βt(dt), Ft(dt), fϵ(dt).

C Estimation appendix

C.1 Consistency of sieve MLE

In this section we introduce conditions for the sieve maximum likelihood estimator

defined in Equation (6) to be consistent for the true model parameters. We begin by

imposing smoothness restrictions on the unknown functions. To do so, given γ > 0,

ω ≥ 0 and X a subset of a Euclidean space, let Λλ(X ) denote a Hölder space equipped

with the Hölder norm ∥h∥Λγ (that is, for k the largest integer smaller than γ, Λλ(X )

is a space of functions h : X → R having at least k continuous derivatives, the kth of

which is Hölder continuous with exponent γ−k). Then define a weighted Hölder ball

with radius c ∈ (0,∞) as Λγ,ω
c (X ) = {h ∈ Λγ(X ) : ∥h(·)[1 + ∥ · ∥2E]−ω∥Λγ ≤ c}, where

∥ · ∥E is the Euclidean norm.
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Without loss of generality, suppose the CCP function ht(d
t, zt, yt−1, vk) depends

on (dt, zt, yt−1) via some measureable vector-valued function (dt, zt, yt−1) 7→ jt which

is known up to
(
(αst, βst, Fkst, Fust, σst)

T
st=1,Σu

)
. This is without loss of generality

since the function may be identity. Other examples include rational learning where

jt ∈ Rp(p+3)/2+2 includes sufficient statistics for λu, and a sort of myopia where jt ∈

R3+2 depends on the history only via the previous period (dt−1, zt−1, yt−1). Write Jt =

(J⊺
1,t, J

⊺
2,t)

⊺ and Zt = (Z⊺
1,t, Z

⊺
2,t)

⊺ where J1,t, Z1,t are continuous random variables and

J2,t, Z2,t are random variables with finite support and, with some abuse of notation,

redefine the CCP function as ht(j1,t, j2,t, vk). Define

Ht = Λγ1,ω1
c (S(λk)× S(J1,t)) ,

F = {f : S(λk, Z1,1) → R
∣∣f(·, z1) is càdlàg , f(v, ·) ∈ Λγ2,ω2

c (S(Z1,1))}

Gt = Λγ3,ω3
c (S(Z1,t+1)× S(Yt)× S(Z1,t)) .

The use of a weighted Holder space enables us to allow the support of the con-

tinuous random variables to be unbounded. Though not required for consistency,

Assumption E6 places restrictions on (γ1, γ2, γ3), the parameters that govern the

smoothness of the function classes. Next, to simplify notation we make the following

assumption which strengthens Assumption KL1:

Assumption E1. For any t, FZt+1|Y tDtZt = FZt+1|YtDtZt .

Define k1,t = |S(J2,t)|, k2 = |S(Z2,1)|, and k3,t = |S(Z2,t+1, Dt, Z2,t)|. Notice that

Θ = Θ1 ×Hk1,1
1 × · · · × Hk1,T

T ×Fk2 × Gk3,1
1 × · · · × Gk3,T−1

T−1 and we denote an element

of Θ as θ = (θ1, h1, . . . , hT , fλ, g1, . . . , gT−1). Define the norms on Hk1,t
t , Fk2 and Gk3,t

t

as follows:

∥ht∥∞,ω1 = sup
j2∈S(J2,t)

∥ht(·, j2, ·)[1 + ∥ · ∥2E]−ω1∥∞,

∥fλ∥∞,ω2 = sup
z2∈S(Z2,1)

∥fλ (·, (·, z2)) [1 + ∥ · ∥2E]−ω2∥∞,

∥gt∥∞,ω3 = sup
(z′2,d,z2)∈S(Z2,t+1,Dt,Z2,t)

∥gt ((·, z′2); ·, d, (·, z2)) [1 + ∥ · ∥2E]−ω3∥∞,
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where ∥ · ∥∞ is the uniform norm. Finally, define a metric d on Θ as

d(θ, θ̃) = ∥θ1 − θ̃1∥E +
T∑
t=1

∥ht − h̃t∥∞,ω̃1 + ∥fλ − f̃λ∥∞,ω̃2 +
T−1∑
t=1

∥gt − g̃t∥∞,ω̃3 ,

for scalars ω̃1, ω̃2, ω̃3. Now, let Hn,t, Fn and Gn,t be sieve spaces for Ht, F and Gt

respectively. Then Θn = Θ1 ×Hk1,1
n,1 × . . .Hk1,T

n,T ×Fk2
n × Gk3,1

n,1 × · · · × Gk3,T−1

n,T−1 and

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n).

