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Abstract

We provide semiparametric identification results for a broad class of learning

models in which continuous outcomes depend on three types of unobservables:

i) known heterogeneity, ii) initially unknown heterogeneity that may be revealed

over time, and iii) transitory uncertainty. We consider a common environment

where the researcher only has access to a short panel on choices and realized out-

comes. We establish identification of the outcome equation parameters and the

distribution of the three types of unobservables, under the standard assumption

that unknown heterogeneity and uncertainty are normally distributed. We also

show that, absent known heterogeneity, the model is identified without making

any distributional assumption. We then derive the asymptotic properties of a

sieve MLE estimator for the model parameters, and devise a tractable profile

likelihood based estimation procedure. Monte Carlo simulation results indicate

that our estimator exhibits good finite-sample properties.
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1 Introduction

Learning models, in which agents have imperfect information about their environment

and update their beliefs over time, are frequently used in economics. These models

have received particular interest in various subfields in empirical microeconomics, in-

cluding industrial organization and health (see, e.g., Ackerberg, 2003; Coscelli and

Shum, 2004; Crawford and Shum, 2005; Abbring and Campbell, 2005; Chan and

Hamilton, 2006; Yang, 2020; Aguirregabiria and Jeon, 2020, for a survey in the con-

text of oligopoly competition), labor economics (see, e.g., Miller, 1984; Antonovics

and Golan, 2012; Pastorino, 2015; Hincapié, 2020; Pastorino, 2022) and economics of

education (see, e.g., Arcidiacono, 2004; Zafar, 2011; Stinebrickner and Stinebrickner,

2012; Stange, 2012; Thomas, 2019; Kinsler and Pavan, 2021; Arcidiacono et al., 2023).

Since the seminal work of Erdem and Keane (1996), learning models have also been

popular in the marketing literature (see Ching et al., 2013, for a survey). However,

while learning models are often estimated, much remains to be known about the

identification of this important class of models.

In this paper we provide new semiparametric identification results for a general

class of learning models. We consider an environment where the researcher has access

to a short panel on choices and realized outcomes only. As such, our results are widely

applicable, including in frequent situations where one does not have access to elicited

beliefs data, or to a vector of selection-free measurements of unobserved individual

heterogeneity. Specifically, we consider throughout our analysis a potential outcome

model where individual i’s potential outcome in period t from assignment d is given

by

Yi,t(d) = X⊺
i,tβt,d + (X∗

i )
⊺λt,d + ϵi,t(d), (1)

where Xi,t is a vector of explanatory variables associated with individual i in period t

(including an intercept), X∗
i denotes a vector of latent individual effects (or factors),

ϵi,t(d) is a transitory shock, and (β⊺
t,d, λ

⊺
t,d)

⊺ is an unknown parameter vector. While
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interactive fixed effects models of this kind have been the object of much interest

in econometrics, a key distinctive feature of the setup considered in this paper is

the existence of two different types of individual effects. Namely, we assume the

individual effect X∗
i consists of two components: X∗

k,i, which are supposed to be

known by the agent, and X∗
u,i which are initially unknown but may be learned over

time. We complement this potential outcome model with a flexible choice model, in

which agent i’s assignment in period t can depend arbitrarily on contemporaneous

and lagged explanatory variables, assignments and realized outcomes. This framework

encompasses most of the decision models that have been considered in the learning

literature.

We first establish that the model is identified under two alternative sets of condi-

tions. Our first and main identification result applies to a setup where, consistent with

most of the Bayesian learning models that have been considered in the literature, we

assume that the transitory shocks from the outcome equations (ϵi,t(d)), as well as the

unknown heterogeneity component (X∗
u,i), are normally distributed. In contrast, the

distribution of the known heterogeneity component (X∗
k,i) is left unspecified. From

the observation that the distribution of realized outcomes conditional on past choices

and outcomes is a mixture of normal distributions, we leverage results from Bruni and

Koch (1985) to establish identification of the joint distribution of realized outcomes,

choices and known heterogeneity component.

We then also show that a pure learning model, with X∗
u,i as the only source of

permanent unobserved heterogeneity, remains identified without making any distri-

butional assumption. A crucial distinction from the general case is that, from the

econometrician’s perspective, this model is one of selection on observables only, as

individual choices depend on beliefs about X∗
u,i only through prior realized outcomes,

choices and covariates. This feature allows us to build on insights from the inter-

active fixed effects literature, in particular Freyberger (2018), in order to establish

identification.
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We propose to estimate the model parameters using a sieve maximum likelihood

estimator which we show to be consistent. We then focus on a general class of

functionals of the model parameters, which includes as special cases economically

relevant quantities, such as the predictable and unpredictable outcome variances.

These variances can in turn be used to evaluate the relative importance of, e.g.,

uncertainty vs. heterogeneity in the overall lifecycle earnings variability - a question

that has been the object of much interest in labor economics (see, e.g., Cunha et al.,

2005; Huggett et al., 2011; Cunha and Heckman, 2016; Gong et al., 2019). We show

that, under mild regularity conditions, the resulting estimators are consistent and

asymptotically normal. We implement our sieve maximum likelihood estimator using

a profile likelihood based procedure. Importantly for practical purposes, the resulting

procedure only involves a modest computational cost. Monte Carlo simulation results

further indicate that our estimator exhibits good finite-sample properties.

Related literatures

Our paper contributes to several strands of the literature. First and foremost, we

add to a set of papers that study the identification of learning models, generally in

the context of specific applications (see, e.g., Abbring and Campbell, 2005; Arcidi-

acono et al., 2023; Gong, 2019; Pastorino, 2022). A key distinction with most of

the papers in this literature is that we only impose mild restrictions on the choice

process. Importantly, we remain agnostic about how choices depend on individual

beliefs about X∗
u,i, while allowing these beliefs to depend arbitrarily on past choices

and realized outcomes. Particularly relevant for us is recent complementary work by

Pastorino (2022), which establishes formal identification results in a different context

of a two-sided learning model where workers and firms have imperfect information.

Key to the strategy proposed in that paper is to leverage for identification particu-

lar mixture representations of selected one-dimensional outcomes. Related mixture

representations also play an important role in our analysis.
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Our paper also fits into a literature that focuses on the identification of Marko-

vian dynamic discrete choice models in the presence of persistent unobserved hetero-

geneity (see, among others, Heckman and Navarro, 2007; Hu and Schennach, 2008;

Kasahara and Shimotsu, 2009; Hu and Shum, 2012; Sasaki, 2015; Hu and Sasaki,

2018; Aguirregabiria et al., 2021; Bunting, 2022). Unlike these papers, we do not

impose a Markov structure, since current beliefs and decisions are allowed to depend

on the entire history of past outcomes and decisions.1 More broadly, our analysis is

related to the literature that deals with the identification of mixture models (see, for

example, Compiani and Kitamura, 2016; Kitamura and Laage, 2018, and references

therein). In particular, central to our main identification result is the observation

that the distribution of current outcomes conditional on the sequence of past choices

and outcomes is a mixture of normal distributions.

Finally, since the outcome equation in our model involves interactions between

unobserved individual- and time-specific effects, our paper also fits into the literature

that examines the identification and estimation of panel data models with interactive

fixed effects (see, e.g., Bai, 2009; Gobillon and Magnac, 2016; Freyberger, 2018).

Among these papers, our identification strategy is most closely related to Freyberger

(2018). An important distinction though comes from the fact that Freyberger (2018)

considers a selection-free environment. In contrast, individual choices, along with the

associated selection issues affecting the potential outcomes, play a central role in our

analysis.

1Although our framework is more general, Bayesian learning models often naturally possess a
first order Markov structure. There are, however, several additional significant differences between
our paper and the listed literature. Notably, Hu and Shum (2012) focus on scalar unobserved
heterogeneity, whereas the existence of multivariate unobserved heterogeneity is fundamental to our
main setting. Beyond this, several of their assumptions may fail to hold in our setup. For instance,
since the support of the latent beliefs is larger than the support of the choices, the requirement
that the observed variables be invertible measurements of the latent variables (Hu and Shum, 2012,
Assumption 2) will generally fail to hold.
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Organization of the paper

The remainder of the paper is organized as follows. Section 2 introduces and discusses

the set-up of the model. Section 3 contains our main identification results, both for

the general case and for the case of a pure learning model. We discuss in Section 4

the estimation and inference on the parameters of interest, before turning in Section

5 to the implementation of our estimator and its finite-sample performances. Finally,

Section 6 concludes. The appendix gathers all the proofs, additional material on the

variance decompositions, the implementation of our estimator, and further Monte

Carlo simulation results.

Notation: for a given random variable A, we denote by a its realization, S(A)

indicates its support, FA denotes its cumulative distribution function, qα[A] its α ∈

[0, 1] quantile, whereas fA indicates its probability mass or density function. For any

sequence (a1, a2, . . . , aS) and s ≤ S, we let as = (a1, a2, . . . , as). A ⊥⊥ B | C indicates

that A and B are statistically independent conditional on C. Finally, unless stated

otherwise, we suppress the individual subscript i from all random variables in the

remainder of the paper.

2 Set-up

Throughout the paper we consider a setup where potential outcomes have an inter-

active fixed effect structure of the following form:

Yt(d) = X⊺
t βt,d +X∗

kλ
k
t,d + (X∗

u)
⊺λu

t,d + ϵt(d), (2)

where d represents a possible value of individual i’s assignment in period t, Yt(d) is

a scalar potential outcome variable associated with assignment d, Xt is a vector of

observed explanatory variables, X∗ := (X∗
k , (X

∗
u)

⊺)⊺ are unobserved (to the econo-

metrician) factors, (β⊺
t,d, λ

⊺
t,d)

⊺ with λt,d := (λk
t,d, (λ

u
t,d)

⊺)⊺ is an unknown parameter
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vector, and ϵt(d) is an idiosyncratic random shock. For example, Yt(d) may represent

potential log-wages in occupation d. Yt(d) may depend on some observed individual

and possibly time-varying characteristics (Xt) as well as on multiple dimensions of

unobserved abilities (X∗), which may play different roles in different occupations (see,

e.g., Hincapié, 2020; Arcidiacono et al., 2023). This setup is fairly general and can be

applied in a wide range of contexts. For instance, Yt(d) may alternatively represent

the potential log-quantity of a particular product sold by a firm in a given market

d (see, e.g., Berman et al., 2019). This framework can also be used in the health

context, where Yt(d) may correspond to a health outcome measure associated with a

certain drug (e.g., CD4 cell counts associated with a particular HIV drug treatment,

as in Chan and Hamilton, 2006), or to the body mass index associated with a certain

type of diet.

Importantly, we allow for two distinct types of latent individual effects. Namely,

X∗
k is assumed to be known by the agent, while X∗

u is initially unknown but may

be gradually revealed over time. For example, worker i’s log-wage in occupation d

at time t, Yt(d), may depend on her unobserved (to the econometrician) occupation

specific productivity, X∗
kλ

k
t,d+(X∗

u)
⊺λu

t,d. As the worker accumulates more experience,

she may update her belief about X∗
u, and thus about the initially unknown portion

of productivity in each of the possible occupations.

Turning to the choice and learning process, the key restriction that we place on

an individual’s assignment in period t (denoted as Dt) is that it does not directly

depend on the unknown component of heterogeneity. Specifically, we assume that:

Dt ⊥⊥ X∗
u | X t, Y t−1, Dt−1, X∗

k . (3)

The above conditional independence assumption highlights the asymmetry between

the two types of latent effects: assignments may arbitrarily depend on the known

component of the latent effect X∗
k , but not on the unknown component of the latent

effect X∗
u. However, we do allow the assignment rule to depend arbitrarily on current
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and lagged covariates, as well as lagged outcomes and choices. As a result, we do

not restrict how agents form their beliefs about X∗
u, provided that such beliefs are a

measurable function of X t, Y t−1, Dt−1 and X∗
k . We also remain agnostic about how

assignments depend on agents’ beliefs over X∗
u.

This choice process accommodates a wide range of models that have been con-

sidered in the learning literature. In particular, this framework is consistent with a

setup where agents are rational and Bayesian updaters, so that beliefs coincide with

the true distribution of X∗
u conditional on their information set at a given point in

time, which may include all realized variables and model parameters. Alternatively,

this accommodates situations where individual decisions may not involve beliefs over

the distribution of X∗
u, or depend instead on myopic beliefs that are formed based

on the prior-period choice and outcome. This setup also allows for heterogeneous

beliefs formation, where, for instance, some agents may have rational expectations

about their unobserved characteristic X∗
u, while others may have biased (e.g. over-

optimistic) beliefs.

Finally, we denote the conditional choice probability (CCP) function as

ht(d
t, xt, yt−1, x∗

k) :=Pr(Dt = d | X t = xt, Y t−1 = yt−1, Dt−1 = dt−1, X∗
k = x∗

k).

These CCPs play a central role in our identification analysis. In the following section,

we provide sufficient conditions under which the CCPs - which are latent objects

because of the conditioning on X∗
k - are identified. In empirical applications it is very

common to impose some structure on the choice process. For example, in a dynamic

discrete choice framework it is standard to assume that

Dt = argmax
d∈S(Dt)

{v(d,Xt, X
∗
k , St) + ηt(d)} ,

where the conditional value function v is known up to a finite-dimensional vector of

parameters, St are sufficient statistics for the conditional distribution of X∗
u at time
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t, and ηt follows a known distribution. Having identified the CCPs, one can then

apply standard identification arguments from the dynamic discrete choice literature

to identify v (see, e.g., Hotz and Miller, 1993; Aguirregabiria and Mira, 2010; Chiong

et al., 2016), and then recover the primitives of the choice model (see, e.g., Arcidiacono

et al., 2023).

Uncertainty and learning. A central feature of the model is the distinction be-

tween three forms of unobserved heterogeneity: (1) permanent heterogeneity that is

known to the agent, X∗
k , (2) permanent heterogeneity that is initially unknown to

the agent, X∗
u, and (3) transitory time-varying shocks, ϵ = {ϵt(d) : d ∈ S(Dt), t =

1, 2, . . .}. This provides a framework for quantifying the importance of uncertainty in

outcomes. At t = 1, the variance in future outcomes can be decomposed into a com-

ponent that depends on (X∗
u, ϵ) and a component that depends on X∗

k . Cunha et al.

(2005) and Cunha and Heckman (2016) consider this decomposition in the context of

educational choice, decomposing the variance in lifetime earnings into a component

that is predictable when deciding to go to college and a component that is not.

In our framework, the importance of uncertainty can change over time as agents

learn about X∗
u by observing realized outcomes and covariates, and use this infor-

mation to self-select into different alternatives. We provide in Appendix B.2 a class

of variance decomposition parameters which includes both the t = 1 decomposition

as well as t > 1 decompositions that incorporate these learning and selection effects.

These decompositions, which are identified from the model parameters, each provide

different ways of quantifying the importance of uncertainty to future outcomes. After

establishing identification of the model, we will pay special attention to estimation

and inference of a broad class of functionals that encompasses these kinds of variance

decompositions.
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3 Identification

We first provide in Subsection 3.1 a high-level overview of the underlying reweighting

scheme that plays an important role in both of the proposed identification strategies.

