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Abstract
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1 Introduction

Regressions run in applied economics are often not the ideal regressions researchers
would like to consider. Notably, it is often the case that the outcome Y and covari-
ates X of interest do not appear in the same dataset. A leading example is inter-
generational studies (e.g., intergenerational income or wealth mobility), in common
situations where one cannot link parents’ and children’s outcomes. Another impor-
tant example is the measurement of racial inequality. For instance, in the context of
innovation and patent approval, the dataset of patent applications typically does not
include the race of applicants, making it impossible to directly measure racial inequal-
ity. A third example is randomized experiments, where the effect of the treatment
is measured in the short run but not in the long run, while other databases measure
such long-run outcomes. Besides, even if the outcome and covariates of interest do
appear in the same dataset, key control variables may be missing from the data. For
instance, when measuring the wage returns to education, one may wish to control for
a measure of cognitive skills, but this measure may not be available in the main labor
market database, even though it appears in another dataset.

When confronted with such data issues, researchers have traditionally relied on impu-
tation methods. Even though this practice is both simple and intuitive, it is important
to recognize that it implicitly relies on an exclusion restriction. Such exclusion restric-
tions may often be questionable. In this paper, we study identification and inference
on the regression coefficients in a data combination environment, when relaxing such
exclusion restrictions. We consider a general set-up where X includes two sets of
covariates: “outside” regressors Xo, which only appear in a separate dataset from
that including the outcome Y , and “common” regressors Xc, which appear in both
datasets. We also consider other variables, that researchers do not seek to include in
the regression but that appear in both datasets. For instance, if a common variable
is a proxy for Xo, it may be more natural to focus on an “ideal” regression of Y on
Xo, but without controlling for that common variable. We denote the set of common
variables, either included or not in the “ideal” regression, by W .

We first consider the special case where X = Xo. We show in this case that the identi-
fied set is nonempty, convex, compact, and derive a simple expression for its support
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function. The support function expression generalizes the well-known Cambanis-
Simons-Stout inequality to a multidimensional case with multiple covariates. When
common variables W are also present, one can apply Frisch-Waugh to this setup and
partial out Y and Xo. We thus easily extend the previous identification results to
account for such common variables. A novel insight in this context is that, in the
presence of common variables that are not common regressors, identification gains
can be large, in particular making it possible to identify the signs of the coefficients
of interest.

We then focus on situations where one is interested in specific components of the pa-
rameter vector (or a linear combination thereof), and propose to estimate the identi-
fied sets using simple and computationally tractable plug-in estimators. We establish
asymptotic normality of the estimators of the lower and upper bounds of the identi-
fied sets by leveraging results from the statistical optimal transport and L-statistics
literatures. Simulation results indicate that our inference method exhibits good finite
sample properties.

Related literature. Our paper belongs to a very active literature on data combi-
nation problems in econometrics and statistics. See, in particular, Ridder and Moffitt
(2007) for a survey of this literature and recent contributions by Fan et al. (2014),
Fan et al. (2016), Buchinsky et al. (2022), Athey et al. (2020), D’Haultfœuille et al.
(2024) and Bontemps et al. (2024). Most of these papers impose restrictions that
entail point identification. Following the seminal contribution of Cross and Manski
(2002) and subsequent article by Molinari and Peski (2006), our aim is to obtain
bounds on parameters of interest under weak restrictions. An important distinction
lies in the fact that we study identification and inference, while these two papers
primarily focus on deriving the identification region for the “long regression”. Par-
ticularly relevant for us in this literature is Pacini (2019), who considers the same
problem as us. There are three key differences between his paper and ours. First, he
does not consider cases where some of the common variables are not used as common
regressors (W ̸= Xc). These cases are prevalent in practice. Second, and importantly,
his bounds turn out not to be sharp when Xo is multivariate, and the differences can
be substantial. Third, he does not consider inference. Also related to our work is
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recent work by Hwang (2022). This paper also considers the case where some re-
gressors are only available in the dataset of Y , a case that we do not consider here.
On the other hand, Hwang (2022) maintains the restriction that W = Xc. For the
data combination environments that are common to Hwang (2022) and our paper,
she proposes to use the same bounds as those derived in Pacini (2019).

Our paper is related to, but differs from our previous work (D’Haultfœuille et al.,
2024) in several important aspects. In this paper we also consider a similar data
combination problem. However, a first important difference is that in our previous
work, we did not consider the situation where some of the observed variables are not
included in the regression. A second important difference is that in our former paper,
we imposed a partially linear model, namely E[Y |X] = X ′

oβo + f(Xc). This leads to
potentially tighter bounds, but one may be reluctant to improve bounds using such
restrictions. Also, from a technical point of view, this restriction on the conditional
expectation E[Y |X] implies that we had to rely on entirely different optimal transport
results.

Technically speaking, our first identification result can be seen as an extension of the
Cambanis-Simons-Stout inequality, see Cambanis et al. (1976) and, e.g., Fan et al.
(2014, 2016) for an application to data combination problems. In terms of inference,
we establish asymptotic normality of our estimators by linking it to the Wasserstein-2
distance between empirical distributions and relying on statistical properties of this
distance, see in particular Fournier and Guillin (2015), Del Barrio et al. (2019) and
Berthet et al. (2020). Actually, our result yields a central limit theorem on this
distance under conditions that are milder than those of Berthet et al. (2020).

A key focus of our analysis is to develop a tractable estimation and inference method.
As such, our paper fits into a literature that derives tractable computational methods
for partially identified models (see Molinari, 2020 for a recent survey). In particular,
we add to the literature that uses tools from optimal transport to devise computa-
tionally tractable identification and inference methods for partially identified models
(Galichon and Henry, 2011; Galichon, 2018; D’Haultfœuille et al., 2024).

Finally, our paper also speaks to a large and growing empirical literature that deals
with similar data combination problems to the one considered in this paper. In partic-
ular, the literature on intergenerational income mobility often faces the unavailability
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of linked income data across generations and relies on exclusion restrictions (see San-
tavirta and Stuhler, 2022, for a recent survey). Data combination issues are also
pervasive in consumption research, as income and consumption are often measured
in two different datasets (Crossley et al., 2022). Similar data combination problems
frequently arise in the economics of education and returns to skill estimation (Piatek
and Pinger, 2016; Garcia et al., 2020; Hanushek et al., 2021), health (Manski, 2018)
and labor (Athey et al., 2020). These issues frequently arise also in the context of
racial gap in science and innovation (see, e.g., Kerr, 2008; Dossi, 2023; Antman et al.,
2024). Since many datasets do not record race together with outcomes of interest such
as successful patent applications, race is typically imputed using commonly observed
demographics such as last names (Dossi, 2023). The methods we devise in this paper
are broadly applicable in these different contexts, allowing researchers to relax the
exclusion restrictions that are typically maintained to achieve point-identification of
the parameters of interest.

Outline. Section 2 presents the set-up, including our maintained assumptions, and
our identification results. Numerical illustrations emphasize that the sharp bounds
can be tight in practice. Section 3 develops estimators of the sharp bounds, and
inference on the true parameters of interest. This section also derives asymptotic
normality of the estimators and construct confidence intervals based on this asymp-
totic normality. Section 4 examines the finite sample properties of our estimators
and confidence intervals through Monte Carlo simulations. Section 5 concludes. The
appendix includes a discussion of the sharpness of the bounds of Pacini (2019) and
gathers all the proofs of our results.

2 Identification

2.1 Set-up and notation

We seek to identify the best linear predictor EL(Y |X) of Y by X ∈ Rp, with X =
(X ′

o, X
′
c)′ and Xk ∈ Rpk for k ∈ {o, c}. To this end, we assume to have access to two

separate datasets that cannot be matched. The first one includes (Y,W ′), whereas
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the second one includes (X ′
o,W ); here W ∈ Rq is a vector including Xc. We call

Xo the “outside” regressors and Xc the “common regressors”. W may include other
components than Xc, to capture variables that the researcher does not want to include
in the regression of interest, but that may still help for identification since they are
included in both datasets. We thus refer to W as “common variables”. Importantly,
variables in W but not in Xc should not be seen as instruments, in the sense that we
do not impose below any restrictions on them.

In order for the best linear prediction to be well-defined, we maintain the following
assumption hereafter:

Assumption 1 max(E(Y 2), E(∥Xo∥2), E(∥W∥2)) < ∞ and E(XX ′) and E(WW ′)
are nonsingular.

Let b0 ∈ Rp be such that EL(Y |X) = X ′b0. We seek to characterize the identified
set of b0, defined by

B =
{
b ∈ Rp : ∃F

W̃ ,X̃o,Ỹ
: F

W̃ ,X̃o
= FW,Xo , FW̃ ,Ỹ

= FW,Y , EL(Ỹ |X̃) = X̃ ′b

}
.