Assumption E2. θ∗ ∈ Θ and (Θ, d) is compact.

Assumption E3. For each n ≥ 1, Θn ⊆ Θn+1 ⊆ Θ and Θn is compact under d. As

n → ∞, minθ∈Θn d(θ, θ0) → 0.

Assumption E4. E[ℓ(Wi, θ)] is continuous at θ = θ∗

Assumption E5.

(i) For each n, E[supθ∈Θn
ℓ(Wi, θ)|] is finite.

(ii) There is a non-zero s < ∞ and integrable random variable g(Wi) such that

∀ θ, θ̃ ∈ Θn, d(θ, θ̃) < δ =⇒ |ℓ(Wi, θ)− ℓ(Wi, θ̃)| ≤ δsg(Wi).

(iii) For all δ > 0, logN(δ1/s,Θn, d) = o(n).

The identification assumptions imply θ∗ = argmaxθ∈Θ E[ℓ(Wi, θ)] and for all θ ∈

Θ \ {θ∗}, E[ℓ(Wi, θ
∗)] ≥ E[ℓ(Wi, θ)]. By assuming compactness of Θ, we ensure that

θ∗ is a well-separated maximum of E[ℓ(Wi, θ)]. Assumption E3 requires the sieve

space Θn to be a good approximation to Θ. Assumption E4 requires the population

criterion to be continuous. Finally, Assumption E5 is related to Condition 3.5 in

Chen (2007).

Theorem 3 follows from Remark 3.3 in Chen (2007), so its proof is omitted.
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C.2 Plug-in sieve estimator

We assume a linear sieve space and limit its complexity.

Assumption E6. (1) Hn,t, Fn and Gn,t are linear sieves of length

MHn,t, MFn and MGn,t respectively, where MHn,t = O(n
1

2γ1/(1+dim(J1,t))+1 ),

MFn = O(n
1

2γ2/(1+dim(Z1,1))+1 ), and MGn,t = O(n
1

2γ3/(dim(Z1,t+1)+1+dim(Z1,t))+1 ). (2)

min
{

γ1
1+dim(J1,t)

, γ2
1+dim(Z1,1)

, γ3
dim(Z1,t+1)+1+dim(Z1,t)

}
> 1/2.

Assumption E6 controls the rate at which the number of sieve terms grow. To

achieve this, part (2) of Assumption E6 requires that the CCP functions have adequate

smoothness. In applications, it is common to assume a parametric model for ht, in

which case the above curse-of-dimensionality is avoided.

The next assumption strengthens E3 and ensures the number of sieve terms grows

sufficiently fast.

Assumption E7. minθ∈Θn d(θ, θ
∗) = o(n−1/4).

Assume ℓ is pathwise differentiable and define an inner product on Θ as

⟨θ1 − θ∗, θ2 − θ∗⟩ = − ∂2

∂τ1∂τ2
E [ℓ (Wi, θ

∗ + τ1 (θ1 − θ∗) +τ2 (θ2 − θ∗))] |τ1=0,τ2=0 ,

(12)

with the corresponding norm for θ ∈ Θ as

∥θ − θ∗∥2 ≡ − ∂2

∂τ 2
E [ℓ (Wi, θ

∗ + τ (θ − θ∗))]

∣∣∣∣
τ=0

. (13)

Assumption E8. There is C1 > 0 such that for all small ε > 0

sup
{θ∈Θn:∥θ−θ∗∥⩽ε}

Var (ℓ (Wi, θ)− ℓ (Wi, θ
∗)) ⩽ C1ε

2

Assumption E9. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{θ∈Θn:∥θ−θ∗∥⩽δ}

|ℓ (Wi, θ)− ℓ (Wi, θ
∗)| ⩽ δsU (Wi)

with E ([U (Wi)]
γ) ⩽ C2 for some γ ⩾ 2.
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The following theorem is now a consequence of Theorem 3.2 in Chen (2007) or

Theorem 1 in Shen and Wong (1994).