We then discuss identification in the leading case with both known and unknown

unobserved heterogeneity (Subsection 3.2), before turning to the pure learning case

where the only source of permanent unobserved heterogeneity is assumed to be ini-

tially unknown to the agent (Subsection 3.3).

3.1 Reweighting strategy

Key to the identification problem analyzed in this paper is how to recover the con-

ditional distributions of potential outcomes (i.e., fYt(dt)|Xt,X∗ for each t and dt) and

selection probabilities (i.e., fDt|Xt,X∗
k
for each t), from the selected population distri-

bution (i.e., fY T ,DT ,XT ) which is directly identified from the data.

We now provide intuition as to how one can leverage the structure imposed on

the choice process to address the censored data problem. To illustrate, consider a

simplified version of our model with a binary choice in each period (i.e., S(Dt) =

{0, 1}) and without covariates. Let D :=
∏T

t=1Dt, Y := (Y1, . . . , YT ) and Y (1) :=

(Y1(1), . . . , YT (1)), and focus on identification of the distribution of the potential

outcome Y (1). By Bayes’ rule, the relationship between the target and censored

distributions can be characterized as follows:

fY |D(y|1)
fD(1)

fD|Y (1)(1|y)
= fY (1)(y)

where the conditional density fY |D(y|1), which is directly identified from the data, is

weighted by a selection adjustment term, fD(1)
fD|Y (1)(1|y)

.

Our learning framework provides one strategy for identifying these selection

weights. Let us first assume that all components of the latent effect are initially

unknown. In a learning context where the decision makers’ actions depend on be-
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liefs over X∗, it is often natural to assume that beliefs depend only on past realized

outcomes and choices, and that:

fDt|Y (1),Dt−1(1|y, 1) = fDt|Y t−1(1),Dt−1(1|yt−1, 1). (4)

where the right hand side of Equation (4) is identified from the joint distribution of

(Dt, Y t−1) conditional on Dt−1 = 1. Applying this reasoning recursively, it follows

that fD|Y (1)(1|y) (and thus the selection weight) is identified as follows:

fD|Y (1)(1 | y) = fDT |Y T−1(1),DT−1(1 | yT−1, 1)fDT−1|Y T−2(1),DT−2(1 | yT−2, 1) · · · fD1(1).

We build on this idea when establishing in Section 3.3 identification of a version

of the model we call pure learning (where X∗ = X∗
u). The conditional independence

restriction in Equation (4) will generally break down, however, when agents also

possess persistent private information that affects their decision (i.e.,X∗
k). We propose

in Section 3.2 an identification strategy that can be used in such situations. A key and

non-trivial additional step in this context is to show, relying on existing results from

Bruni and Koch (1985), that maintaining a normality assumption commonly made in

the learning literature is sufficient to identify the joint distribution of (Y T , DT , X∗
k)

in a first step. One can then identify the model parameters in a second step, along

the lines of the reweighting strategy discussed above.

3.2 Known and unknown heterogeneity

This section provides sufficient conditions for identification of the baseline model

discussed in Section 2. We first impose a form of conditional independence on

(ϵt(d), Dt, Xt).

Assumption KL1. Equation (2) holds, and for any t ≥ 2 and d ∈ S(Dt),

Fϵt(d),Dt,Xt|Y t−1,Dt−1,Xt−1,X∗ = Fϵt(d)FDt|Xt,Y t−1,Dt−1,X∗
k
FXt|Y t−1,Dt−1,Xt−1 .
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Furthermore, for any d ∈ S(D1), Fϵ1(d),D1,X1|X∗ = Fϵ1(d)FD1|X1,X∗
k
FX1|X∗ .

Assumption KL1 imposes the potential outcome model in Equation (2) and con-

tains three independence conditions. First, it implies that the additive transitory

shock in the outcome equation (ϵt(d)) is independent of all contemporaneous and

lagged variables. This is closely related to the standard fixed effect assumption that

dependence in outcomes across periods is due to the latent fixed effect (e.g., Frey-

berger (2018, Assumption N5) and Sasaki (2015, Restriction 2)). However, note that

we allow for arbitrary within-period dependence between the additive shocks (ϵt(d)

and ϵt(d̃), for d ̸= d̃). Second, the unknown factor (X∗
u) does not directly affect treat-

ment assignments (Dt), a natural restriction discussed in Section 2. Third, we also

impose that the transition of the control variables (Xt) does not directly depend on

the time-invariant unobservables (X∗). Importantly, this does allow Xt to depend on

X∗ through past choices and outcomes. For instance, in the context of occupational

choices, this restriction accommodates occupation-specific work experiences whose

accumulation depends on X∗ through past occupational choices.

Our second assumption KL2 imposes that the unknown component of the indi-

vidual effect is drawn from a multivariate normal distribution, and that the random

shock in the outcome equation is normally distributed too. This is a very frequent

assumption in the learning literature, to which we return in Remark 2.

Assumption KL2. For all (x1, x
∗
k) ∈ S(X1) × S(X∗

k), X
∗
u | (X1, X

∗
k) = (x1, x

∗
k) ∼

N (0,Σu(x1)) and ∀ d ∈ S(Dt), ϵt(d) ∼ N(0, σ2
t,d).

Assumption KL2 implies a Gaussian conjugate posterior distribution forX∗
u, which

we summarize in Lemma 1. Importantly, neither this assumption nor Assumption

KL1 place any restriction on the dependence between X∗
k and X1.

2 To do so, define

2Lemma 1 and our main identification result would go through if one replaces the first part of
Assumption KL2 with X∗

u | (X1 = x1, X
∗
k = x∗

k) ∼ N (0,Σu(x1, xk)) under appropriate regularity
conditions on xk 7→ Σu(x1, xk), including for each x∗

k− x̃∗
k > 0, Σu(x1, x

∗
k)−Σu(x1, x̃

∗
k) is positive (or

negative) semi-definite. For simplicity, we maintain the stronger Assumption KL2 when establishing
identification in Theorem 1 below.
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(µt,Σt) recursively as follows. First, (µ1,Σ1) = (0,Σu(x1)). Second,

Σt+1 =
(
Σ−1

t + λu
t,dt(λ

u
t,dt)

⊺σ−2
t,dt

)−1
,

µt+1 = Σt+1

(
Σ−1

t µt + λu
t,dt

yt − x⊺
tβt,dt − x∗

kλ
k
t,dt

σ2
t,dt

)
.

Lemma 1. Let Assumptions KL1 and KL2 hold. Then, for all t ≥ 2, X∗
u conditional

on (Y t−1, Dt−1, X t, X∗
k) = (yt−1, dt−1, xt, x∗

k) is distributed N(µt,Σt).

Suppose X∗
u ∈ Rp. Our three remaining assumptions are as follows.

Assumption KL3. (A) For some d ∈ S(D1), the element of β1,d associated with the

constant term is zero, and λk
1,d = 1. (B) For some dp ∈ S(Dp),

(
λu
1,d1

· · ·λu
p,dp

)
= Ip×p.

Assumption KL3 is a location-scale normalization on the finite dimensional pa-

rameters, which reflects the fact that the latent factors are only identified up to

location and scale. This type of assumption is standard in interactive fixed effect

models (Freyberger, 2018).

Finally, we impose in Assumptions KL4 and KL5 below several regularity condi-

tions. We start with Assumption KL4, which places support restrictions on various

objects of the model. In what follows, we let θ1 :=
{
{βt, λt, σ

2
t }Tt=1,Σu(x1)

}
∈ Θ1 ⊂

RdimΘ1 , where {βt, λt, σ
2
t } := {βt,d, λt,d, σ

2
t,d : d ∈ S(Dt)}.

Assumption KL4. (A) For each x1 ∈ S(X1), Θ1 is a compact set. (B) S(X∗
k)

is compact. (C) For each t and d ∈ S(Dt), (λ
u
t,d)

⊺Σtλ
u
t,d + σ2

t,d ̸= 0, σ2
t,d ̸= 0 and

∀ x1 ∈ S(X1), Σu(x1) is non-singular. (D) For each yt−1, dt, xt in their support,

S(X∗
k | (Y t−1, Dt, X t) = (yt−1, dt, xt)) = S(X∗

k) and V ar(X∗
k) ̸= 0. (E) For each t and

d ∈ S(Dt), E[XtX
⊺
t | Dt = d] is non-singular. (F) For all t, V ar(Dt) ̸= 0.

Part (A) states the finite dimensional parameters θ1 belong to a compact set. Part

(B) imposes that the known latent factor X∗
k has compact support. This holds if the

distribution ofX∗
k has discrete support although this clearly applies to a broader set of
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distributions. We return to this compactness condition in Remark 1 below. Part (C)

requires certain normally distributed random variables to have non-singleton support.

Part (D) imposes a rectangular support condition and a non-degeneracy assumption

on the distribution of X∗
k . These conditions are typically satisfied in dynamic discrete

choice models with unobserved heterogeneity, which generally impose a large support

assumption on the random utility shocks. Part (E) imposes that the support of Xt

conditional on Dt is sufficiently rich. Finally, Part (F) imposes that the support of

the choice variables contain at least two elements.

Next, Assumption KL5 below contains a set of regularity conditions that ensure

that the latent individual effect X∗ alters outcomes sufficiently differently across time

and assignments.

Assumption KL5. (A) For each t and dt ∈ S(Dt) there exists two sequences

(dt−1, d̃t−1) ∈ S(Dt−1)2 such that (λu
t,dt

)⊺Σt

∑t−1
s=1

(
λu
s,ds

λk
s,ds

σ2
s,ds

− λu
s,d̃s

λk
s,d̃s

σ2
s,d̃s

)
̸= 0. (B)

For all t and dt ∈ S(Dt), λk
t,dt

̸= 0. (C) For all t and dt ∈ S(Dt), λk
t,dt

−

(λu
t,dt

)⊺Σt

∑t−1
s=1 λ

u
s,ds

λk
s,ds

σ2
s,ds

̸= 0. (D) For all d2 ∈ S(D2), (λu
2,d2

)⊺Σ2λ
u
1,d1

λk
1,d1

σ2
1,d1

̸= 0. (E)

There exists {(d2,i, d̃2,i) ∈ S(D2)
2 : i = 1, 2, . . . , p} which satisfy

(
λu
2,d2,1

· · ·λu
2,d2,p

)−⊺
vec(λk

2,d2,1
, . . . , λk

2,d2,p
) ̸=

(
λu
2,d̃2,1

· · ·λu
2,d̃2,p

)−⊺
vec(λk

2,d̃2,1
, . . . , λk

2,d̃2,p
).

(F) For all dT ∈ S(DT ), {λu
t,dt

: t = 1, . . . , T} is linearly independent.

This assumption is fairly mild as it primarily rules out knife-edge cases where the

effect of different elements of permanent unobserved heterogeneity is exactly zero.3

Part (A) requires that the aggregate effect of X∗
k on outcomes associated with choice

dt is different for at least two histories (dt−1, d̃t−1). Part (B) assumes that the direct

effect of X∗
k is non-zero in each period and each assignment. Part (C) states the

aggregate effect of X∗
k on outcomes must be non-zero—that is, that the direct effect

3This type of assumption is similarly required in latent factor models without selection or learning
in order to rule out degeneracies (see, e.g., Freyberger, 2018, Assumption L4).
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λk
t,dt

is not perfectly offset by the effect mediated through previous choices. Part (D)

ensures that there is a non-zero effect of previous choices in t = 2. Part (E) requires

that for t = 2 the relative effect of known and unknown X∗ changes across choices. In

the special case where X∗
u ∈ R (i.e., p = 1), the condition reduces to

λk
2,d2

λu
2,d2

̸=
λk
2,d̃2

λu
2,d̃2

, i.e.,

that the ratio of factor loadings varies across some assignments. More generally, for

X∗
u ∈ Rp, this condition implies that, for t = 2, the set of assignments must contain

at least p + 1 elements. Finally, Part (F) requires that the initially unknown factor

affects each outcome via a different linear combination.

We are now in a position to state our main identification result. We denote

by θ =
{
{βt, λt, σt, gt, ht}Tt=1,Σu, FX∗

k ,X1

}
∈ Θ the model parameters, where gt :=

dFXt|Y t−1,Dt−1,Xt−1 .

Theorem 1. Suppose the distribution of (Yt, Dt, Xt)
T
t=1 is observed for T = 2p + 1

periods, and that Assumptions KL1-KL5 hold. Then θ is point identified.

The proof of this theorem relies on the normality of the error term ϵt(d). The

first step is to show, from Assumptions KL1 and KL2 and Lemma 1 that Yt is nor-

mally distributed conditional on lagged outcomes Y t−1, assignments Dt, covariates

X t and the known component of the latent individual effect, X∗
k . This implies that

Yt conditional on (Y t−1, Dt, X t) is a Gaussian mixture distribution parameterized

by X∗
k . Then under the compact support and non-degeneracy assumptions (As-

sumptions KL4 (A)-(C)), one can apply a result from Bruni and Koch (1985) to

identify the aforementioned mixture distribution up to an affine transformation of

X∗
k . Next, the normalization and regularity assumptions (Assumptions KL3-KL5)

are used to pin down the affine transformation, leading to identification of the distri-

bution of (Y T , DT , XT , X∗
k). Knowledge of this distribution identifies the components

of the model related to the known component of the latent individual effect, namely{
{βt, λ

k
t , ht}Tt=1, FX∗

k ,X1

}
. The final step is to disentangle the effect of the learned

component (X∗
u) and uncertainty (ϵt(d)) in order to identify

{
{λu

t , σ
2
t }Tt=1,Σu

}
. This

is done by showing that the joint distribution of (Y T , DT , XT ) conditional on X∗
k ,
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suitability weighted by the assignment probabilities, is a normal-weighted mixture of

normal distributions. This allows us to identify
{
{λu

t , σ
2
t }Tt=1,Σu

}
from the second

moments of the reweighted distribution. We refer the interested reader to Section

A.2 for a formal derivation.

Remark 1 (Compact support assumption). Assumption KL4 (B) imposes that

the known component of the latent individual effect has bounded support. In ap-

plications, it is common to assume X∗
k has finite support with known cardinality.

Assumption KL4 (B) relaxes this restriction in the sense that the number of support

points of X∗
k need not be known a priori, and indeed may be infinite.4

Remark 2 (Normality of unknown factor). As summarized in Lemma 1, an im-

portant implication of the normality assumptions (Assumption KL2) is the resulting

normal conjugate prior with a tractable closed form. For this reason, these assump-

tions are very common in the applied literature. In the context of our analysis though,

the key implication of normality is rather to enable identification of the distribution

of Yt | (Y t−1, Dt, X t, X∗
k , ) from variation in the realized outcome Yt only. Namely,

under Assumption KL2, the distribution of Yt | (Y t−1, Dt, X t) is a mixture of normal

distributions with mixture weights given by the distribution of X∗
k | (Y t−1, Dt, X t).