In words, B is the set of coefficients of a “long” regression of Ỹ on X̃, where the
joint distribution of Ỹ and X̃ is compatible with the observed marginal distributions.
Oftentimes, researchers are interested in specific components of b0, rather than the
whole vector b0. Therefore, in the following we seek to characterize the corresponding
identified set Bd = {d′b : b ∈ B}, for any d ∈ Rp, and its corresponding bounds:

bd = sup{d′b : b ∈ B}, bd = inf{d′b : b ∈ B}.

Consider for instance b1,0, the first component of b0. Then, if we let d = [1, 0, ..., 0]′, Bd

is the identified set of b1,0 and bd and bd are its sharp (upper and lower) bounds. We
focus in the following solely on bd, which is without loss of generality since bd = −b−d.

In what follows, we first consider the simplest case with no common variables. Then,
we show how common variables affect identification.1 There are other data combina-
tion cases that we do not consider here. One possibility, considered by Hwang (2022),

1One could argue that we always have common variables, since we can always let Xc = 1. The
case without common variable we consider below actually corresponds to Xc = 1, whereas in cases
with common variable, W is not reduced to W = 1 (but W is always assumed to include 1).
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is that one observes (Y,Xi, Xc) in one dataset and (Xo, Xc) in another (in such a
setup, one could also replace Xc by W ). Another possibility, considered by Kitawaga
and Sawada (2023), is that one observes (Y,X1, Xc) in one dataset and (Y,X2, Xc)
in another. Still another possibility is to observe (Y,Xc), (X1, Xc) and (X2, Xc) sep-
arately. This latter case is partly considered by Moon (2024) when X1, X2, Xc are
discrete with finite support. It extends Cross and Manski (2002) allowing for more
general setups of aggregate data across groups Xc. As we shall see, the setup we
consider, in addition to being very common in practice, has the advantage of leading
to very simple bounds on bd.

Finally, we introduce some notation here. For any convex set C ⊆ Rp, we denote its
support function by σC :

σC(d) := sup
x∈C

x′d ∀ d ∈ Rp.

We recall that σC characterizes C. Also, for any random variables A and B, we let
FA denote the cumulative distribution function (cdf) of A and FA|B denote the cdf of
A given B. We also let F−1

A (t) := inf{x : FA(x) ≥ t} denote the quantile function of
A; we denote similarly by F−1

A|B the quantile function of A given B. We let Supp(A)
(resp. Supp(A|B)) denote the support of the probability distribution of A (resp., of
A given B). For any vector v, we let vk denote its k-th element and v−k the vector
obtained by removing vk from v. We also let ek,r denote the k-th canonical vector of
Rr. Finally, for any set S, we let |S| denote its cardinal.

2.2 No common variables

We first assume that there is no common variable (W = Xc = 1), so that X = (X ′
o, 1)′.

Our main result shows that B is convex and compact, and characterizes bd for any
d ∈ Rp, d ̸= 0. Below, we introduce the variable ηd as follows. First, let (d2, ..., dp)
be (p− 1) vectors in Rp−1 such that (d, d2, ..., dp) forms a basis of Rp. Let M denote
the corresponding matrix and let T = M−1X. Then, let

ηd := T1 − EL[T1|T−1].

In words, ηd is the residual of the (population) regression of T1 on T−1. Note that ηd

does not depend on which exact vectors (d2, ..., dp) are chosen. Also, if d = ek,p, ηd is
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simply the residual of the regression of Xk on X−k. Finally, if po = 1 and d = (d1, 0),
ηd = (Xo − E(Xo))/d1.

Theorem 1 Suppose that Assumption 1 holds and W = Xc = 1. Then B is nonempty,
convex, and compact and satisfies B ⊆ E, with

E := {b ∈ Rp : E[Y ] = E[X ′b], V (Y ) ≥ V (X ′b)}.

Also, letting U ∼ U [0, 1], we have, for any d ∈ Rp, d ̸= 0, Bd = [bd, bd], with

bd =E
[
F−1

d′E(XX′)−1X(U)F−1
Y (U)

]
=
E[F−1

ηd
(U)F−1

Y (U)]
E(η2

d) . (1)

The first part of the theorem states that B is a convex, compact set included in
the ellipsoid E . In particular, we always have (0, ..., 0, E[Y |])′ ∈ B. This could be
expected since, in the absence of common variables, we can always rationalize that
Y and X are independent. Also, remark that since the identified set B is convex and
bd = σB(d), the knowledge of bd for all d ∈ Rp (d ̸= 0) characterizes B.

In the case of a single regressor (and the intercept) and d = (1, 0), Equation (1)
reduces to

bd =
E
[
(F−1

Xo
(U) − E(Xo))F−1

Y (U)
]

V (Xo)
. (2)

On the other hand, the true coefficient satisfies bd = b0 = E[(Xo −E(Xo))Y ]/V (Xo).
Thus, (2) indicates that the sharp upper bound on the unknown term E[XoY ] is
E[F−1

Xo
(U)F−1

Y (U)]. This is well-known, and corrresponds to the so-called Cambanis-
Simons-Stout inequality (see Cambanis et al., 1976). The logic is that (i) F−1

Xo
(U)

and F−1
Y (U) are distributed as Xo and Y , since U is uniformly distributed, and (ii)

these two variables exhibit maximal positive dependence. The exact meaning of (ii)
is that the copula of F−1

Xo
(U) and F−1

Y (U) corresponds to the Fréchet-Hoeffding upper
bound.

With multiple regressors, (1) cannot be directly deduced from the Cambanis-Simons-
Stout inequality. To get some intuition on (1), suppose that d = e1,p. Then, ηd is the
residual of the linear regression of X1 on X−1. If we observed (Y,X), the coefficient
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of X1 in the best linear prediction of Y by X would be E[ηdY ]/E(η2
d), by Frisch-

Waugh’s theorem. Now, if we only know the marginal distributions of ηd and Y ,
the numerator in (1) is simply the upper bound of E[ηdY ]. That the sharp upper
bound bd satisfies (1) is not obvious, however, because we also know the distribution
of X−1 conditional on ηd, in addition to the marginal distribution of ηd. This could
lead to bd < E[F−1

ηd
(U)F−1

Y (U)]/E(η2
d). Theorem 1 shows that this is not the case

because basically, the conditional distribution of X−1 does not carry any additional
information about E[ηdY ]. Though this can be deduced from Lemma 3.3 in Delon
et al. (2023), our own proof is constructive.

Note that Pacini (2019) also obtains an expression for σB(d), see his Theorem 1.2

However, when X is multivariate, it turns out that this expression is only an upper
bound on the true support function. In Appendix A, we detail why this is the case,
and provide an illustration showing that the sharp bounds given by Theorem 1 above
can be substantially tighter than the bounds given in Pacini (2019).

2.3 Common variables

2.3.1 Main result

We now turn to the situation where some covariates are observed in both datasets.
In this context, we let δd and νd be such that EL(ηd|W ) = W ′δd and νd := ηd −W ′δd.
Define δY and νY similarly, with Y in place of ηd. The following theorem is the
counterpart of Theorem 1 with common variables.

Theorem 2 Suppose that Assumption 1 holds. Then B is convex and for any d ∈ Rp,

σB(d) = 1
E(η2

d)
{
δ′

dE(WW ′)δY + E
[
F−1

νd|W (U |W )F−1
νY |W (U |W )

]}
. (3)

Moreover, for any function g,

σB(d) ≤ 1
E(η2

d)
{
δ′

dE(WW ′)δY + E[F−1
νd|g(W )(U |g(W ))F−1

νY |g(W )(U |g(W ))]
}
, (4)

with equality if νY ⊥⊥ W |g(W ) and νd ⊥⊥ W |g(W ).
2See also Proposition 2 of Hwang (2022) for bounds on each component of b0. These bounds turn

out to be the same as those of Pacini (2019).
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Essentially, the first part of the theorem follows by first applying Theorem 1 condi-
tional on W and then integrating over W . The second part exploits Theorem 1 but
conditioning on g(W ) instead of W . The sharp bound σB(d) has a simple expression,
but it involves the conditional quantile functions F−1

νd|W and F−1
νY |W . Thus, estimating

this sharp bound involves estimating these two nonparametric functions, which could
be cumbersome in practice. On the other hand, when g(W ) has discrete support,
the outer bound reported in Equation 4 is elementary to estimate and does not suffer
from any curse of dimensionality. Moreover, this bound turns out to be sharp when
νY ⊥⊥ W |g(W ) and νd ⊥⊥ W |g(W ).

Not surprisingly, the bounds depend on which components of W are in Xc. To
understand this, assume first thatW = Xc, namely that we do not have any additional
variables excluded from the linear regression of interest. Then, as in the case without
regressors, 0 always belongs to the identified set for Xo. To see this, let Bo denote the
identified set of bo and let ηo = Xo − EL[Xo|Xc]. Then, by Frisch-Waugh theorem,
bo = V (ηo)−1E[ηoνY ]. As a result, by applying Theorem 1 to (ηo, νY ) conditional on
W and integrating over W , we obtain that Bo is convex with support function

σBo(d) = E[F−1
d′V (ηo)−1ηo|Xc

(U |Xc)F−1
νY |Xc

(U |Xc)].