Theorem 5. Let (Yit, Dit, Zit : t = 1, . . . , T )ni=1 be i.i.d. data where T ≥ 2p + 1 and

Assumptions KL1-KL5 and Assumptions E1-E9 hold. Then ∥θ̂ − θ∗∥ = op(n
−1/4).

Given the preceding result, we focus on a a shrinking neighborhood of θ∗. Let

N0 ≡
{
θ ∈ Θ: ∥θ − θ∗∥ = o(n−1/4), d(θ, θ∗) = o(1)

}
,

and Nn ≡ N0∩Θn. Define θ
∗
n = argminθ∈Nn

∥θ − θ∗∥. Let V denote the closed (under

∥ · ∥) linear span of N0 centered at θ∗, and define Vn as the analogous closure of Nn.

Then we define a linear approximation to ℓ(W, θ) − ℓ(W, θ∗) as the directional

derivative of ℓ at (W, θ∗) in the direction (θ − θ∗):

∂ℓ (W, θ∗)

∂θ
[θ − θ∗] ≡ ∂ℓ (W, θ∗ + τ(θ − θ∗))

∂τ

∣∣∣∣
τ=0

.

Likewise, let ∂f(θ∗)
∂θ

[v] = ∂f(θ∗+τv)
∂τ

∣∣∣
τ=0

for any v ∈ V .

Assumption E10. Let T be an epsilon ball about 0 ∈ R. (1) for all θ ∈ N0

and W , the derivative ∂ℓ (W, θ∗ + τ(θ − θ∗)) /∂τ exists for all τ ∈ T ; (ii) for all

θ ∈ N0, E [ℓ (W, θ∗ + τ (θ − θ∗))] is finite for each τ ∈ T ; (3) for all θ ∈ N0,

E
[
supτ∈T

∣∣ ∂
∂τ
ℓ (W, θ∗ + τ [θ − θ∗])

∣∣] < ∞.

Assumption E10 provides sufficient conditions for the set V to be a Hilbert space

under ⟨·, ·⟩6. Define v∗n to be the Riesz representer of ∂f(θ∗)
∂θ

[·] on Vn, which exists

under Assumption E11.

Assumption E11. (1) v 7→ ∂f(θ∗)
∂θ

[v] is a linear functional. (2) If limn→∞ ∥v∗n∥ is

finite then ∥v∗n − v∗∥ × ∥θ∗n − θ∗∥ = o(n−1/2) where v∗ is the limit of v∗n. Otherwise∣∣∣∂f(θ∗)∂θ
[θ∗n − θ∗]

∣∣∣/∥v∗n∥ = o(n−1/2). (3) supθ∈N0

∣∣∣f(θ)−f(θ∗)− ∂f(θ∗)
∂θ

[θ−θ∗]
∣∣∣

∥v∗n∥
= o(n−1/2).

6See Chen and Liao (2014, p. 642).
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Assumption E11 imposes some restrictions on the functional of interest θ 7→ f(θ).

Part (1) imposes that the directional derivative is a linear functional, a mild condition

that is satisfied by our examples in Section 4. Part (2) is a restriction on the growth

rate of the dimension of the sieve space. Part (3) restricts the linear approximation

error of f(·) in a neighborhood of θ∗, for which sufficient conditions could be stated

in terms of the smoothness of f(·) and the growth rate of the dimension of the sieve

space. See Chen et al. (2014) for further discussion.

Let u∗
n := v∗n

∥v∗n∥
and εn = o

(
n−1/2

)
. Let µn{g(W )} := n−1

∑n
i=1 [g (Wi)− E[g (Wi)]]

denote the centered empirical process indexed by the function g.

Assumption E12. (1) µn{∂ℓ(W,θ∗)
∂θ

[v]} is linear in v ∈ V .

sup
θ∈Nn

µn

{
ℓ (W, θ ± εnu

∗
n)− ℓ(W, θ)− ∂ℓ (W, θ∗)

∂θ
[±εnu

∗
n]

}
= Op

(
ε2n
)

For some positive sequence ηn → 0,

sup
θ∈Nn

∣∣∣∣∣E [ℓ(W, θ)− ℓ (W, θ ± εnu
∗
n)]−

∥θ ± εnu
∗
n − θ∗∥2 − ∥θ − θ∗∥2

2
(1 +O (ηn))

∣∣∣∣∣ = O
(
ε2n
)

Assumption E13.
√
nµn

{
∂ℓ(W,θ∗)

∂θ
[u∗

n]
}
→d N(0, 1)

Theorem 4 is a direct application of Lemma 2.1 in Chen and Liao (2014) so its

proof is omitted.

