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Abstract

We provide identification results for a broad class of learning models in

which continuous outcomes depend on three types of unobservables: known

heterogeneity, initially unknown heterogeneity that may be revealed over time,

and transitory uncertainty. We consider a common environment where the re-

searcher only has access to a short panel on choices and realized outcomes.

We establish identification of the outcome equation parameters and the dis-

tribution of the unobservables, under the standard assumption that unknown

heterogeneity and uncertainty are normally distributed. We also show that,

absent known heterogeneity, the model is identified without making any distri-

butional assumption. We then derive the asymptotic properties of a sieve MLE

estimator for the model parameters, and devise a tractable profile likelihood-

based estimation procedure. Our estimator exhibits good finite-sample proper-

ties. Finally, we illustrate our approach with an application to ability learning

in the context of occupational choice. Our results point to substantial ability

learning based on realized wages.
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1 Introduction

Learning models, in which agents have imperfect information about their environment

and update their beliefs over time, are frequently used in economics. These models

have received particular interest in various subfields in empirical microeconomics,

including labor economics (see, e.g., Miller, 1984; Antonovics and Golan, 2012; Pas-

torino, 2015; Hincapié, 2020; Pastorino, 2024), economics of education (see, e.g., Ar-

cidiacono, 2004; Zafar, 2011; Stinebrickner and Stinebrickner, 2012; Stange, 2012;

Thomas, 2019; Kinsler and Pavan, 2021; Proctor, 2022; Arcidiacono et al., 2025), in-

dustrial organization and health (see, e.g., Ackerberg, 2003; Coscelli and Shum, 2004;

Crawford and Shum, 2005; Abbring and Campbell, 2005; Chan and Hamilton, 2006;

Aguirregabiria and Jeon, 2020, for a survey in the context of oligopoly competition).

Since the seminal work of Erdem and Keane (1996), learning models have also been

popular in the marketing literature (see Ching et al., 2013, for a survey). However,

while learning models are often estimated, much remains to be known about the

identification of this important class of models.

In this paper, we provide new semiparametric identification results for a general

class of learning models. We consider an environment in which the researcher has

access to a short panel of choices and realized outcomes only. As such, our results

are widely applicable, including in frequent situations where one does not have access

to elicited beliefs data, or to a set of selection-free measurements of unobserved in-

dividual heterogeneity. Specifically, throughout our analysis we consider a potential

outcome model in which individual i’s potential outcome in period t from assignment

d is given by

Yi,t(d) = X⊺
i,tβt,d + (X∗

i )⊺λt,d + ϵi,t(d), (1)

where Xi,t is a vector of explanatory variables associated with individual i in period t

(including an intercept), X∗
i denotes a vector of latent individual effects (or factors),

ϵi,t(d) is a transitory shock, and (β⊺
t,d, λ⊺

t,d)⊺ is an unknown parameter vector. While
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interactive fixed effects models of this kind have been the object of much interest

in econometrics, a key distinctive feature of the set-up considered in this paper is

the existence of two different types of individual effects. Namely, we assume that the

individual effect X∗
i consists of two components: X∗

k,i, which are supposed to be known

by the agent, and X∗
u,i which are initially unknown but may be learned over time. We

complement this potential outcome model with a flexible choice model, in which agent

i’s assignment in period t is allowed to depend arbitrarily on contemporaneous and

lagged explanatory variables, assignments and realized outcomes. This framework

encompasses most of the decision models that have been considered in the learning

literature.

We first establish that the model is identified under two alternative sets of condi-

tions. Our first identification result applies to a set-up where, consistent with most

of the Bayesian learning models that have been considered and estimated in the lit-

erature, we assume that the transitory shocks from the outcome equations (ϵi,t(d)),

as well as the unknown heterogeneity component (X∗
u,i), are normally distributed. In

contrast, the distribution of the known heterogeneity component (X∗
k,i) is left unspec-

ified. From the observation that the distribution of realized outcomes conditional on

past choices and outcomes is a mixture of normal distributions, we leverage results

from Bruni and Koch (1985) to establish identification of the joint distribution of

realized outcomes, choices and known heterogeneity component.

We then also show that a pure learning model, with X∗
u,i as the only source of

permanent unobserved heterogeneity, remains identified without making any distri-

butional assumption. A crucial distinction from the previous case is that, from the

econometrician’s perspective, this model is one of selection on observables, as individ-

ual choices depend on beliefs about X∗
u,i only through prior realized outcomes, choices

and covariates. This simple but powerful insight allows us to build on results from

the interactive fixed-effects literature to establish identification.

We propose to estimate the model parameters using a sieve maximum likelihood
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estimator which we show to be consistent. We then focus on a class of function-

als of the model parameters, which includes as special cases economically relevant

quantities, such as the predictable and unpredictable outcome variances. These vari-

ances can in turn be used to evaluate the relative importance of, e.g., uncertainty

vs. heterogeneity in the overall lifecycle earnings variability - a question that has

been the object of much interest in labor economics (see, among others, Cunha et al.,

2005; Huggett et al., 2011; Cunha and Heckman, 2016; Gong et al., 2019). We show

that, under mild regularity conditions, the resulting estimators are consistent and

asymptotically normal. We implement our sieve maximum likelihood estimator using

a profile likelihood-based procedure. Importantly for practical purposes, the resulting

procedure only involves a modest computational cost. Monte Carlo simulation results

further indicate that our estimator exhibits good finite-sample properties.

Finally, we illustrate our approach with an application to ability learning in the

context of occupational choice, using data from the National Longitudinal Survey of

Youth 1997 (NLSY97). Our method allows us to investigate this question without

relying on a measurement system for latent ability, while remaining very flexible re-

garding how workers choose their occupations. Estimation results indicate that the

share of the variance of discounted future earnings that is forecastable by the indi-

viduals increases rapidly with accumulated work experience, consistent with workers

learning about their productivity through their wages. Accounting for initially known

latent productivity is also important in order to understand the dispersion of wages.

Related literatures

Our paper contributes to several strands of the literature. First and foremost, we

contribute to the literature that studies the identification of learning models, generally

in the context of specific applications (see, e.g., Abbring and Campbell, 2005; Gong,

2019; Pastorino, 2024; Arcidiacono et al., 2025). A central distinction from most of

the papers in this literature is that we impose only mild restrictions on the choice
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process. Importantly, we remain agnostic about how choices depend on individual

beliefs about X∗
u,i, while allowing these beliefs to depend arbitrarily on past choices

and realized outcomes. Particularly relevant for us is the complementary work of

Pastorino (2024), which establishes identification results in a different and non-nested

framework of a two-sided learning model in which workers and firms have imperfect

information. Key to the identification strategy proposed in that paper is to leverage

particular mixture representations of selected one-dimensional outcomes.1 Related

mixture representations also play an important role in our analysis.