The right-hand side is non-negative for all d, which shows that 0 ∈ Bo.3

On the other hand, if no components of W are included in the linear regression of
interest (no Xc), Bo may not include 0, since it may be that for some d ∈ Rp,

δ′
dV (W )δY + E

[
F−1

νd|W (U |W )F−1
νY |W (U |W )

]
< 0.

For instance, if (W,Xo) ∼ N (0,Σ) and (W,Y ) ∼ N (0,Σ), with

Σ =
1 ρ

ρ 1

 , (5)

then σC(−1) = 1 − 2ρ2 < 0 if ρ > 1/
√

2.
3On the other hand, 0 may not be in the identified set of bc, the coefficient of Xc. In fact, bc may

even be point identified: if Xc and Xo are uncorrelated, bc is simply the coefficient of the regression
of Y on Xc.
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2.3.2 Testing and weakening the common population assumption

We have maintained thus far that the two samples at hand are drawn from the same
population. While this is a standard assumption in the data combination literature,
it is important to consider the extent to which this can be relaxed. More generally, we
could assume that we only observe the distributions of (W,Y )|D = 1 and (W,Xo)|D =
0 for some binary variable D. In this framework, we have considered up to now that
D ⊥⊥ (W,Xo, Y ). With common variables, this condition can be tested, since it
implies FW |D=1 = FW |D=0. If the corresponding test is rejected, we can weaken the
independence assumption by assuming instead that

(Xo, Y ) ⊥⊥ D|W, p := P (D = 1) is known. (6)

In words, the first condition imposes that conditional on W , the two datasets are
drawn from the same population, while the two populations corresponding to D = 0
and D = 1 may differ in their marginal distributions of W . The second condition
of (6) implies that the joint distribution of (D,W ), and thus the “propensity score”
P (W ) := P (D = 1|W ), can be retrieved from the knowledge of the distributions of
W |D = 0 and W |D = 1.

If (6) holds, the sharp upper bound bd can be obtained by reasoning as in The-
orem 2, using an inverse probability weighting scheme. Specifically, to identify
δY = E[WW ′]−1E[WY ] (and then ηY ), we cannot directly regress Y on W con-
ditional on D = 1. However, we can obtain it by considering a weighted regression,
since

δY = E

[
DWW ′

P (W )

]−1

E

[
DWY

P (W )

]
.

We can obtain δd (and then ηd) similarly, using the weights (1 − D)/(1 − P (W )).
Then, Equation (3) is replaced by:

σB(d) = 1

E
[

(1−D)η2
d

1−P (W )

] {δ′
dE(WW ′)δY + E

[
F−1

νd|W,D=0(U |W )F−1
νY |W,D=1(U |W )

]}
.

Another point to note is that if the two populations differ, the parameter of interest
may correspond to one of the two populations only. For instance, one may consider,
instead of EL(Y |X), EL(Y |X,D = 1). If so, δY is now E[WW ′|D = 1]−1E[WY |D =
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1] and is thus obtained by an unweighted regression, whereas δd (and then ηd) is
obtained by regressing ηd on W with weights P (W )/(1 − P (W )). The upper bound
bd becomes

bd = E(D)

E
[

(1−D)P (W )η2
d

1−P (W )

]{δ′
dE(WW ′|D = 1)δY

+ E
[
F−1

νd|W,D=0(U |W )F−1
νY |W,D=1(U |W )|D = 1

] }
. (7)

Finally, in some cases one of the sample is drawn from a subpopulation of the popu-
lation from which the other sample is drawn. Then, we identify instead (for instance)
the distribution of (Y,W ) given D = 1 and the distribution of (X,W ). If so and we
focus as above on EL(Y |X,D = 1), we obtain a similar upper bound on bd as in (7),
with just a few differences. First, δd (and then ηd) is obtained by regressing ηd on W
with weights P (W ). Second, we now have

bd = E(D)
E [P (W )η2

d]

{
δ′

dE(WW ′|D = 1)δY + E
[
F−1

νd|W (U |W )F−1
νY |W,D=1(U |W )|D = 1

] }
.

Note that in this case and the one before, we do not require the joint independence
condition in (6) but only Xo ⊥⊥ D|W .

2.3.3 Additional, non-common variables

In practice, one may have access to additional variables that appear in the dataset
of Y only, or in the dataset of Xo only. For instance, let us assume that we identify
the distributions of (W,Y, Z) on the one hand and (W,Xo) on the other hand. The
identified set of b0 then becomes

BZ =
{
b ∈ Rp : ∃F

W̃ ,X̃o,Ỹ ,Z̃
: F

W̃ ,X̃o
= FW,Xo , FW̃ ,Ỹ ,Z̃

= FW,Y,Z , EL(Ỹ |X̃) = X̃ ′b

}
.

The following proposition shows that the knowledge of the conditional distribution
of Z|W,Y is actually useless in terms of identification.

Proposition 1 Suppose that Assumption 1 holds. Then BZ = B.

Obviously, a similar result holds if we consider instead a variable appearing only
in the dataset of Xo. The bottom line is that among variables not included in the
regression, only those common to the two datasets are relevant for identification.
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2.4 Linear inequality restrictions

Oftentimes, a priori information on b0 is available. For instance, theory could imply
that some components of b0 are nonpositive or nonnegative. We study here the
identified set of bd under the additional constraints that Rb0 ≤ r, where R is a r × p

matrix, r is a column vector of size r and “≤” should be understood componentwise.
Then, the identified set of b0 satisfies

Bc := B ∩ {b : Rb ≤ r},

where B denotes the unconstrained identified set of b0 obtained as above. As the
intersection of a compact, convex set with a closed and convex set, Bc is compact and
convex. Then, Bc

d := {d′b : b ∈ Bc} is a compact interval [bc
d, b

c

d]. Moreover, b ∈ B if
and only if u′b ≤ σB(u) for all u ∈ S, with S the unit sphere of Rp. Hence,4

b
c

d = sup
b∈Rp

d′b s.t. Rb ≤ r and s′b ≤ σB(s) ∀s ∈ S. (8)

Now, (8) cannot be solved directly because of the infinitely many constraints s′b ≤
σB(s) for all s ∈ S. Instead, we derive lower and upper bounds on b

c

d. Note that the
motivation for deriving a lower bound on bc

d, and not solely an upper bound, is to be
able to quantify the quality of the computational approximation of bc

d. To construct
these bounds, fix (sg)g=1,...,G ∈ SG and let S = [s1, s2, ..., sG]′. Finally, let R := [R′ S ′]′

and let r := [r, σB(s1), ..., σB(sG)]′. Then, we obtain the following upper bound b
c

d on
b

c

d:
b

c

d := sup
b∈Rp

d′b s.t. Rb ≤ r.

To obtain a lower bound b
c

d on b
c

d, we reason as with inside regressors: (i) construct
the convex hull C of {(sg, σB(sg))g=1,...,G}; (ii) express C as Rb ≤ r for some R, r;
(iii) compute the lower bound

b
c

d := sup
b∈Rp

d′b s.t. Rb ≤ r.

4Recall that the lower bound satisfies bc
d = −b

c

−d so we can focus on b
c

d.
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3 Estimation and inference

We now turn to the estimation of bd and inference on bd, based on i.i.d. samples. We
focus hereafter on the case without common variables.

Assumption 2 We observe (Y1, ..., Yn) and (Xo,1, ..., Xo,m), two independent samples
of i.i.d. variables with the same distribution as Y and Xo, respectively.

3.1 Definition and computation of the estimators

Let η̂dj denote j’s residual in the (sample) regression of T1 on T−1 (the definition of T
is given at the beginning of Section 2.2). To ease notation, we let hereafter F := FY

and G := Fηd
, and let Fn and Ĝm denote the empirical cdfs of the (Yi)i=1,...,n and the

(η̂dj)j=1,...,m. Recall from Theorem 1 that

bd =
∫ 1

0 F
−1(t)G−1(t)dt
E(η2

d) .

Then, we consider the following plug-in estimator of bd:

b̂d =
∫ 1

0 F
−1
n (t)Ĝ−1

m (t)dt
Ê(η̂2

d)
,

where Ê(η̂2
d) denotes the empirical variance of the (η̂dj)j=1,...,m. Note that we can

compute the numerator of b̂d at a very low cost. To see this, remark that for any
real-valued variables U1, U2 with finite second moments and cdfs F1, F2,∫ 1

0
F−1

1 (t)F−1
2 (t)dt = 1

2
[
E[U2

1 ] + E[U2
2 ] −W 2

2 (F1, F2)
]
, (9)

where W2 is the Wasserstein-2 distance, W2(F1, F2) = (
∫
(F−1

2 (t)−F−1
1 (t))2dt)1/2. For

variables with support size of n and m respectively, as Fn and Gm, we can compute
W2(F1, F2) using algorithms to compute the so-called Earth Mover’s Distance in one
dimension, which have a complexity of O(m+ n), see, e.g., Rubner et al. (2000).