C.2.1 Sieve Riesz representer for variance decomposition

Here we discuss whether the following functional f(θ) = g1(θ1)V (λk) + g2(θ1),

with gi, i = 1, 2 known real valued functions, may or may not satisfy Assump-

tion E11. For simplicity set θ = (θ1, θ2) with θ1 ∈ Rdim(θ1) and fλk
= θ2. Then

f(θ) = g1(θ1)
∫
x2dθ2(x) + g2(θ1) (where

∫
is understood as the Riemann–Stieltjes
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integral) and

∂f(θ)

∂τ
[v] =

∂f(θ + τv)

∂τ

∣∣∣
τ=0

=
∂

∂τ

(
g1(θ1 + τv1)

∫
x2d[θ2 + τv2](x) + g2(θ1 + τv1)

)∣∣∣∣∣
τ=0

= v1
∂

∂θ1
g1(θ1)

∫
x2dθ2(x) + g1(θ1)

∫
x2dv2(x) + v1

∂

∂θ1
g2(θ1).

For E11 (1), v 7→ ∂f(θ∗+τv)
∂τ

is plainly a linear map. For the remaining parts of E11, it

will be useful to derive the the sieve Riesz representer. We proceed following Section

3.3.1. in Chen et al. (2014). Note ∂f(θ∗)
∂θ2

[Pkn(·)] = ∂
∂τ
f((θ∗1, θ

∗
2 + τPkn))|τ=0 where Pkn

are the kn sieve terms for sample size n. Then

∂f(θ∗)

∂θ2
[v(·)] = g1(θ

∗
1)

∫
x2dv(x)

An element of our choice of sieve space takes the form f(x) =
∑kn

j=1 βj[max{x −

tj, 0}]0 =∗ ∑kn
j=1 βj1{x ≥ tj},7 so that an element of the vector Pkn is 1{x ≥ tj}.

Therefore
∂f(θ∗)

∂θ2
[1{tj ≤ ·}] = g1(θ

∗
1)

∫
x2d1{x ≥ tj} = g1(θ

∗
1)t

2
j .

It then follows that

∥∂f(θ
∗)

∂θ2
[Pkn(·)]∥2E = g1(θ

∗
1)

2

kn∑
j=1

t4j −→ ∞,

and our functional is thus irregular by remark 3.2 in Chen et al. (2014)8. Since the

support of λk is bounded, tj is bounded as kn grows, so ∥v∗n∥2 ≍ ∥∂f(θ∗)
∂θ2

[Pkn(·)]∥2E ≍ kn.

As a result of this discussion, under the additional regularity condition of the above

footnote and with the first-order spline sieve, we can provide the following ‘lower-level’

replacement of E11 for the functional considered in this remark:

Assumption E11†. max
{∣∣∣∂f(θ∗)∂θ

[θ∗n − θ∗]
∣∣∣ , supθ∈N0

∣∣∣f(θ)− f(θ∗)− ∂f(θ∗)
∂θ

[θ − θ∗]
∣∣∣} =

o((knn)
−1/2).

7The asterisk is since we use the convention 00 = 0.
8This is under the additional condition that the sieve information matrix (i.e., E[− ∂ℓ

∂θ∂θ′ ] is

non-singular).

53



C.3 Implicit Differentiation

Here we show how to calculate derivative the profile likelihood function. Let N (r) be

the set of observations with zi = z(r), and let ω·,r = (ω1r, . . . , ωqn,r). The log likelihood

for this set of observations is,

Lr(ω·,r, θ1) =
∑

i∈N (r)

ℓ(wi; θ1, ω·,r) =
∑

i∈N (r)

log

qn∑
s=1

ωsrf(wi, v̄s,r; θ1)

Let ω∗
·,r(θ) be the solution that maximizes Lr(ω·,r, θ1) with respect to ω·,r subject

to the constraint that ω·,r ∈ ∆(qn), and let L∗
r(θ1) = L(ω∗

·,r(θ1), θ1) be the profile

likelihood function. The gradient of the profile likelihood function is,

dL∗
r(θ1)

dθ1
=
∑

i∈N (r)

∂ℓ(wi; θ1, ω
∗
·,r(θ1))

∂θ1
+

∂ℓ(wi; θ1, ω
∗
·,r(θ1))

∂ω∗
·,r(θ1)

dω∗
·,r(θ1)

dθ1

The derivatives of the likelihood function can be calcaluated directly. The derivative
dω∗

·,r(θ1)

dθ1
is defined implicitly by the KKT conditions of the inner optimization step.