Our paper also fits into a literature that focuses on the identification of Markovian

dynamic discrete choice models in the presence of persistent unobserved heterogeneity

(see Heckman and Navarro, 2007; Hu and Schennach, 2008; Kasahara and Shimotsu,

2009; Hu and Shum, 2012; Sasaki, 2015; Hu and Sasaki, 2018; Aguirregabiria et al.,

2021; Bunting, 2024; Arellano and Bonhomme, 2017, for a review in connection to

nonlinear panel data models). Unlike these papers, we do not impose a Markov

structure, since current beliefs and decisions are allowed to depend on the entire

history of past outcomes and decisions.2 More broadly, our analysis is related to the

literature that deals with the identification of mixture models (see, for example, Henry

et al., 2014; Compiani and Kitamura, 2016; Kitamura and Laage, 2018, and references

therein). In particular, central to our main identification result is the observation that

the distribution of current outcomes conditional on the sequence of past choices and

outcomes is a mixture of normal distributions.
1See also recent related work by de Paula et al. (2025) which investigates the identification

of a two-sided matching model with learning and human capital accumulation. As in our paper,
identification of the outcome equations and the distribution of unobserved heterogeneity relies on
Bruni and Koch (1985).

2Although our framework is more general, Bayesian learning models often naturally possess a first
order Markov structure. There are several additional significant differences between our paper and
the listed literature. Notably, Hu and Shum (2012) focus on scalar unobserved heterogeneity, whereas
the existence of multivariate unobserved heterogeneity is fundamental to our main setting. Beyond
this, several of their assumptions may fail to hold in our set-up. For instance, since the support
of the latent beliefs is larger than the support of the choices, the requirement that the observed
variables be invertible measurements of the latent variables (Hu and Shum, 2012, Assumption 2)
will generally fail to hold.
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Since the outcome equation in our model involves interactions between unobserved

individual- and time-specific effects, our paper fits into the literature that examines

the identification and estimation of panel data models with interactive fixed effects

(see, e.g., Madansky, 1964; Heckman and Scheinkman, 1987; Bai, 2009; Freyberger,

2018). An important distinction comes from the fact that these papers consider

a selection-free environment. In contrast, individual choices, along with associated

selection issues that affect the potential outcomes, play a central role in our analysis.

Finally, by applying our framework to examine how imperfect information and

learning shape occupational choices and wages, our paper also fits into the literature

that highlights the important role of imperfect information in labor market trajecto-

ries and outcomes (see, e.g., Miller, 1984; Antonovics and Golan, 2012; Papageorgiou,

2014; Pastorino, 2015; Conlon et al., 2018; Golan and Sanders, 2019; Gong et al.,

2022; Arcidiacono et al., 2025). A distinctive feature of our approach is that it allows

us to remain flexible on how agents sort across occupations and form their beliefs

about future earnings. Our identification results allow, in particular, for potential de-

viations from rational expectations on future outcomes, which recent evidence based

on subjective beliefs has shown to be important (see, e.g., D’Haultfoeuille et al., 2021;

Crossley et al., 2024).

Organization of the paper

The remainder of the paper is organized as follows. Section 2 introduces and discusses

the set-up of the model. Section 3 contains our main identification results, both for

the general case and for the case of a pure learning model. We discuss in Section 4

the estimation and inference on the parameters of interest, before turning in Section

5 to the implementation of our estimator and its finite-sample performances. We

illustrate in Section 6 our approach with an application to ability learning in the

context of occupational choice. Section 7 concludes. The appendix gathers all the

proofs, additional material on the variance decompositions, the implementation of
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our estimator, and further Monte Carlo simulation results. Finally, our estimation

method can be implemented using our companion Python package, spmlex, which is

available at https://github.com/pdiegert/spmlex.

Notation: for a given random variable A, we denote by a its realization, S(A)

indicates its support, FA denotes its cumulative distribution function, qα[A] its α ∈

[0, 1] quantile, whereas fA indicates its probability mass or density function. For any

sequence (a1, a2, . . . , aS) and s ≤ S, we let as = (a1, a2, . . . , as). A ⊥⊥ B | C indicates

that A and B are statistically independent conditional on C. Finally, unless stated

otherwise, we suppress the individual subscript i from all random variables in the

remainder of the paper.

2 Set-up

Throughout the paper, we consider a set-up where potential outcomes have an inter-

active fixed-effect structure of the following form:

Yt(d) = X⊺
t βt,d + X∗

kλk
t,d + (X∗

u)⊺λu
t,d + ϵt(d), (2)

where d represents a possible value of individual i’s assignment in period t, Yt(d) is

a scalar potential outcome variable associated with assignment d, Xt is a vector of

observed explanatory variables, X∗ := (X∗
k , (X∗

u)⊺)⊺ are unobserved (to the econo-

metrician) factors, (β⊺
t,d, λ⊺

t,d)⊺ with λt,d := (λk
t,d, (λu

t,d)⊺)⊺ is an unknown parameter

vector, and ϵt(d) is an idiosyncratic random shock. For example, Yt(d) may represent

potential log wages in occupation d. Yt(d) may depend on some observed individual

and possibly time-varying characteristics (Xt) as well as on multiple dimensions of

unobserved abilities (X∗), which may play different roles in different occupations (see,

e.g., Hincapié, 2020; Arcidiacono et al., 2025). This set-up is fairly general and can

be applied in a wide range of contexts. For instance, Yt(d) may alternatively represent

the potential log-quantity of a particular product sold by a firm in a given market
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d (see, e.g., Berman et al., 2019). This framework can also be used in the health

context, where Yt(d) may correspond to a measure of health outcome associated with

a certain drug (e.g., CD4 cell counts associated with a particular HIV drug treatment,

as in Chan and Hamilton, 2006), or to the body mass index associated with a certain

type of diet.

Importantly, we allow for two distinct types of latent individual effects. Namely,

X∗
k is assumed to be known by the agent, while X∗

u is initially unknown but may

be gradually revealed over time. For example, worker i’s log wage in occupation d

at time t, Yt(d), may depend on her unobserved (to the econometrician) occupation

specific productivity, X∗
kλk

t,d +(X∗
u)⊺λu

t,d. As the worker accumulates more experience,

she may update her belief about X∗
u, and thus about the initially unknown portion

of productivity in each of the possible occupations.

Turning to the choice and learning process, the key restriction that we place on

an individual’s assignment in period t (denoted as Dt) is that it does not directly

depend on the unknown component of heterogeneity. Specifically, we assume that:

Dt ⊥⊥ X∗
u | X t, Y t−1, Dt−1, X∗

k . (3)

The above conditional independence assumption highlights the asymmetry between

the two types of latent effects: assignments may arbitrarily depend on the known

component of the latent effect X∗
k , but not on the unknown component of the latent

effect X∗
u. However, we do allow the assignment rule to depend arbitrarily on current

and lagged covariates, as well as lagged outcomes and choices. As a result, we do

not restrict how agents form their beliefs about X∗
u, provided that such beliefs are a

measurable function of X t, Y t−1, Dt−1 and X∗
k . We also remain agnostic about how

assignments depend on agents’ beliefs over X∗
u.