3.2 Inference

We now turn to the construction of confidence interval on bd, based on asymptotic
normality. We first establish the asymptotic distribution of b̂d. We focus on the
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case where both ηd and Y have infinite support; otherwise, the result follows from
Del Barrio et al. (2024). We impose Assumption 3 below. Let Df denote the points
of discontinuity of a function f .

Assumption 3

(i) The distribution of ηd is continuous with respect to the Lebesgue measure, with
density g.

(ii) E(Y 4+ε) < ∞ and E(∥X∥4+ε) < ∞ for some ε > 0.

(iii) DF −1 ∩ DG−1 = ∅ and there exists C1, C2 > 0 such that:

g(x)
G(x)(1 −G(x)) ≥ C1 ∧ C2

|x| ln(1 + |x|)2 ∀x ∈ Supp(ηd). (10)

The condition DF −1 ∩ DG−1 = ∅ is satisfied if F−1 and G−1 are continuous, which in
turn holds if Supp(Y ) and Supp(ηd) are intervals. In particular, F−1 may be con-
tinuous even if the distributions of Y has mass points. But we can also allow for
discontinuities of F−1 and G−1, as long as they do not intersect. Condition (10) holds
on Supp(ηd) ∩ [0,∞) for all distributions that have increasing hazard rates. This in-
cludes log-concave distributions, since their survival is then log-concave. It also holds
for many distributions with decreasing hazard rates, such as Pareto distributions,
whose hazard rate is of the form 1/x, and Weibull distributions, whose hazard rates
is of the kind αβxβ−1 with α, β > 0. More generally, we expect Condition (10) to
be mild, since if we denote by x the supremum of the support of ηd, we have, for all
A < x satisfying G(A) > 0,

∫ x

A

g(x)
G(x)(1 −G(x))dx ≥

∫ x

A
(− ln[1 −G])′(x)dx = ∞.

On the other hand, gor any C1, C2 > 0,∫ x

A
C1 ∧ C2

|x| ln(1 + |x|)2dx < ∞.

Thus, one cannot have g(x)/[G(x)(1−G(x))] ≤ C1∧C2/(|x| ln(1+|x|)2) for all x large
enough; and similarly one cannot have g(x)/[G(x)(1 − G(x))] ≤ C1 ∧ C2/(|x| ln(1 +
|x|)2) for all x small enough.
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To define the asymptotic distribution, we introduce additional objects. First, to
simplify notation, let F and G denote respectively the cdf of Y and ηd. Then, let
h = F−1 ◦G and

ψ1 := −bd(η2
d − E[η2

d]),

ψ2 := −E[h(ηd)T ′
−1]E[T−1T

′
−1]−1T−1ηd,

ψ3 := −
∫

[1 {ηd ≤ t} −G(t)]h(t)dt,

ψ4 := −
∫

[1 {Y ≤ t} − F (t)]G−1 ◦ F (t)dt.

These four variables correspond to the influence functions of respectively
√
m(Ê(η̂2

d)−
E(η2

d)),
√
m
∫ 1

0 F
−1(Ĝ−1

m − G−1
m )dt,

√
m
∫ 1

0 F
−1(G−1

m − G−1)dt, and
√
n
∫ 1

0 G
−1(F−1

n −
F−1)dt, with Gm the empirical cdf of the (ηdj)j=1,...,m (note that Gm cannot be com-
puted in practice, since the (ηdj)j=1,...,m are unobserved). Then, let

Vd := 1
E(η2

d)2 [λV (ψ1 + ψ2 + ψ3) + (1 − λ)V (ψ4)] .

Theorem 3 Suppose that Assumptions 1-3 hold, min(m,n) → ∞ and n/(m+ n) →
λ ∈ [0, 1]. Then: √

mn

m+ n

(
b̂d − bd

)
d−→ N (0, Vd) .

First, let us comment on the assumptions underlying Theorem 3. We allow not only
for λ ∈ (0, 1), but also for λ = 0 or λ = 1, which corresponds to cases where one
sample is much larger than the other. In such cases, the asymptotic variance Vd be-
comes simpler. Also, the conditions we impose are probably not minimal, but note
that a moment of order 4 for Y and ηd seems necessary in view of (9) and the dis-
cussion of Theorem 1 in Del Barrio et al. (2019). Moreover, closely related results
in the literature on the asymptotic normality of W2(Fn, Gm) impose strong restric-
tions.5 In particular, instead of Assumption 3-(iii), Proposition 2.3 in Del Barrio
et al. (2019) imposes strong and high-level conditions (see (2-7)-(2.9) in their paper),
while Theorem 14 in Berthet et al. (2020) also imposes strong regularity conditions.
In particular, because their Assumption (FG) must hold for both the left and right

5The proof of Theorem 3 yields, under Assumptions 1-3, the asymptotic normality of (nm/(n +
m))1/2(W2(Fn, Gm) − W2(F, G)).
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tails of the distributions, one can show that their subconditions (FG1) and (FG3)
already imply Assumption 3-(i) and (iii) not only for the distribution of ηd but also
for that of Y .6

Now, let us give a sketch of the proof of Theorem 3. In a first step, we account for
the fact that ηd and E[η2

d] are estimated. This requires in particular to show that
√
m
∫
F−1

n (Ĝ−1
m −G−1

m )dt = −E[h(ηd)T ′
−1]

√
m(γ̂ − γ0) + oP (1) ,

where γ0 is the limit in probability of γ̂. This result is not obvious; our proof relies
in particular, again, on the Cambanis-Simons-Stout inequality. The second step is to
study the asymptotic behavior of (nm/(n+m))1/2 ∫ 1

0 (F−1
n (t)G−1

m (t)−F−1(t)G−1(t))dt.
To this end, we use the decomposition∫ 1

0
F−1

n (t)G−1
m (t)dt =

∫ 1

0
F−1(t)(G−1

m (t) −G−1(t))dt+
∫ 1

0
G−1(t)(F−1

n (t) − F−1(t))dt

+ rn,m,

where rn,m :=
∫ 1

0 (F−1
n (t) − F−1(t))(G−1

m (t) − G−1(t))dt. We prove that the first two
terms T1m and T2n are asymptotically linear by adapting results on L-statistics, see in
particular Theorem 1 in Chapter 19 of Shorack and Wellner (1986). To show that the
remainder term rn,m is negligible, we relate it to bounds on the convergence rate of
W2(Fn, F ) and W2(Gm, G). However, existing results on such rates, and in particular
Theorem 1 in Fournier and Guillin (2015), are not sufficient for our purpose. Here,
we improve upon their bound, which holds under weak restrictions, by leveraging in
particular Condition (10). We do this by linking W2(Gm, G) with the variance of
order statistics, and relying on a lemma similar to Corollary 2.12 in Boucheron and
Thomas (2015); see Lemma 2 in Appendix B.5.

Next, we construct our confidence intervals on bd using a plug-in estimator of Vd.
Specifically, let ĝ = F−1

n ◦ Ĝm and

ψ̂1i := −b̂d

η̂2
di − 1

m

m∑
j=1

η̂2
dj

 ,
ψ̂2i := −

 1
m

m∑
j=1

ĝ(η̂di)T ′
−1j

 1
m

m∑
j=1

T−1jT
′
−1j

−1

T−iη̂di,

6On the other hand, both Berthet et al. (2020) and Del Barrio et al. (2019) consider more general
Wasserstein distances than just W2.
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ψ̂3i := −
∫

[1 {η̂di ≤ t} − Ĝm(t)]ĝ(t)dt,

ψ̂4i := −
∫

[1 {Yi ≤ t} − Fn(t)]Ĝ−1
m ◦ Fn(t)dt.

Then, define

V̂d := 1(
1
m

∑m
j=1 η̂

2
dj

)2 × 1
m+ n

 m∑
j=1

(
ψ̂1j + ψ̂2j + ψ̂3j

)2
+

n∑
i=1

ψ̂2
4i

 .
Note that V̂d depends on d; in particular, V̂−d is the estimator of the asymptotic
variance of b−d. We then consider the following confidence intervals on bd with nominal
level 1 − α:

CI1−α :=
[
−b̂−d − z1−α

√
nm

n+m
V̂−d, b̂−d + z1−α

√
nm

n+m
V̂d

]
,

where z1−α is the quantile of order 1 − α of a standard normal distribution. We can
replace the usual quantile z1−α/2 by z1−α here since under the conditions above, the
identified interval of bd is not reduced to a singleton: bd > 0 > −b−d.