We next show how to calculate it.

Proposition 3.3 in Kim et al. (2020) shows that for each θ1, maximizing Lr(ω·,r, θ1)

subject to ω·,r ∈ ∆(qn) is equivalent to maximizing Lr(ω·,r, θ1) +
∑qn

s=1 ωs,r subject to

ωs,r ≥ 0 for all s.

The equality constraints in the KKT conditions of this equivalent problem are

Gr(ω·,r, λr; θ1) = 0 where λr ∈ Rqn are the dual parameters, and,

Gr(ω·,r, λr, θ1) =

∑i∈N (r)
f(wi;v̄·,r;θ1)∑qn

s=1 ωs,rf(wi,v̄·,r;θ1)
+ ιqn + diag(λr)

λr ◦ ω·,r


Since Gr is constant along the solution (ω∗

·,r, λ
∗)(θ1) := (ω∗

·,r(θ1), λ
∗(θ1)), for all θ1,

we have,

0 =
∂Gr(ω

∗(θ1), λ
∗(θ1), θ1)

∂(ω∗
·,r(θ1), λ

∗
r(θ1))

d(ω∗
·,r, λ

∗
r)(θ1)

dθ1
+

∂Gr(ω
∗(θ1), λ

∗(θ1), θ1)

∂θ1
.

This implicitly defines
dω∗

·,r(θ1)

dθ1
assuming that the partial derivate of Gr with respect

to its first two arguments is invertible.
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The partial derivatives of Gr can be calculated as follows,

∂Gr(ω·,r, λr, θ1)

∂(ω·,r, λr)
=

−∑n
i=1

f(ωi;v̄·,r;θ1)f(ωi;v̄·,r;θ1)T

(
∑qn

s=1 ωsrf(ωi;v̄·,r;θ1))
2 I

diag(λr) diag(ω·,r)


∂Gr(ω·,r, λr, θ1)

∂θ1
=

−∑n
i=1

∇θ1
f(ωi;v̄·,r;θ1)

∑qn
s=1 ωsrf(wi,v̄s,r;θ1)−f(wi;v̄·,r;θ1)

∑qn
s ωsr∇θ1

f(wi,v̄rs;θ1)

(
∑qn

s=1 ωsrf(ωi;v̄s,r;θ1))
2

0


Summing over r, we obtain the derivative of the full profile likelihood function,

dL∗(θ1)
dθ1

=
∑

r
dL∗

r(θ1)
dθ1

Finally, note that from the KKT conditions, Gr(ω·,r, λr, θ1) = 0 imply that λ∗
r =

−
(
1 +

∑n
i=1

f(wi;v̄sr;θ1)∑qn
s′=1

ω∗
s′rf(wi;v̄s′r;θ1

)

)
. Therefore, it is possible to calculate this gradient

even if the values of λ∗
r(θ1) available from the maximization procedure used.

C.4 Details on DGP

This section gives further details on the DGP used for Monte Carlo simulations dis-

cussed in Section 6. The values of the finite parameters used in the DGP are given

in the table below.

Table 4: Finite parameter values

α1(1) = 0 βz1,1(1) = −0.5 βz1,2(1) = −0.58 Fu1(1) = 1 Fk1(1) = 0.3

α2(1) = 0.1 βz2,1(1) = −0.8 βz2,2(1) = −0.83 Fu2(1) = 1.05 Fk2(1) = 0.35

α3(1) = 0.2 βz3,1(1) = 0.12 βz3,2(1) = −0.83 Fu3(1) = 1.01 Fk3(1) = 0.33

σ2(1) = 0.5

α1(2) = −0.1 βz1,1(2) = 0.13 βz1,2(2) = 0.71 Fu1(2) = 0.4 Fk1(2) = 1

α2(2) = −0.22 βz2,1(2) = 0.89 βz2,2(2) = −0.36 Fu2(2) = 0.36 Fk2(2) = 1.05

α3(2) = −0.33 βz3,1(2) = 0.32 βz3,2(2) = −0.36 Fu3(2) = 0.44 Fk3(2) = 1.02

σ2(2) = 0.7

σ2
u = 1.5 ρ = 2.0 γ = 0.5

The distribution of λk is a finite mixture of three truncated normal distributions.
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The means of the component distributions are (−1.2, 0, 1.5) and the variances of the

component distributions are (.2, .1, .3), and the weights of the mixing distribution are

(.4, .3, .3). Each component distribution is truncated at the third standard deviation

of its distribution.