This choice process accommodates a wide range of models that have been con-

sidered in the learning literature. In particular, this framework is consistent with a

set-up in which agents are rational and Bayesian updaters, so that beliefs coincide

8



with the true distribution of X∗
u conditional on their information set at a given point

in time, which may include all realized variables and model parameters. Alternatively,

this accommodates situations where individual decisions may not involve beliefs over

the distribution of X∗
u, or depend instead on myopic beliefs that are formed based

on the prior-period choice and outcome. This set-up also allows for heterogeneous

beliefs formation, where, for instance, some agents may have rational expectations

about their unobserved characteristic X∗
u, while others may have biased (e.g. over-

optimistic) beliefs.3

Finally, we denote the conditional choice probability (CCP) function as

ht(dt, xt, yt−1, x∗
k) := Pr(Dt = d | X t = xt, Y t−1 = yt−1, Dt−1 = dt−1, X∗

k = x∗
k).

These CCPs play a central role in our identification analysis. In the following section,

we provide sufficient conditions under which the CCPs - which are latent objects

because of the conditioning on X∗
k - are identified. In empirical applications it is very

common to impose some structure on the choice process. For example, in a dynamic

discrete choice framework, it is standard to assume that

Dt = arg max
d∈S(Dt)

{v(d, Xt, X∗
k , St) + ηt(d)} ,

where the conditional value function v is known up to a finite-dimensional vector of

parameters, St are sufficient statistics for the conditional distribution of X∗
u at time

t, and ηt follows a known distribution. Having identified the CCPs, one can then

apply standard identification arguments from the dynamic discrete choice literature

to identify v (see, e.g., Hotz and Miller, 1993; Aguirregabiria and Mira, 2010; Chiong

et al., 2016), and then recover the primitives of the choice model (see, e.g., Arcidiacono

et al., 2025).
3Our set-up accommodates situations where heterogeneity in beliefs formation depends on X∗

k

and is therefore unobserved to the econometrician.
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Uncertainty and learning. A central feature of the model is the distinction be-

tween three forms of unobserved heterogeneity: (1) permanent heterogeneity that is

known to the agent, X∗
k , (2) permanent heterogeneity that is initially unknown to

the agent, X∗
u, and (3) transitory time-varying shocks, ϵ = {ϵt(d) : d ∈ S(Dt), t =

1, 2, . . .}. This provides a framework for quantifying the importance of uncertainty in

outcomes. At t = 1, the variance in future outcomes can be decomposed into a com-

ponent that depends on (X∗
u, ϵ) and a component that depends on X∗

k . Cunha et al.

(2005) and Cunha and Heckman (2016) consider this decomposition in the context of

educational choice, decomposing the variance in lifetime earnings into a component

that is predictable when deciding to go to college and a component that is not.

In our framework, the importance of uncertainty can change over time as agents

learn about X∗
u by observing realized outcomes and covariates, and use this informa-

tion to self-select into different alternatives. We provide in Appendix B.2 a class of

variance decomposition parameters that includes both the t = 1 decomposition as

well as t > 1 decompositions that incorporate these learning and selection effects.

These decompositions, which are identified from the model parameters, each provide

different ways to quantify the importance of uncertainty to future outcomes. After

establishing identification of the model, we will pay special attention to estimation

and inference of a broad class of functionals that encompasses these kinds of variance

decompositions.

3 Identification

We first provide in Subsection 3.1 a high-level overview of the underlying reweighting

scheme that plays an important role in both of the proposed identification strategies.

We then discuss identification in the case with both known and unknown unobserved

heterogeneity (Subsection 3.2), before turning to the pure learning case where the

only source of permanent unobserved heterogeneity is initially unknown to the agent
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(Subsection 3.3).

3.1 Reweighting strategy

Key to the identification problem analyzed in this paper is how to recover the con-

ditional distributions of potential outcomes (i.e., fYt(dt)|Xt,X∗ for each t and dt) and

selection probabilities (i.e., fDt|Xt,X∗
k

for each t), from the selected population distri-

bution (i.e., fY T ,DT ,XT ) which is directly identified from the data.

We now provide intuition as to how one can leverage the structure imposed on

the choice process to address the censored data problem. To illustrate, consider a

simplified version of our model with a binary choice in each period (i.e., S(Dt) =

{0, 1}) and without covariates. Let D := ∏T
t=1 Dt, Y := (Y1, . . . , YT ) and Y (1) :=

(Y1(1), . . . , YT (1)), and focus on identification of the distribution of the potential

outcome Y (1). By Bayes’ rule, the relationship between the target and censored

distributions can be characterized as follows:

fY |D(y|1) fD(1)
fD|Y (1)(1|y) = fY (1)(y)

where the conditional density fY |D(y|1), which is directly identified from the data, is

weighted by a selection adjustment term, fD(1)
fD|Y (1)(1|y) .

Our framework provides a strategy for identifying these selection weights. Let

us first assume that all components of the latent effect are initially unknown. In a

learning context where decision makers’ actions depend on beliefs over X∗, it is often

natural to assume that beliefs depend only on past realized outcomes and choices,

and that:

fDt|Y (1),Dt−1(1|y, 1) = fDt|Y t−1(1),Dt−1(1|yt−1, 1). (4)

where the right-hand side of Equation (4) is identified from the joint distribution of

(Dt, Y t−1) conditional on Dt−1 = 1. Applying this reasoning recursively, it follows
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that fD|Y (1)(1|y) (and thus the selection weight) is identified as follows:

fD|Y (1)(1 | y) = fDT |Y T −1(1),DT −1(1 | yT −1, 1)fDT −1|Y T −2(1),DT −2(1 | yT −2, 1) · · · fD1(1).

We build on this idea when establishing in Section 3.3 identification of a version

of the model we call pure learning (where X∗ = X∗
u).4 The conditional independence

restriction in Equation (4) will generally break down, however, when agents also

possess persistent private information that affects their decision (i.e., X∗
k). We propose

in Section 3.2 an identification strategy that can be used in such situations. A key

additional step in this context is to show, relying on results from Bruni and Koch

(1985), that maintaining a normality assumption that is very commonly made in the

learning literature is sufficient to identify the joint distribution of (Y T , DT , X∗
k) in a

first step. The model parameters can then be identified in a second step, along the

lines of the reweighting strategy discussed above.

3.2 Known and unknown heterogeneity

This section provides sufficient conditions for identification of the baseline model

discussed in Section 2. We first impose a form of conditional independence on

(ϵt(d), Dt, Xt).

Assumption KL1. Equation (2) holds, and for any t ≥ 2 and d ∈ S(Dt),

Fϵt(d),Dt,Xt|Y t−1,Dt−1,Xt−1,X∗ = Fϵt(d)FDt|Xt,Y t−1,Dt−1,X∗
k
FXt|Y t−1,Dt−1,Xt−1 .

Furthermore, for any d ∈ S(D1), Fϵ1(d),D1,X1|X∗ = Fϵ1(d)FD1|X1,X∗
k
FX1|X∗.