4 Simulations

To illustrate the finite sample properties of our estimator, we consider the following
DGPs:

- DGP1: Y = X ′
ob0 + ε, with Xo = (Xo,1, Xo,2) = (exp(N1), N2), N = (N1, N2) ∼

N (0,Σ), Σ as in (5) with ρ = 0.3, ε ∼ N (0, 1) and b0 = (1, 1).

- DGP2: Y = Xo,1b0,1 + Xo,2b0,2 + Xo,1Xo,2b0,3 + X2
o,1b0,4 + X2

o,2b0,5 + ε, with
(Xo,1, Xo,2) = N as in DGP1 and b0 = (1, 1, 2, 0.5,−0.8).

- DGP3: Same as DGP2, except that b0 = (1, 1, 2, 0, 0).

We assume that the two samples have the same size (n = m), which varies between
400 and 4,800. In Table 1 we report the estimated identified set and the average
bounds, across 500 simulations, of the 95% confidence intervals for b0,1 with each
of the different sample sizes. The first columns report results obtained with our
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confidence interval CI1−α defined above. We also use the standard bootstrap as an
alternative. We report what we call the excess length (“Excess Length”), namely the
mean difference between the length of the confidence sets and that of the identified set.
We also report the coverage rates across simulations (“Coverage”). This corresponds
to the minimum, over b1 in the identified set of b0,1, of the estimated probability that
b1 belongs to the confidence interval.

Asymptotic normality Bootstrap

Bounds EL Coverage Bounds EL Coverage
DGP1

Identified [-0.809,1.275]
400 [-1.146,1.683] 0.745 0.912 [-1.076,1.628] 0.62 0.842
800 [-1.073,1.601] 0.590 0.914 [-1.011,1.548] 0.475 0.864

1600 [-1.008,1.526] 0.450 0.924 [-0.973,1.492] 0.381 0.868
2400 [-0.969,1.492] 0.378 0.918 [-0.967,1.491] 0.374 0.930
4800 [-0.934,1.435] 0.285 0.934 [-0.923,1.433] 0.273 0.928

DGP2
Identified [-3.007,3.007]

400 [-3.327,3.325] 0.637 0.900 [-3.317,3.318] 0.621 0.916
800 [-3.236,3.235] 0.456 0.932 [-3.234,3.234] 0.454 0.916

1600 [-3.166,3.166] 0.317 0.940 [-3.167,3.167] 0.319 0.914
2400 [-3.151,3.152] 0.289 0.948 [-3.146,3.146] 0.277 0.950
4800 [-3.105,3.105] 0.195 0.956 [-3.102,3.101] 0.188 0.950

DGP3
Identified [-2.802,2.802]

400 [-3.106,3.104] 0.606 0.900 [-3.094,3.095] 0.586 0.896
800 [-3.018,3.016] 0.430 0.926 [-3.021,3.022] 0.439 0.916

1600 [-2.954,2.954] 0.304 0.942 [-2.952,2.954] 0.303 0.908
2400 [-2.94,2.941] 0.277 0.938 [-2.934,2.934] 0.264 0.928
4800 [-2.896,2.896] 0.189 0.944 [-2.892,2.892] 0.181 0.946

Notes: results obtained with 500 simulations. 400, 800 etc. correspond to the sizes of the two
samples (n = m). Column “Bounds” reports either the identified set or the average of the bounds
of the 95% confidence intervals over simulations. “EL” is the excess length, i.e. the average length
of the confidence region minus the length of the identified set. Column “Coverage” displays the
minimum, over b = (b1, ..., bp) ∈ B, of the estimated probability that b1 ∈ CR1−α(b0,1). We use
1,000 bootstrap samples to compute the confidence intervals.

Table 1: Monte Carlo simulations results on the confidence intervals for b0,1
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A couple of remarks are in order. First, as expected, the 95% confidence intervals
shrink with the sample sizes n and approximately at the n−1/2 rate for the three
DGPs we consider. Second, the confidence intervals based on asymptotic normality
and the bootstrap are similar in terms of length and coverage, with coverage rates
converging to 95% for the three DGPs. If anything, intervals based on asymptotic
normality seem to produce coverage rates slightly closer to the nominal rate of 95%.
This is especially the case for DGP1, for which distortions in coverage rates are the
largest.

5 Conclusion

We study best linear predictions in a context where the outcome of interest and some
of the covariates are observed in two different datasets that cannot be matched. This
type of data combination environment arises very frequently in various fields in em-
pirical economics. A common approach has been to rely on imputation methods,
which rely on exclusion restrictions. We take another route and derive a constructive
characterization of the sharp identified set. We use this characterization to build
asymptotically normal estimators of the corresponding bounds. Monte Carlo simula-
tion exercises indicate that our estimators, which can be computed at a very limited
computational cost, exhibit good finite sample performances.
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A Comparison with Pacini (2019)

A.1 Sharpness

Pacini (2019) gives the expression of the support function of the identified set of b0

in the case without inside regressors (but allowing for common regressors, denoted
by z in his paper). His bounds coincide with ours when Xo is univariate, but not
otherwise. In the multidimensional case, his expression of σB is an upper bound of the
true support function. This is so because the equality in Lemma 5 of Pacini (2019)
should be replaced by an inequality. To see this, first remark that F there is the set
of cdfs (F1y, ..., Fdxy) that are compatible with the distributions of (x, z) and (y, z),
with Fky denoting the joint cdf of (xk, y). Hence, in the third equality “Fky ∈ F” is
not well-defined. A natural fix is then to replace it by “Fky ∈ Fk”, where Fk denotes
the set of cdfs Fky compatible with the laws of (x, z) and (y, z). But then, the third
equality in the proof of Lemma 5 does not hold, because F is not a cartesian product
of Fk in general: it is instead a (strict in general) subset of the cartesian product.

A.2 Numerical comparison

We illustrate in the following tha the bounds provided in Pacini (2019) can in practice
be substantially larger than the sharp bounds. To this end, we consider the following
class of DGPs, indexed by ρ: log(Y ) ∼ N (0, 2) and X = (X1, X2) ∼ N (0,Σ) with Σ
defined in (5) (note that Σ depends on ρ). To compare the two types of bounds, we
consider the following ratio

R := b
p

d − bp
d

bd − bd

,

where d = (1, 0)′ and (bp
d, b

p

d) denote Pacini’s bounds. Figure 1 reports R as a function
of ρ. When X1 and X2 are independent, the two intervals coincide, but the sharp
bounds become tighter as the correlation between X1 and X2 increases. With ρ ≥
0.88, the sharp identification interval is more than four times shorter than the one
obtained with Pacini’s bounds.
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Notes: results obtained by approximating the true bounds using a sample of size 105. The ratio
of interval lengths is the ratio of the intervals obtained using Pacini (2019) bounds and the sharp
bounds.

Figure 1: Comparison between Pacini (2019) bounds and the sharp bounds

B Proofs

B.1 Theorem 1

First, if b ∈ B, then EL(Ỹ |X̃) = X̃ ′b. Thus, ε̃ := Ỹ − X̃ ′b satisfies E(ε̃) = 0 and
Cov(X̃, ε̃) = 0. Hence, E[Ỹ ] = E[X̃ ′b] and

V (Ỹ ) = V (X̃ ′b) + V (ε̃) ≥ V (X̃ ′b).

As a result, E(Y ) = E(X ′b), V (Y ) ≥ V (X ′b) and B ⊆ E . This also implies that B is
bounded.

Now, let us prove that B is closed. This, in turn, will imply that B is compact. Let
bn ∈ B for all n ≥ 1 with bn → b and let us prove that b ∈ B. Let (X̃n, Ỹn) such that
F

X̃n
= FX , F

Ỹn
= FY and bn = E(X̃nX̃

′
n)−1E(X̃nỸn). Since E(X̃nX̃

′
n) = E(XX ′),

it suffices to prove that there exists (X̃, Ỹ ), with F
X̃

= FX , F
Ỹ

= FY , such that
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E[X̃Ỹ ] = c := E(XX ′)b. First, note that for all M ,

P
(
∥(X̃n, Ỹn)∥ ≥ M

)
≤
E
[
∥(X̃n, Ỹn)∥2

]
M2

≤ E[∥X∥2] + E[Y 2]
M2 .

Hence, (X̃n, Ỹn) is uniformly tight. Then, by Prokhorov’s theorem, there exists a
subsequence (X̃nj

, Ỹnj
) that converges in distribution, to (X̃, Ỹ ) say. Moreover, F

X̃
=

FX and F
Ỹ

= FY . Now, remark that for all (x, y) ∈ R+2 and all M > 0, we have

xy1 {xy > M} ≤ x21
{
x > M1/2

}
+ y21

{
y > M1/2

}
.