This allows us to establish identification by leveraging existing results for mixtures of

normal distributions (Bruni and Koch, 1985).5

Remark 3 (Role of covariates). Inspection of the proof shows that the covariates

Xt do not actually play any role in the identification of the parameters θ, beyond

{βt : t = 1, . . . , T}. In particular, one can easily adapt the proof to establish identifi-

cation for a more flexible specification where Xt enters the outcome equation through

an additive nonparametric shifter. We maintain linearity throughout for estimation

4Compactness is used in particular to apply the Stone-Weierstrass approximation theorem, which
plays an important role in the identification proof of Bruni and Koch (1985, Theorem 1).

5That identification of the distribution of X∗
k arises from variation in the scalar outcome variable

Yt highlights why we restrict X∗
k to be a scalar random variable. If Yt was vector-valued instead,

then we expect that our arguments would easily extend to allow for a multivariate X∗
k .
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precision and to preserve tractability.

Remark 4 (Invariance to normalization). The normalization assumption (As-

sumption KL3) is a true normalization in the sense that particular meaningful eco-

nomic parameters are invariant to the assumption. Specifically, we can show that this

is the case of the average and quantile structural functions. To formalize this notion,

define Ck
t,d := X∗

kλ
k
t,d, C

u
t,d := (X∗

u)
⊺λu

t,d and let Qα [X] be the α-quantile of a random

variable X. Let x ∈ S(Xt) and define the quantile structural functions associated

with the potential outcomes Yt(dt) as follows:

s1,t(x, α) =x⊺βt,dt +Qα[C
k
t,dt + Cu

t,dt + ϵt(dt)],

s2,t(x, α1, α2, α3) =x⊺βt,dt +Qα1 [C
k
t,dt ] +Qα2 [C

u
t,dt ] +Qα3 [ϵt(dt)],

and the average structural function as s3,t(x) = x⊺βt,dt +
∫
udFCk

t,dt
+Cu

t,dt
+ϵt(dt)(u). In

Appendix B.1 we prove the following corollary:

Corollary 1. Suppose the Assumptions KL1, KL4 and KL5 hold and that for each

(x1, x
∗
k) ∈ S(X1) × S(X∗

k), X
∗
u | (X1, X

∗
k) = (x1, x

∗
k) ∼ N (µu,Σu(x1)) and for all t

and d ∈ S(Dt), ϵt(d) ∼ N(ct,d, σ
2
t,d). Furthermore, suppose for some dp ∈ S(Dp),

(λu
1,d1

· · ·λu
p,dp

) is full rank. Then s1,t(x, ·), s2,t(x, ·, ·, ·) and s3,t(x) are identified for all

x on the support of Xt.

3.3 Pure learning model

This section considers a special case of the model of Section 2, in which all components

of the latent individual effect are initially unknown to the decision maker (X∗ =

X∗
u). Without needing to distinguish initially known and unknown heterogeneity, a

stronger identification result is achieved. In particular, no parametric restrictions on

the distribution of the unobservables are required. We establish identification in this

model under Assumptions L1-L5 stated below.
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Assumption L1. For all t and d ∈ S(Dt), Yt(d) = X⊺
t βt,d + (X∗)⊺λt,d + ϵt(d). For

any t ≥ 2 and d ∈ S(Dt),

Fϵt(d),Dt,Xt|Y t−1,Dt−1,Xt−1,X∗ = Fϵt(d)FDt|Y t−1,Dt−1,XtFXt|Y t−1,Dt−1,Xt−1 .

Furthermore, for any d ∈ S(D1), Fϵ1(d),D1,X1|X∗ = Fϵ1(d)FD1|X1FX1|X∗ .

Assumption L1 adapts Assumption KL1 to reflect that there is no initially known

component of unobserved heterogeneity.

Assumption L2. (A) The joint density of (Y,X∗) and (D,X) admits a bounded

density with respect to the product measure of the Lebesgue measure on S(Y )×S(X∗)

and some dominating measure on S(D)×S(X). All marginal and conditional densities

are bounded. (B) For each x1 ∈ S(X1), X
∗ | X1 = x1 has full support. (C) For each

t and d ∈ S(Dt), the characteristic function of ϵt(d) is non-vanishing, and E[ϵt] = 0.

Assumption L2 substantially weakens Assumption KL2 by replacing the normality

assumption with a full support assumption. Let X∗ ∈ Rp.

Assumption L3. For some dp ∈ S(Dp), (A)
(
λ1,d1 · · ·λp,dp

)
= Ip×p and (B) the

element of βt,dt associated with the constant component of Xt is zero.

Assumption L4. (A) For each (yt−1, xt) ∈ S(Y t−1, X t), Pr(Dt = d | Y t−1 =

yt−1, X t = xt) > 0 for all d ∈ S(Dt). (B) For each x1 ∈ S(X1), the variance-

covariance matrix of X∗ | X1 = x1 is full rank. (C) For each t and d ∈ S(Dt), the

variance-covariance matrix of Xt conditional on Dt = d is non-singular.

Assumption L3 are normalization assumptions, which are standard in interactive

fixed effect models. Assumption L4 (A) is similar to Assumption KL4 (D). It requires

that for each history (yt−1, dt−1, xt), some units are assigned to Dt = dt for each

dt ∈ S(Dt). This assumption is typically satisfied in parametric dynamic discrete

choice models (see, e.g., Keane and Wolpin, 1997 and Blundell, 2017 for a survey).
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At the cost of increased notational burden, this assumption could be weakened to

hold for certain sequences of choices only.

Assumption L5. For any dT ∈ S(DT ), {λu
t,dt

: t = 1, . . . , T} areS linearly indepen-

dent.

Assumption L5 is a standard assumption in the interactive fixed effect literature

(see, e.g., Assumption N6, Freyberger, 2018). Similar to Assumption KL5, it rules

out degeneracies by ensuring that the outcome in each period Yt(dt) depends on a

distinct linear combination of X∗
u.

We now define the period t conditional choice probability function as

ht(y
t−1, dt, xt) := Pr(Dt = dt | Y t−1 = yt−1, Dt−1 = dt−1, X t = xt). In this pure

learning environment, the CCP function does not depend on any latent variable and

is thus identified directly from the data. As in Section 3.2, our identification result

(Theorem 2 below) does not rely on a particular structure imposed on the belief forma-

tion process. However, should there be such structure, our identification result would

enable identification of the belief formation process. To illustrate this, consider a sit-

uation where agents are rational and Bayesian updaters, and where beliefs about X∗
u

at time t are a known function of the information set and the model parameters. That

is, there is a known function s such that beliefs are given by s(Y t−1, Dt−1, X t−1, θ),

where θ are the model parameters. In this case, identification of θ is sufficient for

identification of the beliefs.

We now turn to our identification result. Define fϵt =
{
fϵt(d) : d ∈ S(Dt)

}
. Let the

model parameter vector be θ =
{
{βt, λt, fϵt , gt, ht}Tt=1,Σu, FX∗

k ,X1

}
∈ Θ. The following

theorem states that the previous conditions are sufficient for point identification of θ.

Theorem 2. Suppose the distribution of (Yt, Dt, Xt)
T
t=1 is observed for T = 2p + 1

and that Assumptions L1-L5 hold. Then θ is point identified.

Key to this result is a simple but powerful insight, namely that, under Assumption

L1, this pure learning model is a model of selection on observables. That is, although
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assignment probabilities depend on unobserved beliefs over X∗, they do not depend

on the unobserved factor X∗ itself. It follows that one can control for beliefs at

time t by conditioning on prior outcomes, choices and covariates. This, in turn,

allows us to express the joint distribution of (Y t, Dt, X t), suitably weighted by the

assignment probabilities, as a mixture over the potential outcomes Y t(dt), conditional

on the latent factor X∗ and exogenous covariates X. From here, the arguments of

Freyberger (2018) yield identification of the mixture and component distributions.

See Section A.3 for a formal proof.

Remark 5 (Auxiliary measurements). In some cases, additional unselected noisy

measurements of known heterogeneity factors are available. This includes, in particu-

lar, the Armed Services Vocational Aptitude Battery (ASVAB) ability measures that

are available in the National Longitudinal Survey of Youth panels. See, among many

others, Cunha et al. (2005), Cunha et al. (2010) and Ashworth et al. (2021). With such

auxiliary data, sufficient conditions for identification of the distribution of the latent

effect are well known in the literature (Hu and Schennach, 2008; Cunha et al., 2010).

If these conditions are satisfied conditional on each (Yt, Dt, Xt)
T
t=1, then the joint dis-

tribution of
(
(Yt, Dt, Xt)

T
t=1, X

∗
k

)
is identified from the auxiliary measurements. From

here, one can redefine Xt as (Xt, X
∗
k), and Theorem 2 then yields distribution-free

identification of the model with both known and unknown heterogeneity.

4 Estimation

We propose to estimate the model parameters via sieve maximum likelihood. We let

Wi = (Yi,t, Di,t, Xi,t : t = 1, . . . , T ) and θ∗ ∈ Θ be the true value of the parameters.

In the following we focus on the model of Section 3.2 with both known and unknown

heterogeneity.6 Under the conditions of Theorem 1, the log-likelihood contribution of

6While we focus on this specification, analogous conditions could be derived for the pure learning
model considered in Section 3.3.
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Wi = w is given by:

ℓ(w; θ) = log

∫ ∫ T∏
t=1

1

σt (dt)
ϕ1

(
yt − x⊺

tβt (dt)− x∗
kλ

k
t,dt

− (x∗
u)

⊺λu
t,dt

σt (dt)

)

×
T∏
t=1

ht(d
t, xt, yt−1, x∗

k)×
T−1∏
t=1

gt(xt+1; y
t, dt, xt)dFX1(x1)

× 1√
|Σu (x1)|

ϕp

(
Σ

− 1
2

u (x1)x
∗
u

)
× dx∗

udFX∗
k |X1 (x

∗
k, x1) (5)

where ϕs is the probability distribution function of the standard multivariate nor-

mal distribution with s components, gt is the distribution of Xt+1 conditional on

(Y t, Dt, X t) = (yt, dt, xt). There are four components of the likelihood function,

which are associated with the outcomes, the assignment probabilities, the distribu-

tion of the covariates, and the joint distribution of (X1, X
∗), respectively.

To estimate θ, let Θn be a finite dimensional sieve space that serves as an approx-

imation to Θ. The sieve maximum-likelihood estimator for θ∗, θ̂, is defined as

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n) (6)

The following result states that, under Assumptions KL1-KL5 under which θ∗ is

identified, and additional standard conditions (stated in Appendix B.3.1), θ̂ is a

consistent estimator for θ∗.

Theorem 3. Let (Wi)
n
i=1 be i.i.d. data where T ≥ 2p+1 and Assumptions KL1-KL5

and Assumptions E1-E5 hold. Then θ̂ as defined in Equation (6) is consistent for θ∗.

In practice, researchers are often interested in functionals of the model parameters,

such as the variance decompositions discussed in Section 2 and Appendix B.2. These

decompositions involve both the finite dimensional parameters of the model, as well

as the distribution of X∗
k and the CCPs. We provide in Theorem 4 below an inference

result for a plug-in estimator of a general class of functionals of the model parameters,

which include those defined in Appendix B.2. For a functional f , under a set of
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smoothness and regularity conditions similar to those given in Chen and Liao (2014),

we show that the plug-in estimator f(θ̂) has an asymptotically normal distribution

and characterize its asymptotic variance.

Theorem 4. Let (Wi)
n
i=1 be i.i.d. data where T ≥ 2p + 1 and Assumptions KL1-

KL5 and E1-E13 hold. Then
√
nf(θ̂)−f(θ∗)

∥v∗n∥
→
d

N (0, 1) where v∗n is the sieve Riesz

representer of f(θ) and ∥ · ∥ is defined in Equation (15) in Appendix B.3.2.

The rate of convergence of the plug-in sieve estimator depends on the behavior

of the sieve variance ∥v∗n∥ as n diverges. Note that Theorem 4 does not require that

∥v∗n∥ is convergent. That is, Theorem 4 still applies in cases where the parameter of

interest is an irregular (i.e., not
√
n estimable) functional. In either case, consistent

estimators for the sieve variance of certain functionals are available (Chen and Liao,

2014, Section 3).7

5 Implementation and Monte Carlo simulations

In this section we show how the sieve MLE estimator introduced in Section 4 can be

tractably implemented, and then perform a Monte Carlo experiment illustrating the

good finite sample performance of the estimator.

5.1 Implementation

We propose an implementation method combining a profiling approach that ex-

ploits the parametric components of our model, with a convenient choice of sieve

space. Notice first that by integrating out X∗
u in Equation (5), we obtain ℓ(w; θ) =

7We leave it to future work to derive primitive conditions under which functionals such as the
variances decompositions discussed in Section 2 satisfy the high level conditions of Theorem 4.
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log
∫
ℓc(w, x∗

k; θ
c)dFX∗

k |X1(x
∗
k;x1) with

ℓc(w, x∗
k; θ

c) :=
1√

|V (w, x∗
k; θ

c)|
ϕT

(
V (w, x∗

k; θ
c
1)

− 1
2 (yT −m(w, x∗

k; θ
c))
)

×
T∏
t=1

ht(d
t, xt, yt−1, x∗

k)×
T−1∏
t=1

gt(xt+1; y
t, dt, xt)dFX1(x1),

where m(w, x∗
k; θ

c) = (β1,d1 · · · βT,dT )
⊺ x +

(
λk
1,d1

· · ·λk
T,dT

)⊺
x∗
k, V (w, x∗

k; θ
c) =(

λu
1,d1

· · ·λu
T,dT

)⊺
Σu(x1)

(
λu
1,d1

· · ·λu
T,dT

)
+diag(σ2

1,d1
, . . . , σ2

T,dT
), and θc denotes the pa-

rameter vector excluding FX∗
k |X1 . The above re-expression of the likelihood function

embodies two insights. First, although the ‘complete’ likelihood function ℓc is itself an

integral over the missing data X∗
u, within our model this integral has the convenient

analytical expression described above. Second, the ℓc function does not depend on

the distribution of the missing data X∗
k , which enables a profiling approach to forming

the maximum likelihood estimator.

To explain our profiling approach, suppose for simplicity that X∗
k ⊥⊥ X1.

8 The

profile likelihood approach boils down to solving Equation (6) as

max
θ∈Θn

n∑
i=1

ℓ(wi, θ) = max
θc∈Θc

n

n∑
i=1

log

∫
ℓc(wi, x

∗
k; θ

c)d[F (θc)](x∗
k),

where F (θc) = argmaxF∈Fn

∑n
i=1 log

∫
ℓc(wi, x

∗
k; θ

c)dF (x∗
k), and Fn and Θc

n are a

sieve spaces for FX∗
k
and θc, respectively. As the non-parametric objects in θc are

often context specific (for example, gt may be estimated in a first step, or ht may be

a parametric choice model), we focus on the choice of Fn. Namely, we propose using

a sieve space closely related to the estimator discussed in Koenker and Mizera (2014)

and Fox et al. (2016). For each n, let us fix a grid of support for X∗
k with qn < ∞

8We assume this simply for clarity of exposition. In the general case, a sieve space for (X∗
k |X1)

can be constructed similarly as the cross product of unit simplexes over a grid of S(X1).
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points, Sn = {x̄∗
n,1, . . . , x̄

∗
n,qn}. We can then use the following sieve space,

Fn =

{
x∗ 7→

qn∑
s=1

ωs1{x∗ ≤ x̄∗
n,s}

∣∣∣∣∣ ω ∈ ∆(qn)

}

where ∆(m) is the (m− 1)-dimensional unit simplex. Notice that Fn is the space of

distributions with support contained in Sn. As long as the support points are chosen

so that Sn becomes dense in R and the number of points grows at a suitable rate,

this sieve space satisfies the conditions of Theorems 3 and 4.