Assumption KL1 imposes the potential outcome model in Equation (2) and con-

tains three independence conditions. First, it implies that the additive transitory
4In this section, we assume there are no covariates for clarity of exposition. With covariates, the

selection weights are based on the joint transition probabilities for (Xt, Dt). The exact form of the
selection weight is derived in A.3
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shock in the outcome equation (ϵt(d)) is independent of all contemporaneous and

lagged variables. This is closely related to the standard fixed effect assumption that

dependence in outcomes across periods is due to the latent fixed effect (e.g., Frey-

berger (2018, Assumption N5) and Sasaki (2015, Restriction 2)). However, note that

we allow for arbitrary within-period dependence between the additive shocks (ϵt(d)

and ϵt(d̃), for d ̸= d̃). Second, the unknown factor (X∗
u) does not directly affect treat-

ment assignments (Dt), a natural restriction discussed in Section 2. Third, we also

impose that the transition of the control variables (Xt) does not directly depend on

the time-invariant unobservables (X∗). Importantly, this does allow Xt to depend on

X∗ through past choices and outcomes. For instance, in the context of occupational

choices, this restriction is implied by the standard assumption that occupation-specific

work experiences depend on X∗ through past occupational choices (see, e.g., Keane

and Wolpin, 1997).

Our second assumption KL2 imposes that the unknown component of the individ-

ual effect is drawn from a multivariate normal distribution, and that the random shock

in the outcome equation is normally distributed too. This is a common assumption

in the Bayesian learning literature, to which we return in Remark 2.

Assumption KL2. For all (x1, x∗
k) ∈ S(X1) × S(X∗

k), X∗
u | (X1, X∗

k) = (x1, x∗
k) ∼

N (0, Σu(x1)) and ∀ d ∈ S(Dt), ϵt(d) ∼ N(0, σ2
t,d).

Assumption KL2 implies a Gaussian conjugate posterior distribution for X∗
u, which

we summarize in Lemma 1. Importantly, neither this assumption nor Assumption

KL1 place any restriction on the dependence between X∗
k and X1.5 To do so, define

5Lemma 1 and our main identification result would go through if one replaces the first part of
Assumption KL2 with X∗

u | (X1 = x1, X∗
k = x∗

k) ∼ N (0, Σu(x1, xk)) under appropriate regularity
conditions on xk 7→ Σu(x1, xk), including for each x∗

k − x̃∗
k > 0, Σu(x1, x∗

k)−Σu(x1, x̃∗
k) is positive (or

negative) semi-definite. For simplicity, we maintain the stronger Assumption KL2 when establishing
identification in Theorem 1 below and in the rest of the paper.
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(µt, Σt) recursively as follows. First, (µ1, Σ1) = (0, Σu(x1)). Second,

Σt+1 =
(
Σ−1

t + λu
t,dt

(λu
t,dt

)⊺σ−2
t,dt

)−1
,

µt+1 = Σt+1

(
Σ−1

t µt + λu
t,dt

yt − x⊺
t βt,dt − x∗

kλk
t,dt

σ2
t,dt

)
.

Lemma 1. Let Assumptions KL1 and KL2 hold. Then, for all t ≥ 2, X∗
u conditional

on (Y t−1, Dt−1, X t, X∗
k) = (yt−1, dt−1, xt, x∗

k) is distributed N(µt, Σt).

Suppose X∗
u ∈ Rp. Our three remaining assumptions are as follows.

Assumption KL3. (A) For some d ∈ S(D1), the element of β1,d associated with the

constant term is zero, and λk
1,d = 1. (B) For some dp ∈ S(Dp),

(
λu

1,d1 · · · λu
p,dp

)
= Ip×p.

Assumption KL3 is a location-scale normalization on finite-dimensional parame-

ters, which reflects the fact that the latent factors are only identified up to location

and scale. This type of assumption is standard in interactive fixed effect models.

Finally, we impose in Assumptions KL4 and KL5 below several regularity condi-

tions. We start with Assumption KL4, which places support restrictions on various

objects of the model. In what follows, we let θ1 :=
{
{βt, λt, σ2

t }T
t=1, Σu(x1)

}
∈ Θ1 ⊂

RdimΘ1 , where {βt, λt, σ2
t } := {βt,d, λt,d, σ2

t,d : d ∈ S(Dt)}.

Assumption KL4. (A) For each x1 ∈ S(X1), Θ1 is a compact set. (B) S(X∗
k)

is compact. (C) For each t and d ∈ S(Dt), (λu
t,d)⊺Σtλ

u
t,d + σ2

t,d ̸= 0, σ2
t,d ̸= 0 and

∀ x1 ∈ S(X1), Σu(x1) is non-singular. (D) For each yt−1, dt, xt in their support,

S(X∗
k | (Y t−1, Dt, X t) = (yt−1, dt, xt)) = S(X∗

k) and V ar(X∗
k) ̸= 0. (E) For each t

and d ∈ S(Dt), E[XtX
⊺
t | Dt = d] is non-singular. (F) For all t, V ar(Dt) ̸= 0.

Part (A) states that the finite-dimensional parameters θ1 belong to a compact

set. Part (B) requires that the known latent factor X∗
k has compact support. This

holds if the distribution of X∗
k has discrete support, although this clearly applies

to a broader set of distributions. We return to this compactness condition in Re-

mark 1 below. Part (C) requires certain normally distributed random variables to
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have non-singleton support. Part (D) imposes a rectangular support condition and

a nondegeneracy assumption on the distribution of X∗
k . These conditions are typi-

cally satisfied in dynamic discrete choice models with unobserved heterogeneity, which

generally impose a large support assumption on the random utility shocks. Part (E)

imposes that the support of Xt conditional on Dt is sufficiently rich. Finally, Part

(F) imposes the requirement that the support of the choice variables contain at least

two elements.

Next, Assumption KL5 below contains a set of regularity conditions that ensure

that the latent individual effect X∗ alters outcomes sufficiently differently across time

and assignments.

Assumption KL5. (A) For each t and dt ∈ S(Dt) there exist two sequences

(dt−1, d̃t−1) ∈ S(Dt−1)2 such that (λu
t,dt

)⊺Σt
∑t−1

s=1

(
λu

s,ds

λk
s,ds

σ2
s,ds

− λu
s,d̃s

λk
s,d̃s

σ2
s,d̃s

)
̸= 0. (B)

For all t and dt ∈ S(Dt), λk
t,dt

̸= 0. (C) For all t and dt ∈ S(Dt), λk
t,dt

−

(λu
t,dt

)⊺Σt
∑t−1

s=1 λu
s,ds

λk
s,ds

σ2
s,ds

̸= 0. (D) For all d2 ∈ S(D2), (λu
2,d2)⊺Σ2λ

u
1,d1

λk
1,d1

σ2
1,d1

̸= 0. (E)

There exists {(d2,i, d̃2,i) ∈ S(D2)2 : i = 1, 2, . . . , p} which satisfy

(
λu

2,d2,1 · · · λu
2,d2,p

)−⊺
vec(λk

2,d2,1 , . . . , λk
2,d2,p

) ̸=
(
λu

2,d̃2,1
· · · λu

2,d̃2,p

)−⊺
vec(λk

2,d̃2,1
, . . . , λk

2,d̃2,p
).