As a result, for all n ≥ 1 and all M > 0,

E
[
∥X̃nj

Ỹnj
∥1
{
∥X̃nj

Ỹnj
∥ > M

}]
≤E

[
∥X̃nj

∥21
{
∥X̃nj

∥ > M1/2
}]

+ E
[
Ỹ 2

nj
1
{
|Ỹnj

| > M1/2
}]

=E
[
∥X∥21

{
∥X∥ > M1/2

}]
+ E

[
Y 21

{
|Y | > M1/2

}]
.

As a result, by the dominated convergence theorem, X̃nj
Ỹnj

is asymptotically uni-
formly integrable. This implies (see, e.g. van der Vaart, 2000, Theorem 2.20) that

E
[
X̃nj

Ỹnj

]
→ E[X̃Ỹ ].

Because we also have E
[
X̃nj

Ỹnj

]
→ c, we finally obtain E[X̃Ỹ ] = c. This proves that

B is closed.

Next, we prove that B is convex. Let (b1, b2) ∈ B2 and fix p ∈ [0, 1]. Then, there exists
(X̃1, Ỹ1) and (X̃2, Ỹ2) rationalizing respectively b1 and b2. Let D ∼Be(p), independent
of these random variables and let (Ỹ , X̃) = (Ỹ1, X̃1) if D = 1, (Ỹ , X̃) = (Ỹ2, X̃2)
otherwise. Then, F

X̃
= FX , F

Ỹ
= FY and

E
[
X̃Ỹ

]
=pE

[
X̃1Ỹ1

]
+ (1 − p)E

[
X̃2Ỹ2

]
=pE

[
X̃1Ỹ1

]
+ (1 − p)E

[
X̃2Ỹ2

]
=E(XX ′)(pb1 + (1 − p)b2).

Hence, EL(Ỹ |X̃) = X̃ ′(pb1 + (1 − p)b2), which implies that B is convex.
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Now, we prove σB(d) = E[F−1
d′E[XX′]−1X(U)F−1

Y (U)]. We have

σB(d) = max
Π∈M(FX ,FY )

∫ [
d′E[XX ′]−1x

]
y dΠ(x, y), (11)

where M(F,G) denotes the set of probability measures with marginal cdfs equal to
F and G. Remark that for any c = (c1, ..., cp) and any (X̃, Ỹ ) ∼ Π ∈ M(FX , FY ),

(cX̃, Ỹ ) ∼ Π ∈ M(FcX , FY ).

Therefore, letting Xd := d′E[XX ′]−1X, we obtain

σB(d) ≤ max
Π∈M(FXd

,FY )

∫
uydΠ(u, y).

Moreover, by the Cambanis-Simons-Stout inequality, (see Cambanis et al., 1976),

max
Π∈M(FXd

,FY )

∫
uydΠ(u, y) = E[F−1

Xd
(U)F−1

Y (U)]. (12)

Hence, σB(d) ≤ E[F−1
Xd

(U)F−1
Y (U)].

Now, for any U ∼ U([0, 1]), let Ỹ = F−1
Y (U). Let also C denote a copula of

M ′E[XX ′]−1X (recall the construction of M at the beginning of Section 2.2) and
let (U2, ..., Up) be uniform random variables such that (U,U2, ..., Up) has cdf equal to
C. Let us define

Sd = (F−1
Xd

(U), F−1
d′

2E[XX′]−1X(U2), ..., F−1
d′

pE[XX′]−1X(Up))′.

By construction, Sd ∼ M ′E[XX ′]−1X. Then, let X̃ = (M ′E[XX ′]−1)−1Sd, so that
X̃ ∼ X. Let Π∗ denote the distribution of (X̃, Ỹ ). We have Π∗ ∈ M(FX , FY ).
Moreover,

d′E[XX ′]−1X̃ = d′M ′−1Sd = F−1
Xd

(U),

where the last equality follows since e′
1,p × M ′ = d′. Thus, by definition of σB(d),

σB(d) ≥ E[F−1
Xd

(U)F−1
Y (U)]. Equation (1) follows.

Finally, we prove (1). It suffices to show that Xd = ηd/E(η2
d). Remark that

d′E(XX ′)−1X = e′
1,pM

′E(XX ′)−1M(M−1X) = e′
1,pE(TT ′)−1T.

Moreover, ηd = γ′T , with γ := [1, −E(T1T−1)′E(T−1T
′
−1)−1]′. Thus,

E(η2
d) = γ′E(TT ′)γ = E(T 2

1 ) − E(T1T−1)′E(T−1T
′
−1)−1E(T1T−1).

As a result, E(TT ′) × γ/E(η2
d) = e1,p. The result follows since then,

Xd = e′
1,pE(TT ′)−1T = γ′T/E(η2

d) = ηd.
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B.2 Theorem 2

By construction, EL(Y |X) = E[XdY ]. The exact same reasoning as in the proof
of Theorem 1 shows that the identified set B(w) of E[XdY |W = w] is convex. By
integrating over w, B is thus convex. Let U be such that U |W is uniform. Then, the
support function of B(w) satisfies

σB(w)(d) =E
[
F−1

W ′δd+νd|W (U |W )F−1
W ′δY +νY |W (U |W )|W = w

]
=E

[(
W ′δd + F−1

νd|W (U |W )
) (
W ′δY + F−1

νY |W (U |W )
)

|W = w
]
.

Next, E[XdY ] = E[E[XdY |W ]] ≤ E[σB(W )(d)]. Moreover, the bound is reached
by considering (Xd, Y ) = (F−1

W ′δd+νd|W (U |W ), F−1
W ′δY +νY |W (U |W )). Thus, σB(d) =

E[σB(W )(d)]. Then, since (W,F−1
νd|W (U |W )) has the same distribution as (W, νd); and

similarly with νY instead of νd,

σB(d) =δ′
dE [WW ′] δY + E

[
F−1

νd|W (U |W )W ′δY

]
+ E

[
F−1

νY |W (U |W )W ′δd

]
+ E

[
F−1

νd|W (U |W )F−1
νY |W (U |W )

]
=δ′

dE [WW ′] δY + E
[
F−1

νd|W (U |W )F−1
νY |W (U |W )

]
.

The first point of the proposition follows.

To obtain the second point, remark that

E[XdY ] =E [(W ′δd + νd)(W ′δY + νY )]

=δdE [WW ′] δY + E[νdνY ]

=δdE [WW ′] δY + E [E[νdνY |g(W )|]]

≤δdE [WW ′] δY + E
[
F−1

νd|g(W )(U)F−1
νY |g(W )(U)

]
,

where the last inequality follows by the Cambanis-Simons-Stout inequality. If νd ⊥⊥
W |g(W ) and νY ⊥⊥ W |g(W ), the last expression is equal to σB(d). The third point
of the proposition follows.

B.3 Proposition 1

Let us denote by BZ(w) the identified set of E[XdY |W = w] when observing Z,
whereas B(w) still denotes the identified set of E[XdY |W = w] without the knowledge
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of Z. Again, the same reasoning as in the proof of Theorem 1 shows that the identified
set BZ(w) of E[XdY |W = w] is convex. Thus, it is characterized by its support
function σBZ(w). As in (11), we have

σBZ(w)(d) = max
Π∈M(FW,Xo ,FW,Y,Z)

∫ [
d′E[XX ′]−1(x′

o, x
′
c)′
]
y dΠ(w, xo, y, z),

where w = (xc, w1). By Lemma 3.3 of Delon et al. (2023),

σBZ(w)(d) = max
Π∈M(FW,Xo ,FW,Y )

∫ [
d′E[XX ′]−1(x′

o, x
′
c)′
]
y dΠ(w, xo, y, z) = σB(w)(d).

Hence, by integrating over w, we obtain σBZ
= σB. The result follows.

B.4 Theorem 3

Linear approximation of the first terms

We first show that√
nm

n+m

(
b̂d − bd

)
= 1
E(η2

d)

[√
nm

n+m

∫ 1

0
(F−1

n G−1
m − F−1G−1)dt+

√
λ

m1/2

m∑
i=1

ψ1i + ψ2i

]

+ oP (1). (13)

First, remark that

b̂d − bd = 1
Ê(η̂2

d)

[∫ 1

0
(F−1

n Ĝ−1
m − F−1G−1)dt− bd(Ê(η̂2

d) − E(η2
d))
]
. (14)

Moreover, since η̂di − ηdi = −T ′
−1i(γ̂ − γ0),

Ê(η̂2
d) − E(η2

d) = 1
m

m∑
i=1

η2
di − E[η2

d] − 2
m

m∑
i=1

ηdiT
′
−1i(γ̂ − γ0)

+ (γ̂ − γ0)′
(

1
m

m∑
i=1

T−1iT
′
−1i

)
(γ̂ − γ0)

= 1
m

m∑
i=1

η2
di − E[η2

d] + oP (m−1/2),

The last equality follows since E[∥X∥4] < ∞ implies both γ̂ − γ0 = OP (m−1/2) and
(1/m)∑m

i=1 ηdiT−1i
P−→ 0. Combined with (14), n/(n+m) → λ and the definition of

ψ1, this yields√
nm

n+m

(
b̂d − bd

)
= 1
E(η2

d)

[√
nm

n+m

∫ 1

0
(F−1

n Ĝ−1
m − F−1G−1)dt+

√
λ

m1/2

m∑
i=1

ψ1i

]
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+ oP (1). (15)

Let us now prove that

√
m
∫ 1

0
F−1

n (Ĝ−1
m −G−1

m )dt = −E[h(ηd)T ′
−1]

√
m(γ̂ − γ0) + oP (1) . (16)

When combined with (15), the standard result that

√
m(γ̂ − γ0) = E[T−1T

′
−1]−1 1

m1/2

m∑
i=1

T−1iηdi + oP (1),

and the definition of ψ2, this will entail (13).