Importantly for practical purposes, this sieve space turns out to be particularly

convenient computationally. To see this, note that under the sieve space Fn considered

above,

dF (θc) = argmax
ω∈∆(qn)

n∑
i=1

log

qn∑
s=1

ωs ℓ
c(wi, x̄

∗
n,s; θ

c).

Thus the profile step reduces to a convex programming problem. This problem can

be solved very efficiently and reliably using recent convex optimization algorithms

available in standard softwares. For example the algorithm proposed in Kim et al.

(2020) is specialized for this setting and readily implemented in the R package mixsqp.

This allows us to calculate the profile log likelihood so the full MLE problem can be

solved by maximizing this function in θc.9

5.2 Monte Carlo simulations

Next, we present results from Monte Carlo simulations which illustrate the computa-

tional tractability and finite-sample performance of the proposed estimator. We focus

here on a specification with a parametric assignment model. In Appendix B.4.3 we

consider a specification with a nonparametric assignment model, and show that the

estimator achieves similar performance.

9In Appendix B.4.1 we show how the gradient of the profile log likelihood function can be calcu-
lated implicitly, making it feasible to use first order optimization algorithms to maximize the profile
log likelihood function over θc efficiently.
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The data generating process (DGP) used in the simulations is based on the model

in Section 3.2 with both known and unknown heterogeneity. We include two time-

invariant covariates, X = (X1, X2), where X1 has a standard normal distribution and

X2 as a Bernoulli distribution with equal weights. We assume that X1 and X2 are

independent from each other, and from X∗.

Assignment probabilities are derived from a model in which agents maximize the

following expected utility function,

vt(d,X
∗
k , Y

t−1, X,Dt−1) = ρE(Yt(d)|X∗
k , Y

t−1, X,Dt−1) + ρκ1(d = 2)X∗
k + νt(d),

where Yt(d) = αt,d+X1γ
(1)
t,d +X2γ

(2)
t,d +X∗

kλ
k
t,d+X∗

uλ
u
t,d+ ϵt(d), where ϵt(d) ∼ N(0, σ2

d),

and {νt(d) : t = 1, 2, 3, d = 1, 2} are exogenous and mutually independent with a

standard Extreme Value Type 1 distribution. ρ is a scale parameter which affects the

relative weight of preference shocks compared to systematic preferences. κ reflects

heterogeneity in preferences and/or beliefs that allows X∗
k to affect choices beyond its

impact on the expectation of Yt(d). We assume X∗
u ∼ N(0, σ2

u) with σ2
u = 1.5. Finally,

X∗
k is distributed following a finite mixture of three truncated normal distributions,

with means (−1.2, 0, 1.5), variances (0.2, 0.1, 0.3), and mixing weights (0.4, 0.3, 0.3).10

The parameter values used in the simulations are reported in Appendix B.4.2. This

expected utility function puts a weight on the expected choice-specific potential out-

comes, and add another term which depends on X∗
k . This additional term can reflect

biased beliefs, heterogeneity in preferences, or a combination of both.

We perform a Monte Carlo experiment, estimating parameters of the model with

200 simulations and sample sizes of 250, 500, 1,000, 2,000 and 4,000. We use the sieve

MLE estimator described in Section 4, maintaining the parametric structure on the

assignment probabilities but estimating FX∗
k
nonparametrically using the sieve space

described in Section 5.1.11 The sieve is chosen to have 6n1/3 uniformly spaced support

10Each component distribution is truncated at the third standard deviation of its distribution.
11Since X1 is independent of X∗

k , FX∗
k |X1

= FX∗
k
.
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points.12

With this implementation method, computation remains highly tractable for all

the sample sizes considered in these simulations. Average computational times to

evaluate the maximum likelihood estimator are reported in Table 1 below. Run times

increase with sample size from less than half a minute (for n = 250), to around three

and half minutes for our largest sample size (n = 4, 000).

n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000

Time (seconds) 24 31 55 135 212

Table 1: Time to compute the estimator. Computational times were obtained using
an Intel Core i9-12900K CPU, and are computed as the average over 200 simulations.

The squared bias and variance of the sieve estimator of the finite dimensional

parameters are presented in Table 2 below. (Note that all values in this table are

multiplied by 1,000.) For each of the parameters, the bias becomes negligible relative

to the variance as sample size grows. The variance also declines with sample size,

as expected given the consistency of our estimators, at a rate consistent with
√
n-

convergence of the mean squared error. Overall most of the parameters are precisely

estimated for realistic sample sizes n ≥ 2, 000.

12This rate of growth is consistent with the rate conditions of Theorem 4, in particular Assumptions
E6 and E7. To contain the unknown bounded support of X∗

k , the grid is chosen to have minimum
and maximum values at (−0.7n1/6, 0.7n1/6).

26



n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var

α1,2 71.72 87.92 34.06 60.97 12.91 47.13 0.73 19.02 0.04 5.70
α2,1 0.15 27.98 0.26 12.38 0.12 7.39 0.00 2.88 0.01 1.38
α2,2 73.52 108.96 34.18 74.42 12.41 57.19 0.46 25.80 0.03 8.11
α3,1 0.01 36.56 0.45 13.82 0.20 5.31 0.00 2.24 0.01 0.96
α3,2 47.84 163.16 32.09 82.42 12.03 62.31 0.59 25.98 0.04 7.32

γ
(1)
1,1 0.51 10.08 0.40 5.22 0.14 3.17 0.02 1.49 0.00 0.72

γ
(1)
1,2 0.85 15.22 0.30 6.75 0.05 3.35 0.01 1.74 0.00 0.80

γ
(1)
2,1 0.84 16.30 0.66 7.86 0.39 4.46 0.04 1.85 0.01 0.80

γ
(1)
2,2 1.38 20.81 0.60 12.06 0.09 5.62 0.00 2.69 0.01 1.21

γ
(1)
3,1 0.41 9.30 0.24 3.88 0.16 1.89 0.03 1.03 0.01 0.57

γ
(1)
3,2 0.38 19.19 0.40 9.11 0.08 4.20 0.01 2.10 0.00 0.86

γ
(2)
1,1 0.61 58.91 0.36 23.24 0.36 11.16 0.03 4.77 0.00 2.29

γ
(2)
1,2 0.19 46.66 0.22 25.40 0.02 11.16 0.00 5.12 0.01 2.61

γ
(2)
2,1 0.01 40.41 0.00 19.84 0.00 9.05 0.00 4.35 0.04 2.48

γ
(2)
2,2 0.04 57.76 0.05 26.57 0.00 12.37 0.00 6.76 0.01 3.29

γ
(2)
3,1 0.50 40.19 0.08 19.94 0.02 7.64 0.00 3.94 0.02 2.05

γ
(2)
3,2 0.10 65.65 0.33 32.11 0.01 15.18 0.02 7.11 0.00 3.44

λk
1,1 2.75 27.52 1.70 12.89 0.62 7.27 0.01 3.68 0.00 1.47

λk
2,1 1.15 25.98 0.56 10.83 0.23 4.78 0.00 2.59 0.00 1.09

λk
2,2 0.87 10.98 0.25 5.82 0.07 2.65 0.01 1.38 0.00 0.74

λk
3,1 3.99 33.66 0.87 13.72 0.18 5.68 0.00 3.07 0.00 1.33

λk
3,2 5.70 36.86 0.67 12.56 0.22 5.30 0.01 2.41 0.01 1.08

λu
1,2 0.98 13.94 0.31 4.73 0.17 2.44 0.01 1.33 0.00 0.61

λu
2,1 0.04 8.32 0.03 5.14 0.04 1.95 0.01 1.00 0.00 0.48

λu
2,2 1.48 14.88 0.49 6.22 0.13 3.32 0.01 1.52 0.00 0.64

λu
3,1 0.45 9.91 0.09 5.00 0.06 2.19 0.03 0.97 0.02 0.47

λu
3,2 0.11 21.92 0.10 8.90 0.11 4.15 0.00 2.14 0.01 0.94

σ2(1) 0.45 2.48 0.09 1.24 0.03 0.67 0.01 0.30 0.00 0.14
σ2(2) 1.23 4.45 0.24 2.24 0.03 1.06 0.02 0.70 0.01 0.33
σ2
u 0.02 72.90 0.05 41.17 0.04 17.91 0.01 9.34 0.01 4.33

Table 2: Simulation results for estimation of finite dimensional parameters. ‘Bias2’
and ‘Var’ refer to the average empirical squared bias and variance scaled by 1,000,
respectively, computed over 200 simulations.

Next, we present results for the nonparametric estimator of the distribution of

known unobserved heterogeneity X∗
k , focusing on its quantiles qα[X

∗
k ]. For each value
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of α ∈ [0, 1], we calculate the mean and the 5th and 95th percentile of the simulated

distribution of the estimator of qα[X
∗
k ]. The results are presented in Figure 1 below.

The red line shows the quantile function of the true distribution of X∗
k , while the blue

lines that closely follow the red line are the mean of the simulated distribution of the

quantile estimators for each sample size. Darker blue lines represent larger sample

sizes. The blue lines above and below the quantile function are the 95th and 5th

percentiles of the simulated distribution of the quantile estimators.

-3

-2

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00
α

q α
[X

∗ k
]

Sample Size

250

500

1,000

2,000

4,000

Figure 1: Quantiles of the estimator of qα[X
∗
k ]. The red line shows the true distribu-

tion of X∗
k . The blue lines show the mean, and the 5th and 95th percentiles of the

simulated distribution of the estimator of qα[X
∗
k ] for each sample size.

The results indicate that the bias of the quantile estimators becomes negligible

in moderate sample sizes. The estimator also broadly captures the shape of the

true distribution of X∗
k . Besides, and even though the simulated distribution is still
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relatively disperse for the sample sizes we consider in these simulations, the estimator

also appears to converge toward the true distribution as the sample size grows.

Finally, we conclude this section by considering the plug-in estimator for one of

the functionals discussed in Section 2 and Appendix B.2. Namely, we focus on the

decomposition of the present value of a stream of outcomes into known and unknown

components at t = 1. Setting the discount rate equal to 0.95, the variance of the

unknown and known components corresponding to the two terms in Equation (10) in

Appendix B.2 are, for a given choice sequence d3,13

V u
d3 :=σ2

u

∑
1≤t1,t2≤3

(.95)t1+t2−2λu
t1,dt1

λu
t2,dt2

+
∑
1≤t≤3

(.95)2t−2σ2
dt ,

V k
d3 :=Var(X∗

k)
∑

1≤t1,t2≤3

(.95)t1+t2−2λk
t1,dt1

λk
t2,dt2

.
(7)

We estimate these functionals, which involve both the finite dimensional param-

eters and FX∗
k
, using the plug-in estimator described in Section 4. The results are

presented in Table 3. For moderately small sample sizes starting with n = 500, the

squared bias is generally negligibly small relative to the variance. Besides, variance

(and MSE) decrease with the sample sizes, at a rate that appears to be consistent

with a
√
n-convergence rate.

13The sum of these two terms is the variance of
∑3

t=1(.95)
1−tYt(dt), which is the present value of

(Y1(d1), Y2(d2), Y3(d3)) at period 1. This is a special case of the class of weighted sums of potential
outcomes considered in Appendix B.2, where the weights are ωt = (.95)1−t, and the choice sequence
is d3. The two terms correspond to the two terms of Equation (10) with ωt defined as above.
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Parameter n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var

V k
(1,1,1) 0.01 0.99 0.00 0.45 0.00 0.21 0.00 0.14 0.00 0.07

V u
(1,1,1) 0.00 3.06 0.00 1.51 0.00 0.68 0.00 0.33 0.00 0.15

V k
(1,1,2) 0.00 1.46 0.01 0.70 0.00 0.38 0.00 0.23 0.00 0.09

V u
(1,1,2) 0.00 2.32 0.00 1.13 0.00 0.52 0.00 0.27 0.00 0.12

V k
(1,2,1) 0.32 1.77 0.13 0.93 0.04 0.53 0.00 0.28 0.00 0.11

V u
(1,2,1) 0.03 1.72 0.00 0.85 0.00 0.37 0.00 0.19 0.00 0.09

V k
(1,2,2) 0.21 3.13 0.16 1.53 0.05 0.88 0.00 0.41 0.00 0.15

V u
(1,2,2) 0.01 1.20 0.01 0.60 0.00 0.28 0.00 0.15 0.00 0.06

V k
(2,1,1) 0.24 1.49 0.07 0.82 0.02 0.36 0.00 0.22 0.00 0.10

V u
(2,1,1) 0.03 1.75 0.00 0.85 0.01 0.36 0.00 0.16 0.00 0.08

V k
(2,1,2) 0.15 2.43 0.08 1.13 0.03 0.56 0.00 0.32 0.00 0.14

V u
(2,1,2) 0.01 1.23 0.01 0.60 0.01 0.27 0.00 0.13 0.00 0.07

V k
(2,2,1) 1.00 3.04 0.30 1.56 0.07 0.73 0.00 0.38 0.00 0.17

V u
(2,2,1) 0.10 1.10 0.02 0.45 0.01 0.19 0.00 0.09 0.00 0.05

V k
(2,2,2) 0.45 5.84 0.21 2.77 0.04 1.56 0.00 0.76 0.00 0.33

V u
(2,2,2) 0.06 0.79 0.03 0.32 0.01 0.17 0.00 0.09 0.00 0.04

Table 3: Simulation results for estimation of V p
d3 for p = k, u as defined in Equa-

tion (7). ‘Bias2’ and ‘Var’ refer to the average empirical squared bias and variance
respectively, computed over 200 simulations.

6 Conclusion

We provide new identification results for a general class of learning models, that

encompasses many of the setups that have been considered in the applied literature.

We focus on a context where the researcher has access to a short panel of choices

and realized outcomes only. As such, our approach is widely applicable, including

in frequent environments where one does not have access to elicited beliefs data or

auxiliary selection-free measurements. We show that the model is point-identified

under two alternative sets of conditions. Our first set of conditions apply to a setup

with both known and unknown unobserved heterogeneity. We show that the model

is identified under the assumption that the idiosyncratic shocks from the outcome

equations and the unknown heterogeneity components are normally distributed, a
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very frequent restriction in empirical Bayesian learning models. We also show that

normality can be relaxed in the case of a pure learning model, while preserving point-

identification for this class of models.