The distribution of the covariates Z = (Z1, Z2) is as follows: Z1 has a standard

normal distribution and Z2 as a Bernoulli distribution with equal weights. We assume

that Z1 and Z2 are independent from each other and from λ

C.5 DGP with risk aversion

In this section, we present results from an alternative DGP where the choice prob-

lem incorporates risk aversion and biased beliefs. We adopt a specification in which

agents maximize utility function in each period which incorporates risk aversion and

subjective (possibly biased) beliefs. The utility that individual i derives from choice

d in period t is,

Ui,t(d) := Eit

(
Yit(d)

1−γ

1− γ

)
+ ηi(d)

where, Eit is the expectation under individual i’s subjective beliefs over λu,i given

the information up to period t. {ηi,t(d)} are mutually independent with an Extreme

Value Type 1 distribution. This specification has a constant relative risk aversion

(CRRA) functional form with an additive choice shock.

We assume that individuals’ subjective beliefs over λu,i are:

λu,it ∼ N(Ei,t + Fb(d)λk,i,Σi,t)

where Ei,t,Σi,t are the correct posterior mean and variance of λu,i given the informa-

tion up to period t − 1. This subjective belief process allows agents to have biased

beliefs that can be correlated with the known part of their unobserved heterogeneity,

λk.
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Under this specification, expected utility has the following analytical solution,

Ui,t(dt) =

exp

(
µi,t(dt)(1− γ) + 1

2
σi,t(dt)(1− γ)2

)
1− γ

+ ηi,t(dt) (14)

where the i-specific mean and variance are,

µi,t(d) = αt(dt) + βt(d)
′Zi + Fkt(dt)λk,i + Fut(dt)

′(Ei,t + Fb(dt)λk,i)

σi,t(d) = Fut(dt)
′Σi,tFut(d) + σ2

t (dt).

Lemma 1, implies that this can written as Ui,t(d) = ui,t(d) + ηi,t(d), with,

ui,t(d) =
1

1− γ
exp

( ∑
h∈Dt−1

1(Dt−1 = h)(πt,h,d,0 + π′
t,h,d,1Z + πt,h,d,2λk + π′

t,h,d,3Y
t−1
i )

)
where the coefficients are derived from (14) and from lemma 1. The linear index in

the previous equation has |D|t−1∗(t+dim(Z)−1) terms. Hence, with T = 3, |D| = 2,

and dim(Zt) = 2, this amounts to a total of 76 coefficients in π.

A naive approach to estimate ui,t(d) nonparametrically, would be to use a tensor

product of polynomials (λk, Z, Y
t−1, Dt−1) as the sieve space. That is, for a univariate

random variable Z, let Pq(Z) = sp({1, Z, . . . , Zq}). Assume Dt is binary, and let

δt = 1(Dt = 1), then the sieve space is,

Pq(λk)⊗ Pq(Z1)⊗ · · · ⊗ Pq(Y1)⊗ Pq(δ1)⊗ · · · ⊗ Pq(Yt−1)⊗ Pq(δt−1).

This sieve space is simply the linear span of the basis functions,{
λj1
k Z

j2
1 Zj3

2

∏
1≤s<t

Y 2+2s
s δ3+2s

s : 0 ≤ js ≤ q, s = 1, . . . , 3 + 2(t− 1)

}
For an q-order polynomial, the number of terms would be (q+1)3+(q+1)5+(q+1)7,

which grows very quickly in practical terms. (To include third-order terms, i.e., q = 3,

this would involve 17, 472 basis functions).

An alternative approach we consider here is to instead assume that we know that

the researcher is willint to assume that

ui,t(d) = φ

( ∑
h∈Dt−1

1(Dt−1 = h)(πt,h,d,0 + π′
t,h,d,1Z + πt,h,d,2λk + π′

t,h,d,3Y
t−1
i )

)
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for some unknown function φ. Since the argument of φ is scalar-valued, this means

that the nonparametric estimation problem is greatly simplified to estimating a scalar-

valued function. For this we use the sieve space of polynomials, with the order growing

at the rate of n1/3 with 3 terms with n = 500 and 6 terms for n = 4, 000.