Let σ1 (resp. σ2) denote a permutation of {1, ...,m} such that ηdσ1(1) ≤ ... ≤ ηdσ1(m)

(resp. η̂dσ1(1) ≤ ... ≤ η̂dσ1(m)) and let ⌈·⌉ denote the ceiling function. Then, define
Qm(t) := ηdσ2(⌈mt⌉) and Q̂m(t) := η̂dσ1(⌈mt⌉). By the Cambanis-Simons-Stout inequal-
ity, ∫ 1

0
F−1

n (Q̂−1
m −G−1

m )dt ≤
∫ 1

0
F−1

n (Ĝ−1
m −G−1

m )dt ≤
∫ 1

0
F−1

n (Ĝ−1
m −Q−1

m )dt.

Next, remark that

Q̂−1
m (t) −G−1

m (t) = −T ′
−1σ1(i)(γ̂ − γ0),

Ĝ−1
m (t) −Q−1

m (t) = −T ′
−1σ2(i)(γ̂ − γ0),

Then, letting Q1m(t) := T−1σ1(⌈mt⌉) and Q2m(t) := T−1σ2(⌈mt⌉), we obtain

−
[∫ 1

0
F−1

n Q′
1mdt

]
(γ̂ − γ0) ≤

∫ 1

0
F−1

n (Ĝ−1
m −G−1

m )dt

≤ −
[∫ 1

0
F−1

n Q′
2mdt

]
(γ̂ − γ0). (17)

Now, let Ỹi = h(ηdi). Because G is continuous, Ỹi has cdf F . Let F̃m denote the
empirical cdf of (Ỹi)i=1,...,m. Let W2(F,G) :=

(∫ 1
0 [F−1(t) −G−1(t)]2dt

)1/2
. Then,

(∫ 1

0

[
F−1

n − F̃−1
m

]2
dt
)1/2

= W2(Fn, F̃m)

≤ W2(Fn, F ) +W2(F̃n, F )
P−→ 0.
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The inequality holds since W2 is a distance. The convergence to 0 follows since conver-
gence of the Wasserstein-2 distance is equivalent to weak convergence and convergence
of the second moment (see, e.g., Theorem 6.9 in Villani, 2009). Hence, we have, for
k ∈ {1, 2}

∥∥∥∥∫ 1

0

(
F−1

n − F̃−1
m

)
Q′

kmdt
∥∥∥∥ ≤

(∫ 1

0

[
F−1

n − F̃−1
m

]2
dt
)1/2 (∫ 1

0
∥Qkm∥2 dt

)1/2

= oP (1). (18)

Next, remark that
∫ 1

0
F̃−1

m Q1mdt = 1
m

m∑
i=1

Ỹσ1(i)T−1σ1(i)

= 1
m

m∑
i=1

h(ηdi)T−1i

P−→ E[h(ηd)T−1].

Together with (18), this proves that∫ 1

0
F−1

n Q1mdt
P−→ E[h(ηd)T−1].

Using (18) again but with j = 2 and (17), (16) follows provided that∫ 1

0
F̃−1

m Q2mdt
P−→ E[h(ηdi)T−1i]. (19)

Fix δ > 0. Let

Umi := 1

{
|h(ηdi) − h(η̂di)| <

δ

10E[∥T−1∥2]1/2

}
.

We have∫ 1

0
F̃−1

m Q2mdt = 1
m

m∑
i=1

Ỹσ1(i)T−1σ2(i)

= 1
m

m∑
i=1

h(ηdσ1(i))T−1σ2(i)(1 − Umσ2(i)) + 1
m

m∑
i=1

h(η̂dσ2(i))T−1σ2(i)Umσ2(i)

+ 1
m

m∑
i=1

[h(ηdσ1(i)) − h(η̂dσ2(i))]T−1σ2(i)Umσ2(i)

=: T0 + T1 + T2.
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Consider T0. By Cauchy-Schwarz inequality,

∥T0∥ ≤
(

1
m

m∑
i=1

h(ηdi)2
)1/2 ( 1

m

m∑
i=1

∥T−1i∥2(1 − Umi)
)1/2

. (20)

By the dominated convergence theorem, there exists M > 0 such that

E[h(ηd)2]E
[
∥T−1∥21 {|η| > M}

]
<
δ2

16 . (21)

Moreover, since g is continuous, there exists c > 0 such that if |ηdi| ≤ M and |ηdi −
η̂di| < c, then Umi = 1. As a result,

1 − Umi ≤ 1 {|ηdi| > M} + (1 − Im,c), (22)

with Im,c := 1 {maxi=1,...,m |η̂di − ηdi| < c}. Besides,

max
i=1,...,m

|η̂di − ηdi| = max
i=1,...,m

∣∣∣T ′
−1i(γ̂ − γ0)

∣∣∣
≤
[

max
i=1,...,m

∥T−1i∥
]

∥γ̂ − γ0∥

= oP (n1/2) ×OP (n−1/2)

= oP (1). (23)

The second equality follows since E[∥T−1i∥2] < ∞, see e.g. Exercise 4 in Section 2.3
of van der Vaart and Wellner (2023). By combining the law of large numbers with
(20)-(23), we obtain, with probability approaching one (wpao),

∥T0∥ ≤ δ

3 . (24)

Next, consider T1. We have

T1 = 1
m

m∑
i=1

h(η̂di)T−1iUmi

= 1
m

m∑
i=1

[h(η̂di) − h(ηdi)]T−1iUmi + 1
m

m∑
i=1

h(ηdi)T−1i − 1
m

m∑
i=1

h(ηdi)T−1i(1 − Umi)

=: T11 + T12 − T13.

By the law of large numbers,

T12
P−→ E[h(ηd)T−1]. (25)
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By Cauchy-Schwarz inequality, we obtain for T13 the same inequality as (20). Thus,
wpao,

∥T13∥ ≤ δ

9 . (26)

Turning to T11. we have

T11 ≤
(

1
m

m∑
i=1

[h(η̂di) − h(ηdi)]2Umi

)1/2 ( 1
m

m∑
i=1

∥T−1i∥2
)1/2

≤ δ

10E[∥T−1∥2]1/2

(
1
m

m∑
i=1

∥T−1i∥2
)1/2

,

where the second inequality follows by definition of Umi. Hence, wpao,

∥T11∥ ≤ δ

9 . (27)

Thus, by combining the triangle inequality, a union bound and (25)-(27), we obtain
that wpao,

∥T1 − E[h(ηd)T−1]∥ ≤ δ

3 . (28)

Finally, consider T2. First,

T2 ≤

 1
m

∑
i:Umσ2(i)=1

[h(η̂dσ2(i) − h(ηdσ1(i))]2
1/2 (

1
m

m∑
i=1

∥T−1i∥2
)1/2

.

By the rearrangement inequality, because g is increasing,∑
i:Umσ2(i)=1

h(ηdσ1(i))h(η̂dσ2(i)) ≥
∑

i:Umi=1
h(ηdi)h(η̂di).

Thus,
1
m

∑
i:Umσ2(i)=1

[h(η̂dσ2(i) − h(ηdσ1(i))]2 ≤ 1
m

m∑
i=1

[h(ηdi) − h(η̂di)]2Umi

≤ δ2

100E[∥T−1∥2] .

Hence, wpao
∥T2∥ ≤ δ

3 . (29)

Finally, by combining (24), (28) and (29), we obtain that wpao,∥∥∥∥∥ 1
m

m∑
i=1

Ỹσ1(i)T−1σ2(i) − E[h(ηd)T−1]
∥∥∥∥∥ ≤ δ.

Equation (16) follows.
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Linear approximation of the other terms

Consider the following decomposition∫ 1

0
F−1

n G−1
m dt =

∫ 1

0
F−1(G−1

m −G−1)dt+
∫ 1

0
G−1(F−1

n − F−1)dt+ rn,m,

where rn,m :=
∫ 1

0 (F−1
n − F−1)(G−1

m − G−1)dt. We prove that the first two terms T1m

and T2n are asymptotically linear, whereas the last term is asymptotically negligible.