(F) For all dT ∈ S(DT ), {λu
t,dt

: t = 1, . . . , T} is linearly independent.

This assumption is fairly mild as it primarily rules out knife-edge cases where the

effect of different elements of permanent unobserved heterogeneity is exactly zero.6

Part (A) requires that the aggregate effect of X∗
k on outcomes associated with choice

dt is different for at least two histories (dt−1, d̃t−1). Part (B) assumes that the direct

effect of X∗
k is non-zero in each period and each assignment. Part (C) states that the

aggregate effect of X∗
k on outcomes must be non-zero—that is, that the direct effect

λk
t,dt

is not perfectly offset by the effect mediated through previous choices. Part (D)
6This type of assumption is similarly required in latent factor models without selection or learning

in order to rule out degeneracies (see, e.g., Freyberger, 2018, Assumption L4).
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ensures that there is a non-zero effect of previous choices in t = 2. Part (E) requires

that for t = 2 the relative effect of known and unknown X∗ changes across choices. In

the special case where X∗
u ∈ R (i.e., p = 1), the condition reduces to λk

2,d2
λu

2,d2
̸=

λk
2,d̃2

λu
2,d̃2

, i.e.,

that the ratio of factor loadings varies across some assignments. More generally, for

X∗
u ∈ Rp, this condition implies that, for t = 2, the set of assignments must contain

at least p + 1 elements. Finally, Part (F) requires that the initially unknown factor

affects each outcome via a different linear combination.

We are now in a position to state our main identification result. We denote

by θ =
{
{βt, λt, σt, gt, ht}T

t=1, Σu, FX∗
k

,X1

}
∈ Θ the model parameters, where gt :=

dFXt|Y t−1,Dt−1,Xt−1 .

Theorem 1. Suppose the distribution of (Yt, Dt, Xt)T
t=1 is observed for T = 2p + 1

periods, and that Assumptions KL1-KL5 hold. Then θ is point identified.

The first step is to show, from Assumptions KL1 and KL2 and Lemma 1 that Yt is

normally distributed conditional on lagged outcomes Y t−1, assignments Dt, covariates

X t and the known component of the latent individual effect, X∗
k . This implies that Yt

conditional on (Y t−1, Dt, X t) is a Gaussian mixture distribution parameterized by X∗
k .

Then under the compact support and non-degeneracy assumptions (Assumptions KL4

(A)-(C)), one can apply a result from Bruni and Koch (1985) to identify the aforemen-

tioned mixture distribution up to an affine transformation of X∗
k . Next, the normal-

ization and regularity assumptions (Assumptions KL3-KL5) are used to pin down the

affine transformation, leading to identification of the distribution of (Y T , DT , XT , X∗
k).

Knowledge of this distribution identifies the components of the model related to the

known component of the individual latent effect, namely
{
{βt, λk

t , ht}T
t=1, FX∗

k
,X1

}
.

The final step is to disentangle the effect of the learned component (X∗
u) and the

idiosyncratic uncertainty (ϵt(d)) in order to identify
{
{λu

t , σ2
t }T

t=1, Σu

}
. This is done

by showing that the joint distribution of (Y T , DT , XT ) conditional on X∗
k , suitability

weighted by the assignment probabilities, is a normal-weighted mixture of normal

distributions. This allows us to identify
{
{λu

t , σ2
t }T

t=1, Σu

}
from the second moments
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of the reweighted distribution. We refer the interested reader to Section A.2 for a

formal derivation.7

Remark 1 (Compact support assumption). Assumption KL4 (B) imposes that

the known component of the latent individual effect has bounded support. In applica-

tions, it is common to assume X∗
k has finite support with known cardinality. Assump-

tion KL4 (B) relaxes this restriction in the sense that the number of support points

of X∗
k need not be known a priori, and indeed may be infinite.8

Remark 2 (Normality of unknown factor). As summarized in Lemma 1, an im-

portant implication of the normality assumptions (Assumption KL2) is the resulting

normal conjugate prior with a tractable closed form. For this reason, these assump-

tions are very common in the learning literature. In the context of our analysis though,

the key implication of normality is rather to enable identification of the distribution

of Yt | (Y t−1, Dt, X t, X∗
k , ) from variation in the realized outcome Yt only. Namely,

under Assumption KL2, the distribution of Yt | (Y t−1, Dt, X t) is a mixture of normal

distributions with mixture weights given by the distribution of X∗
k | (Y t−1, Dt, X t).

This allows us to establish identification by leveraging results for mixtures of normal

distributions (Bruni and Koch, 1985).9

Remark 3 (Role of covariates). Inspection of the proof shows that the covariates Xt

are not needed to identify the parameters θ, beyond {βt : t = 1, . . . , T}. In particular,

one can easily adapt the proof to establish identification for a more flexible specification

where Xt enters the outcome equation through an additive nonparametric shifter. We

maintain linearity throughout for estimation precision and to preserve tractability.
7Note that, while we assume for simplicity that T = 2p + 1, extension to a larger horizon T is

straightforward. The same applies for the pure learning model considered in Section 3.3.
8Compactness is used in particular to apply the Stone-Weierstrass approximation theorem, which

plays an important role in the identification proof of Bruni and Koch (1985, Theorem 1).
9That identification of the distribution of X∗

k arises from variation in the scalar outcome variable
Yt highlights why we restrict X∗

k to be a scalar random variable. If Yt was vector-valued instead,
then we expect that our arguments would easily extend to allow for a multivariate X∗

k .
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Remark 4 (Invariance to normalization). The normalization assumption (As-

sumption KL3) is a true normalization in the sense that particular meaningful eco-

nomic parameters are invariant to the assumption. Specifically, we can show that this

is the case of the average and quantile structural functions. To formalize this notion,

define Ck
t,d := X∗

kλk
t,d, Cu

t,d := (X∗
u)⊺λu

t,d and let Qα [X] be the α-quantile of a random

variable X. Let x ∈ S(Xt) and define the quantile structural functions associated with

the potential outcomes Yt(dt) as follows:

s1,t(x, α) =x⊺βt,dt + Qα[Ck
t,dt

+ Cu
t,dt

+ ϵt(dt)],

s2,t(x, α1, α2, α3) =x⊺βt,dt + Qα1 [Ck
t,dt

] + Qα2 [Cu
t,dt

] + Qα3 [ϵt(dt)],

and the average structural function as s3,t(x) = x⊺βt,dt +
∫

udFCk
t,dt

+Cu
t,dt

+ϵt(dt)(u). In

Appendix B.1 we prove the following corollary:

Corollary 1. Suppose the Assumptions KL1, KL4 and KL5 hold and that for each

(x1, x∗
k) ∈ S(X1) × S(X∗

k), X∗
u | (X1, X∗

k) = (x1, x∗
k) ∼ N (µu, Σu(x1)) and for all t

and d ∈ S(Dt), ϵt(d) ∼ N(ct,d, σ2
t,d). Furthermore, suppose that for some dp ∈ S(Dp),

(λu
1,d1 · · · λu

p,dp
) is full rank. Then s1,t(x, ·), s2,t(x, ·, ·, ·) and s3,t(x) are identified for

all x on the support of Xt.