We then derive a sieve MLE estimator for the model parameters and a partic-

ular class of functionals. The latter includes as special cases the predictable and

unpredictable outcome variances, which can in turn be used to evaluate the rela-

tive importance of uncertainty versus heterogeneity in life-cycle earnings variability

(Cunha et al., 2005). Under appropriate regularity conditions, the resulting estima-

tors are consistent and asymptotically normal. Importantly for practical purposes, we

devise a profile likelihood-based procedure that allows us to implement our estimator

at a modest computational cost.
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A Proofs for identification section

In this section, we let ϕ denote the standard normal p.d.f.

A.1 Proof of Lemma 1

Proof. We proceed inductively. First, by Assumption KL2 and the definition of

(µ1,Σ1), X∗
u | (X1, X

∗
k) = (x1, x

∗
k) ∼ N(µ1,Σ1). Second, for t ≥ 1 suppose

X∗
u | (Y t−1, Dt−1, X t, X∗

k) = (yt−1, dt−1, xt, x∗
k) ∼ N(µt,Σt). Then

fX∗
u|Y t,Dt,Xt+1,X∗

k
(x∗

u; y
t, dt, xt+1, x∗

k)

∝(1) fX∗
u|Y t−1,Dt−1,Xt,X∗

k
(x∗

u; y
t−1, dt−1, xt, x∗

k)

× fYt,Dt,Xt+1|Y t−1,Dt−1,Xt,X∗(yt, dt, xt+1; y
t−1, dt−1, xt, x∗)

∝(2) fX∗
u|Y t−1,Dt−1,Xt,X∗

k
(x∗

u; y
t−1, dt−1, xt, x∗

k)fYt(dt)|Xt,X∗(yt;xt, x
∗)

∝(3) exp

(
−1

2
(x∗

u − µt)
⊺Σ−1

t (x∗
u − µt)

)
ϕ

(
yt − x⊺

tβt,dt − x∗
kλ

k
t,dt

− (x∗
u)

⊺λu
t,dt

σt,dt

)

∝ exp

(
−1

2
(x∗

u − µt)
⊺Σ−1

t (x∗
u − µt)

)
× exp

(
−1

2

(
x∗
u − λu

t,dt

(
(λu

t,dt)
⊺λu

t,dt

)−1
(yt − x⊺

tβt,dt − x∗
kλ

k
t,dt)
)⊺

×
λu
t,dt

(λu
t,dt

)⊺

σ2
t,dt

(
x∗
u − λu

t,dt

(
(λu

t,dt)
⊺λu

t,dt

)−1
(yt − x⊺

tβt,dt − x∗
kλ

k
t,dt)
))

=(4) exp

(
−1

2
(x∗

u − µt+1)
⊺Σ−1

t+1(x
∗
u − µt+1)

)
.

Display (1) follows from Bayes’ theorem. Display (2) holds since Assumption

KL1 has the following three implications: first Xt+1 ⊥⊥ X∗ | (Y t, Dt, X t); second

ϵt(dt) ⊥⊥ (Y t−1, Dt, X t, X∗) =⇒ ϵt(dt) ⊥⊥ (Y t−1, Dt, X t−1) | (Xt, X
∗) =⇒ Yt(dt) ⊥⊥

(Y t−1, Dt, X t−1) | (Xt, X
∗); third Dt ⊥⊥ X∗

u | (Y t−1, Dt−1, X t, X∗
k). Display (3) holds

from the induction assumption and Assumptions KL1 and KL2. Display (4) follows

from the definitions in Lemma 1.
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A.2 Proof of Theorem 1

The proof of Theorem 1 uses the following lemmas.

Lemma 2. Let Assumptions KL1 and KL2 hold. Then Yt conditional on

(Y t−1, Dt, X t, X∗
k) = (yt−1, dt, xt, x∗

k) is distributed

N
(
x⊺
tβt,dt + x∗

kλ
k
t,dt + µ⊺

tλ
u
t,dt , (λu

t,dt)
⊺Σtλ

u
t,dt + σ2

t,dt

)
.

Proof. For t > 1,

fYt|Y t−1,Dt,Xt,X∗
k
(yt; y

t−1, dt, xt, x∗
k)

=

∫
fYt(dt)|Y t−1,Dt,Xt,X∗(yt; y

t−1, dt, xt, x∗)fX∗
u|Y t−1,Dt,Xt,X∗

k
(x∗

u; y
t−1, dt, xt, x∗

k)dx
∗
u

=(1)

∫
fYt(dt)|Xt,X∗(yt;xt, x

∗)fX∗
u|Y t−1,Dt−1,Xt,X∗

k
(x∗

u; y
t−1, dt−1, xt, x∗

k)dx
∗
u

∝(2)

∫
ϕ

(
yt − x⊺

tβt,dt − x∗
kλ

k
t,dt

− (x∗
u)

⊺λu
t,dt

σt,dt

)
exp

(
(x∗

u − µt)
⊺Σ−1

t (x∗
u − µt)

)
dx∗

u

= ϕ

yt − x⊺
tβt,dt − x∗

kλ
k
t,dt

− µ⊺
tλ

u
t,dt√

(λu
t,dt

)⊺Σtλu
t,dt

+ σ2
t,dt


Display (1) holds because Assumption KL1 implies Yt(dt) ⊥⊥ (Y t−1, Dt, X t−1) |

(Xt, X
∗) and Dt ⊥⊥ X∗

u | (Y t−1, Dt−1, X t, X∗
k). Display (2) holds because Assump-

tion KL1 and KL2 imply Lemma 1 and ϵt(d) | (Xt, X
∗) ∼ N(0, σ2

t,d). A similar

argument applies for t = 1.

For the following results, it is useful to notice that, for t ≥ 1,

Σt+1 =

(
Σ−1

u (x1) +
t∑

s=1

σ−2
s,ds

λu
s,ds(λ

u
s,ds)

⊺

)−1

,

µt+1 =Σt+1

(
t∑

s=1

λu
s,ds

ys − x⊺
sβs,ds − x∗

kλ
k
s,ds

σ2
s,ds

)
.
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Lemma 3. Let Assumptions KL1, KL2, KL4 (A,B,C) and KL5 (C) hold. Then, for

each (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)) there exists an affine function π such that, for

all yt ∈ S(Yt), FY t,Dt,Xt,X∗
k
(yt, dt, xt, π(x∗

k)) is identified.

Proof. Fix (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)). Since fYt|Y t−1,Dt,Xt(yt; y
t−1, dt, xt) =

∫
fYt|Y t−1,Dt,Xt,X∗

k
(yt; y

t−1, dt, xt, x∗
k)dFX∗

k |Y t−1,Dt,Xt(x∗
k; y

t−1, dt, xt),

Lemma 2 implies fYt|Y t−1,Dt,Xt(yt; y
t−1, dt, xt) is a mixture of normal random variables.

To identify the component and mixture distributions, we apply Bruni and Koch (1985,

Theorem 3). First, for any t and (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)), define Λ :=

{
x∗
k 7→

(
x⊺
tβt,dt + x∗

k(λ
k
t,dt + (µk

t )
⊺λu

t,dt) + (µu
t )

⊺λu
t,dt , (λu

t,dt)
⊺Σtλ

u
t,dt + σ2

t,dt

)
: θt ∈ Θt

}
,

where θt :=
{
{βs,ds , λ

k
s,ds

, λu
s,ds

, σ2
s,ds

: s = 1, . . . , t},Σu(x1)
}
, Θt is the corresponding

subset of Θ, and µt = µk
t x

∗
k + µu

t for all x∗
k. I.e., µ

k
1 = µu

1 = 0 and for t > 1,

µk
t := −Σt

t−1∑
s=1

λu
s,ds

λk
s,ds

σ2
s,ds

, µu
t := Σt

t−1∑
s=1

λu
s,ds

yis − x⊺
isβs,ds

σ2
s,ds

.

Under Assumptions KL4 (A,B,C) and KL5 (C), Λ ⊂ Λ4 where Λ4 is defined in Bruni

and Koch (1985, p. 1344). Thus Bruni and Koch (1985, Theorem 3) applies and

{
x⊺
tβt,dt + π(x∗

k)(λ
k
t,dt + (µk

t )
⊺λu

t,dt) + (µu
t )

⊺λu
t,dt , (λu

t,dt)
⊺Σtλ

u
t,dt + σ2

t,dt

}
and FX∗

k |Y t−1,Dt,Xt(π(x∗
k); y

t−1, dt, xt) are identified with π(x∗
k) = π0 + π1x

∗
k.

Lemma 4. Let Assumptions KL1, KL2, KL3 (A), KL4 and KL5 (C) hold. Then

S(X∗
k) is identified from FY1,D1,X1(y1, d1, x1).

Proof. In this proof, it will be useful to denote β1,d = (α1,d, γ
⊺
1,d)

⊺, where α1,d is the

coefficient on the constant term in X1.
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For any x1 ∈ S(X1) and d ∈ S(D1), Lemma 3 implies

{
x⊺
1β1,d + (π0 + π1x

∗
k)λ

k
1,d, (λu

1,d)
⊺Σ1(x1)λ

u
1,d + σ2

1,d, FX∗
k |D1,X1(π0 + π1x

∗
k; d, x1)

}
is identified. Set d ∈ S(D1) as in Assumption KL3 (A). We now show (π0, π1) =

(0, 1).14 By Assumption KL4 (D), ∃ x∗
k ̸= x̃∗

k such that dFX∗
k |D1,X1(π0+π1x

∗
k; d, x1) > 0

and dFX∗
k |D1,X1(π0 + π1x̃

∗
k; d, x1) > 0. Then by Assumption KL3 (A), 1 = λk

1,d =
(x⊺

1β1,d+(π0+π1x∗
k)λ

k
1,d)−(x⊺

1β1,d+(π0+π1x̃∗
k)λ

k
1,d)

x∗
k−x̃∗

k
= π1. Thus x

⊺
1β1,d+π0 is identified by (x⊺

1β1,d+

(π0 + x∗
k))− x∗

k. If ∃ x1, x̃1 ∈ S(X1) such that their respective π0 differ, then S(X∗
k |

X1 = x1, D1 = d) ̸= S(X∗
k | X1 = x̃1, D1 = d), which contradicts Assumption KL4

(D). Therefore (α1,d + π0, γ
⊺
1,d)

⊺ = E[X1X
⊺
1 |D1 = d]−1E[X1 (X

⊺
1β1,d + π0) | D1 = d],

which exists by Assumption KL4 (E). Finally, by Assumption KL3 (A), 0 = α1,d =

(x⊺
1β1,d + π0) − x⊺

1(α1,d, γ
⊺
1,d)

⊺ = π0. To conclude, by Assumption KL4 (D), S(X∗
k) =

S(X∗
k | D1 = d1, X1 = x1).

Lemma 5. Under the assumptions in Theorem 1, FY T ,DT ,XT ,X∗
k
(yT , dT , xT , x∗

k) is iden-

tified on its support.

Proof. For any t and (yt−1, dt, xt) ∈ S((Y t−1, Dt, X t)), it follows from Lemma 3 that

dFX∗
k |Y t−1,Dt,Xt(π(x∗

k); y
t−1, dt, xt) is identified. Then since S(X∗

k) is known by Lemma

4, Assumption KL4 (D) implies S(X∗
k) =

dF−1
X∗

k |Y t−1,Dt,Xt(·; yt−1, dt, xt)[R+] = (dFX∗
k |Y t−1,Dt,Xt(·; yt−1, dt, xt) ◦ π)−1[R+],

where R+ = {x ∈ R : x > 0}. Then, since π is bijective, π[S(X∗
k)] = S(X∗

k). The only

affine functions that satisfy this identity are π(x∗
k) = x∗

k and π(x∗
k) = supS(X∗

k) +

inf S(X∗
k)− x∗

k. To conclude the proof, we need to rule out the second function.

To proceed, let µk
t and µu

t be defined as in the proof to Lemma 3, and, for any

1 ≤ s < t, let µ̃t,s(d
t−1) := Σt

λu
s,ds

σ2
s,ds

. Now note that by Lemma 3 and Assumption KL4,

14Recall from Lemma 3 that the affine function π may depend on the history (yt−1, dt, xt). In this
lemma we show that the affine function is the identity for one particular choice history.
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for any t and dt ∈ S(Dt), jct(d
t) = λk

t,dt
+ (µk

t )
⊺λu

t,dt
with j ∈ {−1, 1} unknown and

ct(d
t) :=

(x⊺
t βt,dt

+π(x∗
k)λ

k
t,dt

+µ⊺
t λ

u
t,dt

)−(x⊺
t βt,dt

+π(x̃∗
k)λ

k
t,dt

+µ⊺
t λ

u
t,dt

)

x∗
k−x̃∗

k
known. In addition, for any

1 ≤ s < t, ∂
∂ys

(x⊺
tβt,dt + π(x∗

k)λ
k
t,dt

+ µ⊺
tλ

u
t,dt

) = (λu
t,dt

)⊺µ̃t,s(d
t−1).

The proof is inductive. First consider t = 1. Applying the above argument

to the sequences {d̃1, (d1, d2), (d̃1, d2)} for d1 ∈ S(D1) as in Assumption KL3 (A),

d̃1 ∈ S(D1) \ {d1}, and d2 ∈ S(D2), yields identification of j1c1(d̃1), jd2c2((d1, d2))

(λu
2,d2

)⊺µ̃2,1(d1), j̃d2c2((d̃1, d2)), and (λu
2,d2

)⊺µ̃2,1(d̃1) with (j1, j̃d2 , jd2) ∈ {−1, 1}3 un-

known. Since λk
1,d1

= 1, j1c1(d̃1) = λk
1,d̃1

, jd2c2((d1, d2)) = λk
2,d2

− (λu
2,d2

)⊺µ̃2,1(d1), and

j̃d2c2((d̃1, d2)) = (λk
2,d2

− (λu
2,d2

)⊺µ̃2,1(d̃1)λ
k
1,d̃1

), it must be that

(λu
2,d2

)⊺µ̃2,1(d1) + jd2c2((d1, d2)) = (λu
2,d2

)⊺µ̃2,1(d̃1)j1c1(d̃1) + j̃d2c2((d̃1, d2)). (8)

We use this identity to show (j1, j̃d2 , jd2) = (1, 1, 1). Suppose jd2 = 1. It is straight-

forward to show that Equation (8) implies:

(j1, j̃d2) = (−1,−1) =⇒ λk
2,d2

= 0,

(j1, j̃d2) = (1,−1) =⇒ λk
2,d2

− (λu
2,d2

)⊺µ̃2,1(d̃1)λ
k
1,d̃1

= 0,

(j1, j̃d2) = (−1, 1) =⇒ (λu
2,d2

)⊺µ̃2,1(d̃1)λ
k
1,d̃1

= 0,

which contradict Assumptions KL5 (B), (C) and (D), respectively. Now suppose

jd2 = −1, then

(j1, j̃d2) = (1, 1) =⇒ λk
2,d2

− (λu
2,d2

)⊺µ̃2,1(d1)λ
k
1,d1

= 0,

(j1, j̃d2) = (−1,−1) =⇒ (λu
2,d2

)⊺µ̃2,1(d1)λ
k
1,d1

= 0,

(j1, j̃d2) = (1,−1) =⇒ (λu
2,d2

)⊺µ̃2,1(d̃1)λ
k
1,d̃1

− (λu
2,d2

)⊺µ̃2,1(d1)λ
k
1,d1

= 0,

(j1, j̃d2) = (−1, 1) =⇒ λk
2,d2

− (λu
2,d2

)⊺µ̃2,1(d̃1)λ
k
1,d̃1

− (λu
2,d2

)⊺µ̃2,1(d1)λ
k
1,d1

= 0.