First, consider T2n =
∫ 1

0 G
−1(F−1

n − F−1)dt. We can always construct i.i.d. uniform
random variables ξi such that Yi = F−1(ξi), see e.g. Eq. (55) p.57 in Shorack and
Wellner (1986). Now, we apply Theorem 1 in Shorack and Wellner (1986), combined
with their Remark 2 p.667. Remark that their T̃n defined in their Eq. (56) corresponds
to our

∫ 1
0 G

−1F−1
n dt, with their h being the identity function so that their g(G−1

n ) is
our F−1

n and their J is our G−1. Given that their (58) is the same as their (11), with
just Ψn = Ψ, we can replace in their Theorem 1-(i), provided that their Assumptions
1 and 2 hold, Tn − µn by their T̃n − µ, which is our T2n.

Now, Assumption 3-(ii) implies, by, e.g. Remark 19.1 in Shorack and Wellner (1986),
that |F−1(t)| ≤ M1/[(t(1 − t)]1/(4+ε) and |G−1(t)| ≤ M2[(t(1 − t)]1/(4+ε) for some M1

and M2. Hence, (16) and (19) in their Assumption 1 holds, with their (b1, b2, d1, d2)
satisfying b1 = ... = d2 = 1/(4 + ε) and thus their a satisfying a < 1/2. Since Jn = J

in T̃n, their Assumption 2 reduces in our context to the continuity of G−1 except on
a set of µ-measure 0, where µ is the measure associated with |F−1|. Becaues G−1

is monotone, its set of discontinuities DG−1 is countable. Moreover, by Assumption
3-(iii), we have, for each x ∈ DG−1 , µ({x}) = 0. Hence, their Assumption 2 holds
here. Then, by Theorem 1 in Shorack and Wellner (1986) and their equation just
above (13),

√
nT2m = 1

n1/2

m∑
i=1

∫ 1

0
[1 {ξi ≤ t} − t]G−1(t)dt+ oP (1).

Using m/(n+m) → (1 − λ), Lemma 1 below and the definition of ψ4, we obtain√
nm

n+m
T2m = (1 − λ)1/2 1

n1/2

m∑
i=1

ψ4i + oP (1). (30)

Similarly, √
nm

n+m
T1m = λ1/2 1

m1/2

n∑
i=1

ψ3i + oP (1). (31)
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We now show that Rn,m :=
√
nm/(n+m)rn,m = oP (1). Combined with (13), (30)

and (31), this implies√
nm

n+m

(
b̂d − bd

)
= 1
E(η2

d)

[ √
λ

m1/2

m∑
i=1

ψ1i + ψ2i + ψ3i +
√

1 − λ

n1/2

n∑
i=1

ψ4i

]
+ oP (1).

The result then follows by E[ψj] = 0, E(ψ2
j ) < ∞ for all j = 1, ..., 4 and the central

limit theorem.

We have, by Cauchy-Schwarz inequality,

R2
n,m ≤ nm

n+m
W 2

2 (Fn, F )W 2
2 (Gm, G).

Hence, by independence,

E
[
R2

n,m

]
≤ nm

n+m
E
[
W 2

2 (Fn, F )
]
E
[
W 2

2 (Gm, G)
]
.

Theorem 1 in Fournier and Guillin (2015) shows that

E
[
W 2

2 (Fn, F )
]
≲ m−1/2,

where “≲” means that the inequality holds up to a number independent of (n,m).
We now prove that

E
[
W 2

2 (Gm, G)
]

= o(m−1/2), (32)

which implies that E[R2
n,m] = o(1) and concludes the proof by Markov inequality.

First, remark that by Theorem 4.3 of Bobkov and Ledoux (2019),

E
[
W 2

2 (Gm, G)
]

≤ 2
m

m∑
i=1

V (ηd(i)), (33)

where ηd(1) < ... < ηd(m) denotes the order statistic of an i.i.d. sample (ηd1, ..., ηdn)
from G. Then, by Lemma 2, we have

m∑
i=1

V (ηd(i)) ≲ E

[
m∑

i=1

1
i ∧ (n+ 1 − i)

(
1
C2 ∨

η2
d(i) ln(1 + |ηd(i)|)4

K2 + η2
d(i)

)]

≲
(
E[Z2

m] + E[Z2
m ln(1 + Zm)4]

) [ m+1
2 ]∑

i=1

1
i

≲ E[Z2+ε/3
m ] [1 + ln(m)] , (34)
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where Zm = maxi=1,...,m(|ηdi|) and [x] denotes the integer part of x. Now,

m− 2+ε/3
4+ε E[Z2+ε/3

m ] ≤
{
m−1E[Z4+ε

m ]
} 2+ε/3

4+ε = o(1), (35)

where the inequality is due to Jensen’s inequality and the equality holds by, e.g., Exer-
cise 4 in Section 2.3 of van der Vaart and Wellner (2023) and because E[|ηd1|4+ε] < ∞.
Combining (33), (34) and (35), we obtain (32).

B.5 Additional lemmas

The proof of Theorem 3 relies on two lemmas, which we state and prove below. Note
that Lemma 2 is similar to Corollary 2.12 in Boucheron and Thomas (2015).

Lemma 1 For any cdfs F,G, Y = F−1(U) and U ∼ U [0, 1], we have∫ 1

0
[1 {U ≤ t} − t]G−1(t)dF−1(t) =

∫ ∞

−∞
[1 {Y ≤ u} − F (u)]G−1 ◦ F (u)du.

Lemma 2 Suppose that (T1, ..., Tn) is an i.i.d. sample with marginal cdf F , survival
function S and a positive density f . Then, for all i ∈ {1, ..., n},

V (T(i)) ≤ 32
i ∧ (n+ 1 − i)E

2
(
F (T(i))S(T(i))

f(T(i))

)2

+ T 2
(i)

 .

B.5.1 Proof of Lemma 1

Note that F is a generalized inverse of F−1 (see, e.g., Shorack and Wellner, 1986,
p.7). Then, by, e.g., Eq. (1) in Falkner and Teschl (2012),∫ 1

0
[1 {U ≤ t} − t]G−1(t)dF−1(t) =

∫ ∞

−∞
[1 {U ≤ F (u)} − F (u)]G−1 ◦ F (u)du.

The result follows by noting that U ≤ F (u) if and only if Y ≤ u (see, e.g., Lemma
21.1 in van der Vaart, 2000).

B.5.2 Proof of Lemma 2

First, note that

V (T(i)) ≤ 2
[
V (T(i)F (T(i))) + V (T(i)S(T(i)))

]
. (36)

37



Remark that T(i) = F−1(1 − exp(−E(i))), where (E1, ..., En) are iid, Exponential
variables of parameter 1. Then, by Rényi’s representation of order statistics for such
variables,

V (T(i)F (T(i))) = V
[
F−1

(
1 − e−

∑n

k=n+1−i
Ek/k

) (
1 − e−

∑n

k=n+1−i
Ek/k

)]
.

Let us define

g(xn+1−i, ..., xn) = F−1
(
1 − e−

∑n

k=n+1−i
xk/k

) (
1 − e−

∑n

k=n+1−i
xk/k

)
.

Then, by Poincare’s inequality for exponential variables (see, e.g., Proposition 2.10
in Boucheron and Thomas, 2015), we have

V (T(i)F (T(i))) ≤ 4E
 n∑

k=n+1−i

∂g

∂xk

(En+1−i, ..., En)2

 .
Remark that for all j ∈ {n+ 1 − i, ..., n},

∂g

∂xj

(xn+1−i, ..., xn) = 1
j

 1 − e−
∑n

k=n+1−i
xk/k

h ◦ F−1
(
1 − e−

∑n

k=n+1−i
xk/k

)
+e−

∑n

k=n+1−i
xk/kF−1

(
1 − e−

∑n

k=n+1−i
xk/k

)]
.

Thus,

V (T(i)F (T(i))) ≤4E
 n∑

k=n+1−i

∂g

∂xk

(En+1−i, ..., En)2


=4

 n∑
j=n+1−i

1
j2

E
(F (T(i))

h(T(i))
+ S(T(i))T(i)

)2


≤ 16
n+ 1 − i

E

(F (T(i))S(T(i))
f(T(i))

)2

+ S(T(i))2T 2
(i)

 . (37)

To deal with V (T(i)S(T(i))), we use T(i) = F−1(exp(−E(n+1−i))) and reason exactly as
above. This yields:

V (T(i)S(T(i))) ≤ 16
i
E

(F (T(i))S(T(i))
f(T(i))

)2

+ F (T(i))2T 2
(i)

 . (38)

By combining (36), (37), (38) and x2 + (1 − x)2 ≤ 1 for 0 ≤ x ≤ 1, we finally obtain

V (T(i)) ≤ 32
i ∧ (n+ 1 − i)E

2
(
F (T(i))S(T(i))

f(T(i))

)2

+ T 2
(i)


□
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