3.3 Pure learning model

This section considers a special case of the model of Section 2, in which all components

of the latent individual effect are initially unknown to the decision maker (X∗ =

X∗
u). Without needing to distinguish initially known and unknown heterogeneity, a

stronger identification result is achieved. In particular, no parametric restrictions on

the distribution of the unobservables are required. We establish identification in this

model under Assumptions L1-L5 stated below.

Assumption L1. For all t and d ∈ S(Dt), Yt(d) = X⊺
t βt,d + (X∗)⊺λt,d + ϵt(d). For
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any t ≥ 2 and d ∈ S(Dt),

Fϵt(d),Dt,Xt|Y t−1,Dt−1,Xt−1,X∗ = Fϵt(d)FDt|Y t−1,Dt−1,XtFXt|Y t−1,Dt−1,Xt−1 .

Furthermore, for any d ∈ S(D1), Fϵ1(d),D1,X1|X∗ = Fϵ1(d)FD1|X1FX1|X∗ .

Assumption L1 adapts Assumption KL1 to reflect that there is no initially known

component of unobserved heterogeneity.

Assumption L2. (A) The joint density of (Y, X∗) and (D, X) admits a bounded

density with respect to the product measure of the Lebesgue measure on S(Y )×S(X∗)

and some dominating measure on S(D) × S(X). All marginal and conditional den-

sities are bounded. (B) For each x1 ∈ S(X1), X∗ | X1 = x1 has full support. (C)

For each t and d ∈ S(Dt), the characteristic function of ϵt(d) is non-vanishing, and

E[ϵt] = 0.

Assumption L2 substantially weakens Assumption KL2 by replacing the normality

assumption with a full support assumption. Let X∗ ∈ Rp.

Assumption L3. For some dp ∈ S(Dp), (A)
(
λ1,d1 · · · λp,dp

)
= Ip×p and (B) the

element of βt,dt associated with the constant component of Xt is zero.

Assumption L4. (A) For each (yt−1, xt) ∈ S(Y t−1, X t), Pr(Dt = d | Y t−1 =

yt−1, X t = xt) > 0 for all d ∈ S(Dt). (B) For each x1 ∈ S(X1), the variance-

covariance matrix of X∗ | X1 = x1 is full rank. (C) For each t and d ∈ S(Dt), the

variance-covariance matrix of Xt conditional on Dt = d is non-singular.

Assumption L3 are normalization assumptions, which are standard in interactive

fixed effect models. Assumption L4 (A) is similar to Assumption KL4 (D). It requires

that for each history (yt−1, dt−1, xt), some units are assigned to Dt = dt for each

dt ∈ S(Dt). This assumption is typically satisfied in parametric dynamic discrete

choice models (see, e.g., Keane and Wolpin, 1997 and Blundell, 2017 for a survey).
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At the cost of increased notational burden, this assumption could be weakened to

hold for certain sequences of choices only.

Assumption L5. For any dT ∈ S(DT ), all p × p submatrices of (λu
1,d1 · · · λu

t,dt
) are

full rank.

Assumption L5 is a standard assumption in the interactive fixed-effects literature

(see, e.g., Assumption N6, Freyberger, 2018). Similarly to Assumption KL5, it rules

out degeneracies by ensuring that the outcome in each period Yt(dt) depends on a

distinct linear combination of X∗
u.

We now define the period t conditional choice probability function as

ht(yt−1, dt, xt) := Pr(Dt = dt | Y t−1 = yt−1, Dt−1 = dt−1, X t = xt). In this pure

learning environment, the CCP function does not depend on any latent variable and

is thus identified directly from the data. As in Section 3.2, our identification result

(Theorem 2 below) does not rely on a particular structure imposed on the belief forma-

tion process. However, should there be such structure, our identification result would

enable identification of the belief formation process. To illustrate this, consider a sit-

uation where agents are rational and Bayesian updaters, and where beliefs about X∗
u

at time t are a known function of the information set and the model parameters. That

is, there is a known function s such that beliefs are given by s(Y t−1, Dt−1, X t−1, θ),

where θ are the model parameters. In this case, identification of θ is sufficient for

identification of the beliefs.

We now turn to our identification result. Define fϵt =
{
fϵt(d) : d ∈ S(Dt)

}
. Let the

model parameter vector be θ =
{
{βt, λt, fϵt , gt, ht}T

t=1, Σu, FX∗
k

,X1

}
∈ Θ. The following

theorem states that the previous conditions are sufficient for point identification of θ.

Theorem 2. Suppose the distribution of (Yt, Dt, Xt)T
t=1 is observed for T = 2p + 1

and that Assumptions L1-L5 hold. Then θ is point identified.

Key to this result is a simple but powerful insight, namely that, under Assumption

L1, this pure learning model is a model of selection on observables. That is, although

20



assignment probabilities depend on unobserved beliefs over X∗, they do not depend

on the unobserved factor X∗ itself. It follows that one can control for beliefs at

time t by conditioning on prior outcomes, choices and covariates. This, in turn,

allows us to express the joint distribution of (Y t, Dt, X t), suitably weighted by the

assignment probabilities, as a mixture over the potential outcomes Y t(dt), conditional

on the latent factor X∗ and exogenous covariates X. From here, the arguments of

Freyberger (2018) yield identification of the mixture and component distributions.

See Section A.3 for a formal proof.

Remark 5 (Auxiliary measurements). In some cases, additional unselected noisy

measurements of known heterogeneity factors are available. This includes, in par-

ticular, the Armed Services Vocational Aptitude Battery (ASVAB) ability measures

that are available in the National Longitudinal Survey of Youth panels. See, among

many others, Cunha et al. (2005), Cunha et al. (2010) and Ashworth et al. (2021).

With such auxiliary data, sufficient conditions for identification of the distribution of

the latent effect are well known in the literature (Hu and Schennach, 2008; Cunha

et al., 2010). If these conditions are satisfied conditional on each (Yt, Dt, Xt)T
t=1, then

the joint distribution of
(
(Yt, Dt, Xt)T

t=1, X∗
k

)
is identified from the auxiliary mea-

surements. From here, one can redefine Xt as (Xt, X∗
k), and Theorem 2 then yields

distribution-free identification of the model with both known and unknown heterogene-

ity.