The first three implications contradict Assumptions KL5 (C), (D) and (A), respec-

tively. To conclude, for each d ∈ {d2,i, d̃2,i ∈ S(D2) : i = 1, 2, . . . , p} of Assumption
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KL5 (E), by considering the sequences {(d1, d), (d̃1, d)}, jdc2((d1, d)) and j̃dc2((d̃1, d))

are identified with (jd, j̃d) ∈ {(−1, 1), (1, 1)}. Since λk
1,d̃1

̸= 0 by Assumption KL5 (B),

for the sign of λk
1,d̃1

to be constant across sequences, we can rule out all signs except(
j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , p)

)
∈ {(1, (1, 1, 1, 1)p) , (−1, (−1, 1,−1, 1)p)}. If(

j1, (jd2,i , j̃d2,i , jd̃2,i , j̃d̃2,i : i = 1, . . . , p)
)
= (−1, (−1, 1,−1, 1)p), then

0 = vec
(
λk
2,d2,1

, . . . , λk
2,d2,p

)
−
(
λu
2,d2,1

· · ·λu
2,d2,p

)⊺ (
µ̃2,1(d̃1)λ

k
1,d̃1

+ µ̃2,1(d1)λ
k
1,d1

)
= vec

(
λk
2,d̃2,1

, . . . , λk
2,d̃2,p

)
−
(
λu
2,d̃2,1

· · ·λu
2,d̃2,p

)⊺ (
µ̃2,1(d̃1)λ

k
1,d̃1

+ µ̃2,1(d1)λ
k
1,d1

)
,

which contradicts Assumption KL5 (E).

For the induction step, suppose π is identity for each history (ys−1, ds, xs),

s = 1, . . . , t − 1, and let dt, d̃t ∈ S(Dt) satisfy dt = d̃t and dt−1 ̸= d̃t−1. By

the preceding arguments, j1ct(d
t), j2ct(d̃

t) with (j1, j2) ∈ {−1, 1}2, and, for each

s < t, (λu
t,dt

)⊺µ̃t,s(d
t−1) and (λu

t,dt
)⊺µ̃t,s(d̃

t−1) are identified. Since λk
s,d is identified

for any s < t and d ∈ S(Ds), j1ct(d
t) = λk

t,dt
− (λu

t,dt
)⊺
∑t−1

s=1 µ̃t,s(d
t−1)λk

s,ds
and

j2ct(d̃
t) = λk

t,dt
− (λu

t,dt
)⊺
∑t−1

s=1 µ̃t,s(d
t−1)λk

s,d̃s
, it must be that

j1ct(d
t) + (λu

t,dt)
⊺

t−1∑
s=1

µ̃t,s(d
t−1)λk

s,ds = j2ct(d̃
t) + (λu

t,dt)
⊺

t−1∑
s=1

µ̃t,s(d̃
t−1)λk

s,d̃s
. (9)

We use this identity to show (j1, j2) = (1, 1). Consider

(j1, j2) = (1,−1) =⇒

(
λk
t,dt − (λu

t,dt)
⊺

t−1∑
s=1

µ̃t,s(d̃
t−1)λk

s,d̃s

)
= 0,

(j1, j2) = (−1, 1) =⇒

(
λk
t,dt − (λu

t,dt)
⊺

t−1∑
s=1

µ̃t,s(d
t−1)λk

s,ds

)
= 0,

(j1, j2) = (−1,−1) =⇒ (λu
t,dt)

⊺
t−1∑
s=1

µ̃t,s(d
t−1)λk

s,ds − (λu
t,dt)

⊺
t−1∑
s=1

µ̃t,s(d̃
t−1)λk

s,d̃s
= 0,

which contradict Assumptions KL5 (C), (C) and (A), respectively.
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Proof of Theorem 1. By Lemma 5, fY T ,DT ,XT ,X∗
k
, and thus ht, is identified. First,

fY T ,DT ,XT ,X∗
k

(
yT , dT , xT , x∗

k

)
=

∫
fY T (dT ),DT ,XT ,X∗

(
yT , dT , xT , x∗) dx∗

u

=

∫
fYT (dT )|XT ,X∗ (yT ;xT , x

∗) fDT |Y T−1,DT−1,XT ,X∗
k
(dT ; y

T−1, dT−1, xT , x∗
k)

× fXT |Y T−1,DT−1,XT−1(xT ; y
T−1, dT−1, xT−1) . . . fY1(d1)|X1,X∗ (y1;x1, x

∗)

× fD1|X1,X∗
k
(d1;x1, x

∗
k)fX∗

u|X1,X∗
k
(x∗

u;x1, x
∗
k)fX1,X∗

k
(x1, x

∗
k)dx

∗
u.

This implies that on the support of fY T ,DT ,XT ,X∗
k
,

fY T ,DT ,XT ,X∗
k

(
yT , dT , xT , x∗

k

)
fD1,X1,X∗

k
(d1, x1, x∗

k)
∏T

t=2 fDt,Xt|Y t−1,Dt−1,Xt−1,X∗
k
(dt, xt; yt−1, dt−1, xt−1, x∗

k)

=

∫ T∏
t=1

fYt(dt)|Xt,X∗ (yt;xt, x
∗) fX∗

u|X∗
k ,X1(x

∗
u;x

∗
k, x1)dx

∗
u.

The function is equal to the probability density function of a jointly normal random

variable with mean (
x⊺
tβt,dt + x∗

kλ
k
t,dt

)T
t=1

,

and covariance matrix

(λu
d)

⊺Σu(x1)λ
u
d + diag

(
σ2
t,dt : t = 1, . . . , T

)
,

where λu
d =

(
λu
1,d1

· · ·λu
T,dT

)
. By Assumptions KL4 (D) and (E), the components

of the mean function are identified. The components of the covariance matrix are

identified under Assumptions KL3 (B) and KL5 (F).
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A.3 Proof of Theorem 2

In this section denote L = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|da < ∞}

and LA = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫
|m(a)|fA(a)da < ∞} for a random

variable A with p.d.f. fA.

Proof. Let x ∈ S(X) and dT ∈ S(DT ) whose first p elements satisfy Assumption L3,

and define W1 = (Y1, . . . , Yp), W2 = Yp+1 and W3 = (Yp+2, . . . , YT ). Let L123 : LW3 →

L and L13 : LW3 → L be defined as [L123m](w1) =∫
fY,D,X(y, d, x)

fD1,X1(d1, x1)
∏T

t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)
m(w3)dw3,

and [L13m](w1) =
∫
[L123m](w1)dw2. In addition, define

L1X∗ : L → L [L1X∗m](w1) =

∫ p∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)m(x∗)dx∗,

LX∗3 : LW3 → L [LX∗3m](x∗) =

∫ T∏
t=p+2

fYt(dt)|Xt,X∗(yt;xt, x
∗)fX∗|X1(x

∗;x1)m(w1)dw1,

DX∗ : LX∗ → LX∗ [DX∗m](x∗) = fYp+1(dp+1)|Xp+1,X∗(yp+1;xp+1, x
∗)m(x∗).

The following derivation shows that L123 = L1X∗DX∗LX∗3. First,

fY,D,X(y, d, x) =

∫
fY,D,X,X∗(y, d, x, x∗)dx∗

=

∫
fYT (dT )|XT ,X∗(yT ;xT , x

∗)fDT ,XT |Y T−1,DT−1,XT−1(dT , xT ; y
T−1, dT−1, xT−1)

× fYT−1(dT−1)|XT−1,X∗(yT−1;xt−1, x
∗) . . . fD1,X1(d1, x1)fX∗|X1(x

∗;x1)dx
∗.
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Then, by Assumption L4 (A),

fY,D,X(y, d, x)

fD1,X1(d1, x1)
∏T

t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)

=

∫ T∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)fX∗|X1(x

∗;x1)dx
∗,

and therefore it follows that

[L123m](w1) =

∫ (∫ T∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)fX∗|Xt(x

∗;xt)dx
∗

)
m(w3)dw3

=

∫ p+1∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)

(∫ T∏
t=p+2

fYt(dt)|Xt,X∗(yt;xt, x
∗)fX∗|Xt(x

∗)m(w3)dw3

)
dx∗

=

∫ p∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)
(
fYp+1(dp+1)|Xp+1,X∗(yp+1;xp+1, x

∗)[LX∗3m](x∗)
)
dx∗

=

∫ ∫ p∏
t=1

fYt(dt)|Xt,X∗(yt;xt, x
∗)[DX∗LX∗3m](x∗)dx∗

=[L1X∗DX∗LX∗3m](w1),

and L123 = L1X∗DX∗LX∗3. Similarly, L13 = L1X∗LX∗3.

From here, Assumptions L1, L2, L3, L4 (B), and L5 imply the arguments of The-

orem 1 Freyberger (2018) apply, so that λt,dt , fYt(dt)|Xt,X∗(·;xt, ·) and fX∗|X1(·;x1) are

identified for each t for the given (dt, x).
15 Given identification of fYt(dt)|Xt,X∗(·;xt, ·)

for each xt ∈ S(Xt) and λt,dt , Assumption L4 (C) implies identification of βt,dt and

thus fϵt(dt).

Next, given an arbitrary t and dt, define d̃ by replacing the t-th element of d with

dt. Then consider a permutation (1, 2, . . . , T ) 7→ (t1, t2, . . . , tT ) such that t 7→ t1 and

15The listed assumptions imply the assumptions of Freyberger (2018, Theorem 1) with the primary
exception of Assumption L1 that differs from Assumption N5 in Freyberger (2018) by allowing period
t variables to impact the evolution of period t′ covariates for t′ > t. However, since Assumption
L1 implies fYt(dt)|Xt,X∗(y;x, x∗) = fϵt(dt)(y − x⊺βt,dt

− (x∗)⊺λt), Freyberger (2018, Lemma 1) and
D’Haultfoeuille (2011) may be applied with minor modifications.
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define W̃1 = (Yt1 , Yt2 , . . . , Ytp), W̃2 = (Ytp+1 , Ytp+1 , . . . , YtT ),

L̃2X∗ : L → L [L̃2X∗m](w̃2) =

∫ T∏
i=p+1

fYti (dti )|Xti ,X
∗(yti ;xti , x

∗)fX∗|X1(x
∗;x1)m(x∗)dx∗,

L̃X∗1 : LW̃1
→ L [L̃X∗1m](x∗) =

∫ p∏
i=1

fYti (dti )|Xti ,X
∗(yti ;xti , x

∗)m(w̃1)dw̃1,

and L̃21 : LW̃1
→ L as

[L̃21m](w̃2) =

∫
fY,D,X(y, d, x)

fD1,X1(d1, x1)
∏T

t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)
m(w̃1)dw̃1.

As before, L̃21 = L̃2X∗L̃X∗1. Since L̃2X∗ and L̃21 are identified and injective, L̃X∗1 is

identified by L̃−1
2X∗L̃21 = L̃X∗1 and thus βt,dt , λt,dt , fϵ(dt).
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B Online Appendix

B.1 Proof of Corollary 1

In this proof we denote βt,d = (αt,d, γ
⊺
t,d)

⊺, where αt,d is the coefficient on the constant

term in Xt. Fix dp as in the statement and define λu =
(
λu
1,d1

· · ·λu
p,dp

)
, X̃∗

u =

λ⊺
u (X

∗
u − µu), ϵ̃t(d) = ϵt(d)− ct,d, X̃

∗
k = b+ λk

1,d1
X∗

k where b = α1,d1 + µ⊺
uλ

u
1,d1

+ c1,d1 .

Finally, define λ̃k
t,dt

= (λk
1,d1

)−1λk
t,dt

, λ̃u
t,dt

= λ−1
u λu

t,dt
, and α̃t,dt = αt,dt−λ̃k

t,dt
b+µ⊺

uλ
u
t,dt

+

ct,dt . We then have that

Yt(dt) = X⊺
t

(
α̃t,dt , γ

⊺
t,dt

)⊺
+ (X̃∗

u)
⊺λ̃u

t,dt + X̃∗
k λ̃

k
t,dt + ϵ̃t(dt),

E[ϵ̃t(dt)] = 0 and E[X̃∗
u | X1 = x,X∗

k = x∗
k] = 0 so that the reparameterized model

satisfies Assumption KL2 (with Σ̃u(x1) = λ⊺
uΣu(x1)λu). Also, λ̃

k
1,d1

= 1, α̃1,d1 = 0 and(
λ̃u
1,d1

· · · λ̃u
p,dp

)
= Ip×p so the reparameterized model satisfies Assumption KL3. By

Theorem 1, θ̃ =
{
{α̃t,dt , γt,dt , λ̃

k
t,dt

, λ̃u
t,dt

, σ2
t,dt

, gt, h̃t}Tt=1, Σ̃u, FX̃∗
kX1

}
is identified, where

h̃t and FX̃∗
kX1

are the CCPs and distribution of (X̃∗
k , X1), respectively. This, in turn,

implies the identification of the distribution of Cj
t,dt

for j = k, u. Finally,

x⊺
(
α̃t,dt , γ

⊺
t,dt

)⊺
+Qα[C̃

k
t,dt + C̃u

t,dt + ϵ̃t(dt)]

=x⊺βt,dt − λ̃k
t,dtb+ µ⊺

uλ
u
t,dt + ct,dt +Qα[C̃

k
t,dt + C̃u

t,dt + ϵ̃t(dt)]

=x⊺βt,dt − λ̃k
t,dtb+ µ⊺

uλ
u
t,dt + ct,dt +Qα[C

k
t,dt + λ̃k

t,dtb+ Cu
t,dt − µ⊺

uλ
u
t,dt + ϵt(dt)− ct,dt ]

=x⊺βt,dt +Qα[C
k
t,dt + Cu

t,dt + ϵt(dt)].

B.2 Variance decompositions

As discussed in Section 2, an important class of parameters in learning models are

terms that decompose the variance of potential outcomes into components that are

predictable and unpredictable given the agents’ information. These parameters can

be expressed as functionals of the finite- and infinite-dimensional components of the
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model parameters. Section 4 provides general inference results, which can be applied

to a plug-in sieve MLE estimator of these parameters. In this section, we define these

parameters and discuss their relevance to quantifying the importance of uncertainty

and learning.