The finite parameters are the same as in Table ??, with the added risk aversion

parameter γ, which we set to 1.5. λ and Z are generated the same as in that DGP.

With the additional π parameters to estimate, the θ1 has a total of 103 parameters.

Given this large number of parameters to estimate, we expect n = 250 to be too small

a sample size to perform well, and begin the Monte Carlo simulations with a sample

size of n = 500.
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Table 5: Bias and Variance (×1, 000) of Finite Parameter Esti-

mators: DGP with Risk Aversion

N = 500 N = 1000 N = 2000 N = 4000

sq bias var sq bias var sq bias var sq bias var

α1(2) 58.444 45.007 13.495 17.952 3.892 18.241 0.011 5.015

α2(1) 0.155 18.224 0.031 9.468 0.049 4.342 0.007 1.215

α2(2) 58.712 40.678 12.966 19.647 1.656 21.692 0.373 7.563

α3(1) 3.700 28.283 0.102 6.040 0.019 3.987 0.024 1.210

α3(2) 66.751 35.834 22.634 21.400 3.018 16.469 0.027 6.707

β1,1(1) 0.268 5.490 0.002 3.218 0.031 1.606 0.017 0.724

β1,1(2) 0.379 5.207 0.342 3.462 0.131 1.475 0.026 0.818

β2,1(1) 0.031 6.463 0.003 4.190 0.004 1.905 0.000 1.097

β2,1(2) 0.279 7.294 0.485 3.842 0.221 1.891 0.034 0.730

β3,1(1) 0.449 5.089 0.011 3.202 0.006 1.305 0.011 0.728

β3,1(2) 0.192 6.269 0.371 3.830 0.049 1.618 0.008 0.855

β1,2(1) 0.047 31.005 0.206 10.995 0.112 4.917 0.093 2.757

β1,2(2) 1.122 25.134 0.074 10.377 0.305 6.969 0.091 3.012

β2,2(1) 0.020 26.534 0.654 10.006 0.038 4.102 0.028 2.648

β2,2(2) 0.434 27.052 0.002 14.966 0.628 8.992 0.387 2.961

β3,2(1) 0.011 23.634 0.118 9.195 0.194 4.541 0.000 2.585

β3,2(2) 0.296 24.200 0.012 14.879 0.634 10.490 0.050 3.340

Fk1(1) 0.000 20.762 1.497 7.116 0.103 2.797 0.002 1.175

Fk2(1) 0.063 9.571 2.413 9.610 0.822 4.292 0.144 1.725

Fk2(2) 0.268 4.907 0.008 2.631 0.248 2.035 0.051 0.842

Fk3(1) 1.224 18.830 1.460 9.878 0.266 3.991 0.054 1.446

Fk3(2) 0.021 12.969 0.683 3.869 0.022 2.054 0.001 0.998

Fu1(2) 0.582 5.416 0.223 2.282 0.108 1.271 0.034 0.637

Fu2(1) 0.320 4.044 0.024 1.464 0.064 0.511 0.057 0.336

Fu2(2) 0.664 6.729 0.300 3.981 0.022 1.169 0.000 0.699

Fu3(1) 0.001 4.267 0.017 1.480 0.066 0.632 0.048 0.294

Fu3(2) 2.357 6.900 1.241 3.281 0.059 1.369 0.002 1.070

σ2(1) 0.036 0.912 0.006 0.276 0.006 0.206 0.001 0.081

σ2(2) 0.097 0.260 0.002 0.159 0.001 0.057 0.000 0.024

σ2
u 3.062 12.636 0.252 4.785 0.119 3.063 0.324 1.800

All calculations are based on 200 Monte Carlo simulations of the DGP described in the

main text. Squared bias and variance of finite parameter estimates are multiplied times

1, 000
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Figure 2: Quantiles of Estimator of λk: 95% Coverage Intervals: DGP with

Risk Aversion
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Note: The red line shows the true distribution of λk. The blue lines show the mean, and

the 5th and 95th percentiles of the simulated distribution of the estimate of qα(fλk
).
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