4 Estimation

We propose to estimate the model parameters via sieve maximum likelihood. We let

Wi = (Yi,t, Di,t, Xi,t : t = 1, . . . , T ) and θ∗ ∈ Θ be the true value of the parameters. In

the following, we focus on the model of Section 3.2 with both known and unknown

heterogeneity.10 Under the conditions of Theorem 1, the log-likelihood contribution
10While we focus on this specification, analogous conditions can be derived for the pure learning

model considered in Section 3.3.
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of Wi = w is given by:

ℓ(w; θ) = log
∫ ∫ T∏

t=1

1
σt (dt)

ϕ1

(
yt − x⊺

t βt (dt) − x∗
kλk

t,dt
− (x∗

u)⊺λu
t,dt

σt (dt)

)

×
T∏

t=1
ht(dt, xt, yt−1, x∗

k) ×
T −1∏
t=1

gt(xt+1; yt, dt, xt)dFX1(x1)

× 1√
|Σu (x1)|

ϕp

(
Σ− 1

2
u (x1) x∗

u

)
× dx∗

udFX∗
k

|X1 (x∗
k, x1) (5)

where ϕs is the probability distribution function of the standard multivariate nor-

mal distribution with s components, gt is the distribution of Xt+1 conditional on

(Y t, Dt, X t) = (yt, dt, xt). There are four components of the likelihood function,

which are associated with the outcomes, the assignment probabilities, the distribu-

tion of the covariates, and the joint distribution of (X1, X∗), respectively.

To estimate θ, let Θn be a finite-dimensional sieve space that serves as an approx-

imation to Θ. The sieve maximum likelihood estimator for θ∗, θ̂, is defined as

1
n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1
n

n∑
i=1

ℓ(wi; θ) − op(1/n) (6)

The following result states that, under Assumptions KL1-KL5 under which θ∗ is

identified, and additional standard conditions (stated in Appendix B.3.1), θ̂ is a

consistent estimator for θ∗.

Theorem 3. Let (Wi)n
i=1 be i.i.d. data where T ≥ 2p + 1 and Assumptions KL1-KL5

and Assumptions E1-E5 hold. Then θ̂ as defined in Equation (6) is consistent for θ∗.

In practice, researchers are often interested in functionals of the model parameters,

such as the variance decompositions discussed in Section 2 and Appendix B.2. These

decompositions involve both the finite dimensional parameters of the model, as well

as the distribution of X∗
k and the CCPs. We provide in Theorem 4 below an inference

result for a plug-in estimator of a general class of functionals of the model parameters,

which include those defined in Appendix B.2. For a functional f , under a set of
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smoothness and regularity conditions similar to those given in Chen and Liao (2014),

we show that the plug-in estimator f(θ̂) has an asymptotically normal distribution

and characterize its asymptotic variance.

Theorem 4. Let (Wi)n
i=1 be i.i.d. data where T ≥ 2p + 1 and Assumptions KL1-

KL5 and E1-E13 hold. Then
√

nf(θ̂)−f(θ∗)
∥v∗

n∥ →
d

N (0, 1) where v∗
n is the sieve Riesz

representer of f(θ) and ∥ · ∥ is defined in Equation (17) in Appendix B.3.2.

The convergence rate of the plug-in sieve estimator depends on the behavior of

the sieve variance ∥v∗
n∥ as n diverges. Note that Theorem 4 does not require that

∥v∗
n∥ is convergent. That is, Theorem 4 still applies in cases where the parameter of

interest is an irregular (i.e., not
√

n estimable) functional. In either case, consistent

estimators for the sieve variance of certain functionals are available (Chen and Liao,

2014, Section 3).11

5 Implementation and Monte Carlo simulations

In this section we show how the sieve MLE estimator introduced in Section 4 can be

tractably implemented, and then perform a Monte Carlo experiment illustrating the

good finite sample performance of the estimator.

5.1 Implementation

We propose an implementation method combining a profiling approach that ex-

ploits the parametric components of our model, with a convenient choice of sieve

space. Notice first that by integrating out X∗
u in Equation (5), we obtain ℓ(w; θ) =

11We leave it to future work to derive primitive conditions under which functionals such as the
variances decompositions discussed in Section 2 satisfy the high level conditions of Theorem 4.
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log
∫

ℓc(w, x∗
k; θc)dFX∗

k
|X1(x∗

k; x1) with

ℓc(w, x∗
k; θc) := 1√

|V (w, x∗
k; θc)|

ϕT

(
V (w, x∗

k; θc
1)− 1

2 (yT − m(w, x∗
k; θc))

)

×
T∏

t=1
ht(dt, xt, yt−1, x∗

k) ×
T −1∏
t=1

gt(xt+1; yt, dt, xt)dFX1(x1),

where m(w, x∗
k; θc) = (β1,d1 · · · βT,dT

)⊺ x +
(
λk

1,d1 · · · λk
T,dT

)⊺
x∗

k, V (w, x∗
k; θc) =(

λu
1,d1 · · · λu

T,dT

)⊺
Σu(x1)

(
λu

1,d1 · · · λu
T,dT

)
+diag(σ2

1,d1 , . . . , σ2
T,dT

), and θc denotes the pa-

rameter vector excluding FX∗
k

|X1 . The above re-expression of the likelihood function

embodies two insights. First, although the ‘complete’ likelihood function ℓc is itself an

integral over the missing data X∗
u, within our model this integral has the convenient

analytical expression described above. Second, the ℓc function does not depend on

the distribution of the missing data X∗
k , which enables a profiling approach to forming

the maximum likelihood estimator.

To explain our profiling approach, suppose for simplicity that X∗
k ⊥⊥ X1.12 The

profile likelihood approach boils down to solving Equation (6) as

max
θ∈Θn

n∑
i=1

ℓ(wi, θ) = max
θc∈Θc

n

n∑
i=1

log
∫

ℓc(wi, x∗
k; θc)d[F (θc)](x∗

k),

where F (θc) = arg maxF ∈Fn

∑n
i=1 log

∫
ℓc(wi, x∗

k; θc)dF (x∗
k), and Fn and Θc

n are a sieve

spaces for FX∗
k

and θc, respectively. As the non-parametric objects in θc are often

context specific (for example, gt may be estimated in a first step, or ht may be a

parametric choice model), we focus on the choice of Fn. Namely, we propose using a

sieve space closely related to the estimator discussed in Koenker and Mizera (2014)

and Fox et al. (2016). For each n, let us fix a grid of support for X∗
k with qn < ∞

12We assume this simply for clarity of exposition. In the general case, one may consider a sieve
space for (X∗

k |X1) as the cross product of unit simplexes over a grid of S(X1).
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points, Sn = {x̄∗
n,1, . . . , x̄∗

n,qn
}. We can then use the following sieve space,

Fn =
{

x∗ 7→
qn∑

s=1
ωs1{x∗ ≤ x̄∗

n,s}
∣∣∣∣∣ ω ∈ ∆(qn)

}

where ∆(m) is the (m − 1)-dimensional unit simplex. Notice that Fn is the space of

distributions with support contained in Sn. As long as the support points are chosen

so that Sn becomes dense in R and the number of points grows at a suitable rate,

this sieve space satisfies the conditions of Theorems 3 and 4.

Importantly for practical purposes, this sieve space turns out to be particularly

convenient computationally. To see this, note that under the sieve space Fn considered

above,

dF (θc) = arg max
ω∈∆(qn)

n∑
i=1

log
qn∑

s=1
ωs ℓc(wi, x̄∗

n,s; θc).