To define this class of parameters, consider a weighted sum of potential outcomes,

Y (ωT , dT ) =
∑

t ωtYt(dt) for a sequence of choices dT and weights, ωT . Cunha and

Heckman (2016) consider a special case of this parameter in the context of an educa-

tional choice model. In particular, they consider the present value of lifetime earnings,

which is defined as Y (ωT , dT ), with ωt = 1(t ≥ t0)(1− ρ)t0−t, for some discount rate

0 ≤ ρ < 1.

Next, define the agent’s information set as It = {Y t−1, Dt−1, X t, X∗
k} for t > 1

and I1 = {X1, X
∗
k}. Restricting attention to weighted sums where ωs = 0 for s < t,

the variance of Y (ωT , dT ) conditional on It can be understood as the variance that is

due to the agent’s uncertainty over Y (ωT , dT ) given their information up to period t.

We refer to this as the posterior variance, because this is derived from the posterior

distribution of X∗
u after performing a Bayesian update with the information in It.

In its full generality, the model allows for endogeneity in Xt as the transition

probabilities depend on past choices and outcomes. Therefore, the posterior variance

of Y (ωT , dT ) includes terms which reflects uncertainty about the future realizations

of Xt conditional on X∗
k . In order to focus on uncertainty over X∗, we abstract from

this by assuming that the covariates are not time varying, which we denote as X.16

In particular, with this restriction on the covariates, Lemma 1 implies that the

posterior variance, which we denote as V u
t (X,Dt−1;ωT , dT ) := Var

(
Y (ωT , dT ) | It

)
,

16When the covariates are time varying and transitions depend on (Dt−t, Y t−1), the posterior
variance will include the covariances between future realizations of Xt and between Xt and X∗

u

conditional on the information set. These terms reflect another channel through which unobserved
heterogeneity is related to the agents’ uncertainty. In this case, the plug-in estimator of the posterior
variance will involve other infinite dimension parameters of the model (e.g., fDt|Xt,Y t−1,Dt−1,X∗

k
).
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has the form

V u
t (X,Dt−1;ωT , dT ) :=

∑
t1,t2≥t

ωt1ωt2(λ
u
t1,dt1

)⊺Σtλ
u
t2,dt2

+
∑
t1≥t

ω2
t1
σ2
t1,dt1

for t > 1 where Σt is the posterior variance of X∗
u as written in Lemma 1.17 When

t = 1, Dt−1 is empty so we write V u
1 (X;ωT , dT ) := Var

(
Y (ωT , dT ) | I1

)
.

At t = 1, the following variance decomposition provides a natural way to quantify

the relative importance of uncertainty in potential outcomes,

Var(Y (ωT , dT ) | X) = V u
1 (X;ωT , dT ) +

∑
t1,t2≥1

ωt1ωt2λ
k
t1,dt1

λk
t2,dt2

Var(X∗
k | X) (10)

This corresponds to the decomposition in Cunha and Heckman (2016) and in that

context, has the simple interpretation that the first term is the portion of variance in

the lifetime earnings that is due to uncertainty and the second part is due to privately

known heterogeneity.

For t > 1, the analysis is more complicated. For any t > 1, V u
t (X,Dt−1;ωT , dT ) <

V u
1 (X;ωT , dT ), because the realized outcomes are informative about X∗

u. Agents

also select dt−1 based on their private information (X∗
k), which induces a selected

distribution of X∗
k (i.e., conditional on (X, Y t−1, Dt−1) = (x, yt−1, dt−1)). Given these

contributions of learning and selection to variance of Y (ωT , dT ), there are several

possible ways of quantifying the relative importance of uncertainty. The following are

three alternative decompositions, which express total variance (conditional on some

subset of observables) as the sum of a term that reflects uncertainty and another

17Note that Σt depends on certain components of It.
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reflecting variance induced by private information (X∗
k),

Var(Y (ωT , dT ) | Dt−1 = dt−1, X = x) = V u
t (dt−1, x;ωT , dT )

+ Var(E(Y (ωT , dT ) | It) | Dt−1 = dt−1, X = x),

(11)

Var(Y (ωT , dT ) | X = x) = E(V u
t (Dt−1, x;ωT , dT )) + Var(E(Y (ωT , dT ) | It) | X = x),

(12)

Var(Y (ωT , dT ) | X = x) = V u
t (dt−1, x;ωT , dT ) + Ṽar(Ẽ(Y (ωT , dT ) | It) | X = x).

(13)

Decomposition (11) compares the variance of uncertainty to the total variance con-

ditional on choosing the sequence dt. These are natural parameters to consider, but

the ratio, V u
t (d

t, x;ωT , dT )/Var(Y (ωT , dT ) | Dt = dt, X = x) reflects both the effect

of learning in the numerator and selection in the denominator.

Decomposition (12) compares the total variance Y (ωT , dT ) to the expected poste-

rior variance of Y (ωT , dT ) after t periods. The expectation of V u(Dt, x;ωT , dT ) can be

understood as the uncertainty that a randomly chosen person would have in period

t after observing their outcomes and endogenously choosing actions based on that

information and their private information.

Finally decomposition (13) is based on a counterfactual distribution. Here Ẽ and

Ṽar represent the expectation and variance in a counterfactual distribution where Dt

is assigned randomly. This decomposition compares the variance in Y (ωT , dT ) which

is due to uncertainty vs. known heterogeneity among people randomly assigned to

the choice sequence dt.
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B.3 Appendix to estimation section

B.3.1 Consistency of sieve MLE

In this section we introduce conditions for the sieve maximum likelihood estimator

defined in Equation (6) to be consistent for the true model parameter θ∗ ∈ Θ. We

begin by imposing smoothness restrictions on the unknown functions. To do so, given

γ > 0, ω ≥ 0 and X a subset of a Euclidean space, let Λγ(X ) denote a Hölder space

equipped with the Hölder norm ∥h∥Λγ (that is, for k the largest integer smaller than γ,

Λγ(X ) is a space of functions h : X → R having at least k continuous derivatives, the

kth of which is Hölder continuous with exponent γ−k). Then define a weighted Hölder

ball with radius c ∈ (0,∞) as Λγ,ω
c (X ) = {h ∈ Λγ(X ) : ∥h(·)[1 + ∥ · ∥2E]−ω∥Λγ ≤ c},

where ∥ · ∥E is the Euclidean norm.

Without loss of generality, suppose the CCP function ht(d
t, xt, yt−1, x∗

k) depends

on (dt, xt, yt−1) via some measurable vector-valued function (dt, xt, yt−1) 7→ jt which is

known up to
(
(βs, λs, σs)

T
s=1,Σu(x1)

)
. This is without loss of generality since the func-

tion may be identity. Other examples include rational learning where jt ∈ Rp(p+3)/2+2

includes sufficient statistics for X∗
u (i.e, the mean and variance), and a sort of myopia

where jt ∈ R3+2 depends on the history only via the previous period (dt−1, xt−1, yt−1).

Write Jt = (J⊺
1,t, J

⊺
2,t)

⊺ and Xt = (X⊺
1,t, X

⊺
2,t)

⊺ where J1,t, X1,t are continuous random

variables and J2,t, X2,t are random variables with finite support and, with some abuse

of notation, redefine the CCP function as ht(j1,t, j2,t, x
∗
k). Define

Ht = Λγ1,ω1
c (S(X∗

k)× S(J1,t)) ,

F = {f : S(X∗
k , X1,1) → R

∣∣f(·, x1) is càdlàg , f(x∗
k, ·) ∈ Λγ2,ω2

c (S(X1,1))}

Gt = Λγ3,ω3
c (S(X1,t+1)× S(Yt)× S(X1,t)) .

The use of a weighted Holder space enables us to allow the support of the con-

tinuous random variables to be unbounded. Though not required for consistency,

Assumption E6 places restrictions on (γ1, γ2, γ3), the parameters that govern the
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smoothness of the function classes. Next, to simplify notation we make the following

assumption which strengthens Assumption KL1:

Assumption E1. For any t, FXt+1|Y t,Dt,Xt = FXt+1|Yt,Dt,Xt , and FX∗
U |X1 = FX∗

U
.

Define k1,t = |S(J2,t)|, k2 = |S(X2,1)|, and k3,t = |S((X2,t+1, Dt, X2,t))|. Notice

that Θ = Θ1 × Hk1,1
1 × · · · × Hk1,T

T × Fk2 × Gk3,1
1 × · · · × Gk3,T−1

T−1 and we denote an

element of Θ as θ = (θ1, h1, . . . , hT , fX∗ , g1, . . . , gT−1). Define the norms on Hk1,t
t , Fk2

and Gk3,t
t as follows:

∥ht∥∞,ω1 = sup
j2∈S(J2,t)

∥ht(·, j2, ·)[1 + ∥ · ∥2E]−ω1∥∞,

∥fX∗∥∞,ω2 = sup
x2∈S(X2,1)

∥fX∗ (·, (·, x2)) [1 + ∥ · ∥2E]−ω2∥∞,

∥gt∥∞,ω3 = sup
(x′

2,d,x2)∈S(X2,t+1,Dt,X2,t)

∥gt ((·, x′
2); ·, d, (·, x2)) [1 + ∥ · ∥2E]−ω3∥∞,

where ∥ · ∥∞ is the uniform norm. Finally, define a metric d on Θ as

d(θ, θ̃) = ∥θ1 − θ̃1∥E +
T∑
t=1

∥ht − h̃t∥∞,ω̃1 + ∥fX∗ − f̃X∗∥∞,ω̃2 +
T−1∑
t=1

∥gt − g̃t∥∞,ω̃3 ,

for scalars ω̃1, ω̃2, ω̃3. Now, let Hn,t, Fn and Gn,t be sieve spaces for Ht, F and Gt

respectively. Then Θn = Θ1 ×Hk1,1
n,1 × . . .Hk1,T

n,T ×Fk2
n × Gk3,1

n,1 × · · · × Gk3,T−1

n,T−1 and

1

n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1

n

n∑
i=1

ℓ(wi; θ)− op(1/n).

Assumption E2. θ∗ ∈ Θ and (Θ, d) is compact.

Assumption E3. For each n ≥ 1, Θn ⊆ Θn+1 ⊆ Θ and Θn is compact under d. As

n → ∞, minθ∈Θn d(θ, θ0) → 0.

Assumption E4. E[ℓ(W, θ)] is continuous at θ = θ∗

Assumption E5.
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(i) For each n, E[supθ∈Θn
|ℓ(W, θ)|] is finite.

(ii) There is a non-zero s < ∞ and integrable random variable g(W ) such that

∀ θ, θ̃ ∈ Θn, d(θ, θ̃) < δ =⇒ |ℓ(W, θ)− ℓ(W, θ̃)| ≤ δsg(W ).

(iii) For all δ > 0, logN(δ1/s,Θn, d) = o(n).

The identification assumptions imply θ∗ = argmaxθ∈Θ E[ℓ(W, θ)] and for all θ ∈

Θ\{θ∗}, E[ℓ(W, θ∗)] ≥ E[ℓ(W, θ)]. By assuming compactness of Θ, we ensure that θ∗ is

a well-separated maximum of E[ℓ(W, θ)]. Assumption E3 requires the sieve space Θn

to be a good approximation to Θ. Assumption E4 requires the population criterion to

be continuous. Finally, Assumption E5 is similar to Condition 3.5M in Chen (2007).

Theorem 3 follows from Remark 3.3 in Chen (2007), so its proof is omitted.

B.3.2 Plug-in sieve estimator

We first assume a linear sieve space and limit its complexity.

Assumption E6. (i) Hn,t, Fn and Gn,t are linear sieves of length

MHn,t, MFn and MGn,t respectively, where MHn,t = O(n
1

2γ1/(1+dim(J1,t))+1 ),

MFn = O(n
1

2γ2/(1+dim(X1,1))+1 ), and MGn,t = O(n
1

2γ3/(dim(X1,t+1)+1+dim(X1,t))+1 ). (ii)

min
{

γ1
1+dim(J1,t)

, γ2
1+dim(X1,1)

, γ3
dim(X1,t+1)+1+dim(X1,t)

}
> 1/2.

Assumption E6 controls the rate at which the number of sieve terms grow. To

achieve this, part (i) of Assumption E6 requires that the nonparametric functions

have adequate smoothness. In applied work, one may focus on discrete Xt and posit

a parametric model for ht, in which case the above restrictions are milder.

The next assumption strengthens E3 and ensures the number of sieve terms grows

sufficiently quickly.

Assumption E7. minθ∈Θn d(θ, θ
∗) = o(n−1/4).

52



Assume ℓ is pathwise differentiable and define an inner product on Θ as

⟨θ1 − θ∗, θ2 − θ∗⟩ = − ∂2

∂τ1∂τ2
E [ℓ (W, θ∗ + τ1 (θ1 − θ∗) +τ2 (θ2 − θ∗))] |τ1=0,τ2=0 ,

(14)

for θ1, θ2 ∈ Θ. the corresponding norm for θ ∈ Θ is

∥θ − θ∗∥2 := − ∂2

∂τ 2
E [ℓ (W, θ∗ + τ (θ − θ∗))]

∣∣∣∣
τ=0

. (15)

Assumption E8. There is C1 > 0 such that for all small ε > 0

sup
{θ∈Θn:∥θ−θ∗∥⩽ε}

Var (ℓ (W, θ)− ℓ (W, θ∗)) ⩽ C1ε
2

Assumption E9. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{θ∈Θn:∥θ−θ∗∥⩽δ}

|ℓ (W, θ)− ℓ (W, θ∗)| ⩽ δsU (W )

with E ([U (W )]γ) ⩽ C2 for some γ ⩾ 2.

The following theorem is now a consequence of Theorem 3.2 in Chen (2007) or

Theorem 1 in Shen and Wong (1994).

Theorem 5. Let (Yi,t, Di,t, Xi,t : t = 1, . . . , T )ni=1 be i.i.d. data where T ≥ 2p+1 and

Assumptions KL1-KL5 and Assumptions E1-E9 hold. Then ∥θ̂ − θ∗∥ = op(n
−1/4).

Given the preceding result, we focus on a a shrinking neighborhood of θ∗. Let

N0 :=
{
θ ∈ Θ: ∥θ − θ∗∥ = o(n−1/4), d(θ, θ∗) = o(1)

}
,

and Nn := N0∩Θn. Define θ
∗
n = argminθ∈Nn

∥θ − θ∗∥. Let V denote the closed (under

∥ · ∥) linear span of N0 centered at θ∗, and define Vn as the analogous closure of Nn.

Then we define a linear approximation to ℓ(W, θ) − ℓ(W, θ∗) as the directional
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derivative of ℓ at (W, θ∗) in the direction (θ − θ∗):

∂ℓ (W, θ∗)

∂θ
[θ − θ∗] :=

∂ℓ (W, θ∗ + τ(θ − θ∗))

∂τ

∣∣∣∣
τ=0

.

Likewise, let ∂f(θ∗)
∂θ

[v] = ∂f(θ∗+τv)
∂τ

∣∣∣
τ=0

for any v ∈ V .

Assumption E10. Let T be an epsilon ball about 0 ∈ R. (i) For all θ ∈ N0

and W , the derivative ∂ℓ (W, θ∗ + τ(θ − θ∗)) /∂τ exists for all τ ∈ T ; (ii) for all

θ ∈ N0, E [ℓ (W, θ∗ + τ (θ − θ∗))] is finite for each τ ∈ T ; (iii) for all θ ∈ N0,

E
[
supτ∈T

∣∣ ∂
∂τ
ℓ (W, θ∗ + τ [θ − θ∗])

∣∣] < ∞.

Assumption E10 provides sufficient conditions for the set V to be a Hilbert space

under ⟨·, ·⟩.18 Define v∗n to be the Riesz representer of ∂f(θ∗)
∂θ

[·] on Vn, which exists

under Assumption E11.

Assumption E11. (i) v 7→ ∂f(θ∗)
∂θ

[v] is a linear functional. (ii) If limn→∞ ∥v∗n∥ is

finite then ∥v∗n − v∗∥ × ∥θ∗n − θ∗∥ = o(n−1/2) where v∗ is the limit of v∗n. Otherwise∣∣∣∂f(θ∗)∂θ
[θ∗n − θ∗]

∣∣∣/∥v∗n∥ = o(n−1/2). (iii) supθ∈N0

∣∣∣f(θ)−f(θ∗)− ∂f(θ∗)
∂θ

[θ−θ∗]
∣∣∣

∥v∗n∥
= o(n−1/2).

Assumption E11 imposes some restrictions on the functional of interest θ 7→ f(θ).

Part (i) imposes that the directional derivative is a linear functional, a mild condition

that is satisfied by our examples in Section 4. Part (ii) is a restriction on the growth

rate of the dimension of the sieve space. Part (iii) restricts the linear approximation

error of f(·) in a neighborhood of θ∗, for which sufficient conditions could be stated

in terms of the smoothness of f(·) and the growth rate of the dimension of the sieve

space. See Chen et al. (2014) for further discussion.

Let u∗
n := v∗n

∥v∗n∥
, εn = o

(
n−1/2

)
and µn{g(W )} := n−1

∑n
i=1 [g (Wi)− E[g (Wi)]]

denote the centered empirical process indexed by the function g.

18See Chen et al. (2014, p. 642).
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Assumption E12. µn{∂ℓ(W ,θ∗)
∂θ

[v]} is linear in v ∈ V .

sup
θ∈Nn

µn

{
ℓ (W , θ ± εnu

∗
n)− ℓ(W , θ)− ∂ℓ (W , θ∗)

∂θ
[±εnu

∗
n]

}
= Op

(
ε2n
)
.

For some positive sequence ηn → 0,

sup
θ∈Nn

∣∣∣∣∣E [ℓ(W, θ)− ℓ (W, θ ± εnu
∗
n)]−

∥θ ± εnu
∗
n − θ∗∥2 − ∥θ − θ∗∥2

2
(1 +O (ηn))

∣∣∣∣∣ = O
(
ε2n
)
.

Assumption E13.
√
nµn

{
∂ℓ(W ,θ∗)

∂θ
[u∗

n]
}
→d N(0, 1)

Theorem 4 is a direct application of Lemma 2.1 in Chen and Liao (2014) so its

proof is omitted.

B.4 Appendix to implementation and Monte Carlo simula-

tions section

B.4.1 Implicit differentiation

For implementing the estimator, it can be useful to input the gradient of the objective

function. In this section, we show how our profiling approach and choice of sieve space

simplify this task. Recall that in Section 5.1, the profile log likelihood function with

our proposed sieve space for FX∗
k
is

ℓp(θc) :=
n∑

i=1

log

qn∑
s=1

ωs(θ
c) ℓc(wi, x̄

∗
n,s; θ

c),

where ω(θc) = argmaxω∈∆(qn)

∑n
i=1 log

∑qn
s=1 ωs ℓc(wi, x̄

∗
n,s; θ

c) is the solution to the

inner problem for a fixed θc. Given an analytical expression for ℓc(wi, x
∗
k; θ

c)19, the

challenge of computing the gradient of ℓp(θc) reduces to finding the Jacobian of ω(θc)

(i.e., ∂
∂(θc)⊺

ω(θc)), which is defined implicitly by the Karush-Kuhn-Tucker (KKT)

19Given the analytical expression for ℓc, we use the software Google JAX to compute the derivative
via autodifferention.
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conditions of the inner optimization problem. In the following, we derive an analytical

expression for ∂
∂(θc)⊺

ω(θc) in terms of ℓc(wi, x
∗
k; θ

c), ∂
∂θc

ℓc(wi, x
∗
k; θ

c), and ω(θc).

Proposition 3.3 in Kim et al. (2020) shows that ω(θc) can be equivalently expressed

as argmaxω≥0{
∑n

i=1 log
∑qn

s=1 ωs ℓ
c(wi, x̄

∗
n,s; θ

c)+
∑qn

s=1 ωs}, where ω ≥ 0 means ωs ≥ 0

for all s = 1, . . . , qn. Letting λ ∈ Rqn be the dual parameter corresponding to the

constraint ω ≥ 0, and ℓci(θ
c) := (ℓc(wi, x̄

∗
n,s; θ

c) : s = 1, . . . , qn), the equality constraints

in the KKT conditions of this problem are,

02qn×1 =

∑n
i=1

1
ω⊺ℓci (θ

c)
ℓci(θ

c) + 1qn + λ

λ ◦ ω

 ,

where ◦ is the Hadamard product. By definition, these constraints are identically zero

for all θc, so under an implicit function theorem, d
d(θc)⊺

ω(θc) = −G1(θ
c)−1G2(θ

c),20

where

G1(θ
c) =

∑n
i=1

1
(ω(θc)⊺ℓci (θ

c))2
ℓci(θ

c)(ℓci(θ
c)⊺ Iqn×qn

diag(λ(θc)) diag(ω(θc))

 ,

and

G2(θ
c) =

∑n
i=1

(
∂

∂(θc)⊺ ℓ
c
i (θ

c)

ω(θc)⊺ℓci (θ
c)
−

ℓci (θ
c)ω(θc)⊺ ∂

∂(θc)⊺ ℓ
c
i (θ

c)

(ω(θc)⊺ℓci (θ
c))2

)
0qn×dim(θc)


Finally, note that the KKT conditions imply that λ(θc) = −1qn −

∑n
i=1

ℓci (θ
c)

ω(θc)⊺ℓci (θ
c)
.

B.4.2 Details on DGP

This section gives further details on the DGP used for Monte Carlo simulations dis-

cussed in Section 5.2. The values of the finite parameters used in the DGP are given

in the table below.

20G1 and G2 are the partial derivatives of right hand side of the previous equation with respect
to (ω, λ) and θc respectively, evaluated at ω(θc) and λ(θc).
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α1,1 = 0 γ
(1)
1,1 = −0.5 γ

(2)
1,1 = −0.58 λu

1,1 = 1 λk
1,1 = 0.3

α2,1 = 0.1 γ
(1)
2,1 = −0.8 γ

(2)
2,1 = −0.83 λu

2,1 = 1.05 λk
2,1 = 0.35

α3,1 = 0.2 γ
(1)
3,1 = 0.12 γ

(2)
3,1 = −0.83 λu

3,1 = 1.01 λk
3,1 = 0.33

σ2
1 = 0.5

α1,2 = −0.1 γ
(1)
1,2 = 0.13 γ

(2)
1,2 = 0.71 λu

1,2 = 0.4 λk
1,2 = 1

α2,2 = −0.22 γ
(1)
2,2 = 0.89 γ

(2)
2,2 = −0.36 λu

2,2 = 0.36 λk
2,2 = 1.05

α3,2 = −0.33 γ
(1)
3,2 = 0.32 γ

(2)
3,2 = −0.36 λu

3,2 = 0.44 λk
3,2 = 1.02

σ2
2 = 0.7

σ2
u = 1.5 ρ = 2.0 κ = 0.5

Table 4: Finite parameter values

B.4.3 DGP with risk aversion

In this section, we present results from an alternative DGP in which agents maxi-

mize their expected utility in each period which incorporates risk aversion, through

constant relative risk aversion (CRRA) preferences, and subjective (possibly biased)

beliefs. The expected utility that individual i derives from choice d in period t is

given by:

vi,t(d) := Ei,t
(
Yi,t(d)

1−χ

1− χ

)
+ ηi,t(d)

where Ei,t denotes the expectation under individual i’s subjective beliefs over X∗
u,i,

given the information up to period t. ηi,t(d) are independent preference shocks, which

are supposed to follow an Extreme Value Type 1 distribution.

We assume that individuals’ subjective beliefs over X∗
u,i in time t are distributed

N(µi,t+ δX∗
k,i,Σi,t) where µi,t,Σi,t are the correct posterior mean and variance of X∗

u,i

given the information up to period t− 1. This subjective belief process allows agents

to have biased beliefs that can be correlated with the known part of their unobserved

heterogeneity, X∗
k,i.
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Under this specification, the expected utility has the following analytical form,

vi,t(d) =

exp

(
µi,t(d)(1− χ) + 1

2
σi,t(d)(1− χ)2

)
1− χ

+ ηi,t(d) (16)

where µi,t(d) (σi,t(d)) denote the subjective mean (variance) of log(Yi,t(d)).

A naive approach to estimating vi,t(d) nonparametrically would be to use a tensor

product of polynomials (X∗
k , X, Y t−1, Dt−1) as the sieve space. That is, for a univariate

random variable X, let Pq(X) = sp({1, X, . . . , Xq}). Assume Dt is binary, and let

δt = 1(Dt = 1), then the sieve space is,

Pq(X
∗
k)⊗ Pq(X1)⊗ · · · ⊗ Pq(Y1)⊗ Pq(δ1)⊗ · · · ⊗ Pq(Yt−1)⊗ Pq(δt−1).

For an q-order polynomial, the number of terms would be (q+1)3+(q+1)5+(q+1)7,

which grows very quickly in practical terms.

The alternative approach we consider here is to use the following approximation

vi,t(d) = φ

( ∑
h∈Dt−1

1(Dt−1 = h)(πt,h,d,0 + π⊺
t,h,d,1X + πt,h,d,2X

∗
k + π⊺

t,h,d,3Y
t−1
i )

)

for some unknown function φ. Since the argument of φ is scalar-valued, this means

that the nonparametric estimation problem is greatly simplified to estimating a scalar-

valued function. For this we use the sieve space of polynomials, with the order growing

at the rate of n1/3 with 3 terms with n = 500 and 6 terms for n = 4, 000. Our choice

of approximation is motivated by the fact that under Lemma 1 and Equation 16,

there is a set of π parameters such that this equality holds, with φ(·) = 1
1−χ

exp(·).

The finite parameters are the same as in our baseline simulations considered in

Section 5.2, with the added risk aversion parameter χ, which we set to 1.5. X∗ and X

are generated from the same distributions as in the DGP considered in Section 5.2.

With the additional π parameters to estimate, the θc has a total of 103 parameters.
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Given this large number of parameters to estimate, we expect n = 250 to be too small

a sample size to perform well, and begin the Monte Carlo simulations with a sample

size of n = 500. The large number of parameters to estimate in θc results in longer

but still manageable computational times, which are reported in Table 5.

n = 500 n = 1,000 n = 2,000 n = 4,000

Time (minutes) 3 7.5 19.5 56

Table 5: Time to compute the estimator: DGP with risk aversion. Computational
times were obtained using an Intel Core i9-12900K CPU, and are computed as the
average over 200 simulations.

The results of the Monte Carlo simulations are presented in Table 6 and Figure

2. Despite the increased complexity of the model, our estimation procedure exhibits

similar finite sample performance to the DGP considered in Section 5.2.
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Figure 2: Quantiles of Estimator of qα[X
∗
k ] under DGP with risk aversion. The red

line shows the true distribution of X∗
k . The blue lines show the mean, and the 5th

and 95th percentiles of the simulated distribution of the estimator of qα[X
∗
k ] for each

sample size.
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n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var

α1,2 66.15 38.25 18.40 20.20 3.97 12.19 0.05 7.69
α2,1 0.17 28.07 0.05 12.99 0.08 5.50 0.05 2.10
α2,2 69.24 42.16 18.40 23.49 3.25 14.33 0.00 9.20
α3,1 1.29 24.63 0.07 9.98 0.00 4.73 0.00 1.83
α3,2 68.62 42.86 23.69 21.80 3.41 13.62 0.01 8.28

γ
(1)
1,1 0.08 6.61 0.05 3.30 0.01 1.72 0.02 0.95

γ
(1)
1,2 0.12 8.29 0.09 3.55 0.02 1.64 0.01 0.78

γ
(1)
2,1 0.03 7.69 0.08 3.81 0.04 2.11 0.02 1.08

γ
(1)
2,2 0.21 9.49 0.25 4.13 0.06 2.18 0.03 0.79

γ
(1)
3,1 0.14 5.52 0.03 2.52 0.01 1.38 0.02 0.72

γ
(1)
3,2 0.08 9.43 0.11 4.03 0.03 1.84 0.02 0.83

γ
(2)
1,1 1.65 35.50 0.00 12.36 0.22 5.58 0.01 2.75

γ
(2)
1,2 0.09 28.70 0.09 11.52 0.16 6.99 0.06 3.19

γ
(2)
2,1 1.47 31.77 0.00 12.37 0.06 5.50 0.03 2.79

γ
(2)
2,2 0.08 28.45 0.11 13.67 0.23 7.50 0.11 3.25

γ
(2)
3,1 0.73 25.40 0.02 11.07 0.13 4.71 0.01 2.65

γ
(2)
3,2 0.17 29.53 0.00 14.60 0.16 7.89 0.09 3.35

λk
1,1 0.34 20.38 1.18 6.84 0.02 4.11 0.01 1.71

λk
2,1 0.18 21.01 2.41 9.54 0.42 5.21 0.09 1.91

λk
2,2 0.18 9.49 0.00 3.31 0.01 1.60 0.01 0.80

λk
3,1 0.45 17.32 1.53 8.13 0.15 4.25 0.01 1.53

λk
3,2 0.03 10.43 0.21 3.97 0.01 2.22 0.01 1.10

λu
1,2 0.11 6.31 0.03 2.65 0.00 1.23 0.00 0.52

λu
2,1 0.05 3.54 0.04 1.41 0.01 0.78 0.01 0.43

λu
2,2 0.09 8.36 0.01 3.61 0.00 1.65 0.01 0.69

λu
3,1 0.06 3.89 0.02 1.44 0.01 0.60 0.00 0.33

λu
3,2 0.35 9.16 0.15 4.34 0.00 1.90 0.01 0.87

σ2(1) 0.15 0.68 0.01 0.36 0.01 0.17 0.00 0.07
σ2(2) 0.06 0.24 0.00 0.15 0.00 0.07 0.00 0.03
σ2
u 1.38 19.53 0.02 6.64 0.01 3.74 0.00 1.83

Table 6: Simulation results for estimation of finite dimensional parameters. ‘Bias2’
and ‘Var’ refer to the average empirical squared bias and variance scaled by 1,000,
respectively, computed over 200 simulations.
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