Thus the profile step reduces to a convex programming problem. This problem can

be solved very efficiently and reliably using recent convex optimization algorithms

available in standard softwares. For example the algorithm proposed in Kim et al.

(2020) is specialized for this setting and readily implemented in the R package mixsqp.

This allows us to calculate the profile log likelihood so the full MLE problem can be

solved by maximizing this function in θc.13 We implement our estimator using our

companion Python package spmlex.

5.2 Monte Carlo simulations

Next, we present results from Monte Carlo simulations which illustrate the compu-

tational tractability and finite-sample performance of the proposed estimator. We

focus here for simplicity on a specification with a parametric assignment model. In

Appendix B.4.3 we consider a specification with a nonparametric assignment model,

and show that the estimator achieves similar performance.
13In Appendix B.4.1 we show how the gradient of the profile log likelihood function can be calcu-

lated implicitly, making it feasible to use first order optimization algorithms to maximize the profile
log likelihood function over θc efficiently.
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The data generating process (DGP) used in the simulations is based on the model

in Section 3.2 with both known and unknown heterogeneity. We include two time-

invariant covariates, X = (X1, X2), where X1 has a standard normal distribution and

X2 as a Bernoulli distribution with equal weights. We assume that X1 and X2 are

independent from each other, and from X∗.

Assignment probabilities are derived from a model in which agents maximize the

following expected utility function,

vt(d, X∗
k , Y t−1, X, Dt−1) = ρE(Yt(d)|X∗

k , Y t−1, X, Dt−1) + ρκ1(d = 2)X∗
k + νt(d),

where Yt(d) = αt,d +X1γ
(1)
t,d +X2γ

(2)
t,d +X∗

kλk
t,d +X∗

uλu
t,d + ϵt(d), where ϵt(d) ∼ N(0, σ2

d),

and {νt(d) : t = 1, 2, 3, d = 1, 2} are exogenous and mutually independent with a

standard Extreme Value Type 1 distribution. ρ is a scale parameter that affects the

relative weight of preference shocks compared to systematic preferences. κ reflects

heterogeneity in preferences and/or beliefs that allows X∗
k to affect choices beyond its

impact on the expectation of Yt(d). We assume X∗
u ∼ N(0, σ2

u) with σ2
u = 1.5. Finally,

X∗
k is distributed following a finite mixture of three truncated normal distributions,

with means (−1.2, 0, 1.5), variances (0.2, 0.1, 0.3), and mixing weights (0.4, 0.3, 0.3).14

The parameter values used in the simulations are reported in Appendix B.4.2. This

expected utility function puts a weight on the expected choice-specific potential out-

comes, and adds another term that depends on X∗
k . This additional term can reflect

biased beliefs, heterogeneity in preferences, or a combination of both.

We perform a Monte Carlo experiment, estimating the parameters of the model

with 200 simulations and sample sizes of 250, 500, 1,000, 2,000 and 4,000. We use the

sieve MLE estimator described in Section 4, maintaining the parametric structure

on the assignment probabilities that is implied by the DGP, but estimating FX∗
k

nonparametrically using the sieve space described in Section 5.1.15 The sieve is chosen
14Each component distribution is truncated at the third standard deviation of its distribution.
15Since X1 is independent of X∗

k , FX∗
k

|X1 = FX∗
k
.
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to have 6n1/3 uniformly spaced support points.16

With this implementation method, computation remains highly tractable for all

sample sizes considered in these simulations. The average computational times to

evaluate the maximum likelihood estimator are reported in Table 1 below. Run times

increase with the sample size from less than half a minute (for n = 250), to around

three and a half minutes for our largest sample size (n = 4,000).

n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000
Time (seconds) 24 31 55 135 212

Table 1: Time to compute the estimator. Note: Computational times were obtained using
an Intel Core i9-12900K CPU, and are computed as the average over 200 simulations.

The squared bias and variance of the sieve estimator of the finite-dimensional

parameters are presented in Table 2 below. (Note that all values in this table are

multiplied by 1,000.) For each of the parameters, the bias becomes negligible relative

to the variance as the sample size grows. The variance also declines with sample

size, as expected given the consistency of our estimators, at a rate consistent with
√

n-convergence of the mean squared error. Overall most of the parameters are quite

precisely estimated for sample sizes n ≥ 2, 000.
16This rate of growth is consistent with the rate conditions of Theorem 4, in particular Assumptions

E6 and E7. To contain the unknown bounded support of X∗
k , the grid is chosen to have minimum

and maximum values at (−0.7n1/6, 0.7n1/6).
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n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var

α1,2 71.72 87.92 34.06 60.97 12.91 47.13 0.73 19.02 0.04 5.70
α2,1 0.15 27.98 0.26 12.38 0.12 7.39 0.00 2.88 0.01 1.38
α2,2 73.52 108.96 34.18 74.42 12.41 57.19 0.46 25.80 0.03 8.11
α3,1 0.01 36.56 0.45 13.82 0.20 5.31 0.00 2.24 0.01 0.96
α3,2 47.84 163.16 32.09 82.42 12.03 62.31 0.59 25.98 0.04 7.32
γ

(1)
1,1 0.51 10.08 0.40 5.22 0.14 3.17 0.02 1.49 0.00 0.72

γ
(1)
1,2 0.85 15.22 0.30 6.75 0.05 3.35 0.01 1.74 0.00 0.80

γ
(1)
2,1 0.84 16.30 0.66 7.86 0.39 4.46 0.04 1.85 0.01 0.80

γ
(1)
2,2 1.38 20.81 0.60 12.06 0.09 5.62 0.00 2.69 0.01 1.21

γ
(1)
3,1 0.41 9.30 0.24 3.88 0.16 1.89 0.03 1.03 0.01 0.57

γ
(1)
3,2 0.38 19.19 0.40 9.11 0.08 4.20 0.01 2.10 0.00 0.86

γ
(2)
1,1 0.61 58.91 0.36 23.24 0.36 11.16 0.03 4.77 0.00 2.29

γ
(2)
1,2 0.19 46.66 0.22 25.40 0.02 11.16 0.00 5.12 0.01 2.61

γ
(2)
2,1 0.01 40.41 0.00 19.84 0.00 9.05 0.00 4.35 0.04 2.48

γ
(2)
2,2 0.04 57.76 0.05 26.57 0.00 12.37 0.00 6.76 0.01 3.29

γ
(2)
3,1 0.50 40.19 0.08 19.94 0.02 7.64 0.00 3.94 0.02 2.05

γ
(2)
3,2 0.10 65.65 0.33 32.11 0.01 15.18 0.02 7.11 0.00 3.44

λk
1,1 2.75 27.52 1.70 12.89 0.62 7.27 0.01 3.68 0.00 1.47

λk
2,1 1.15 25.98 0.56 10.83 0.23 4.78 0.00 2.59 0.00 1.09

λk
2,2 0.87 10.98 0.25 5.82 0.07 2.65 0.01 1.38 0.00 0.74

λk
3,1 3.99 33.66 0.87 13.72 0.18 5.68 0.00 3.07 0.00 1.33

λk
3,2 5.70 36.86 0.67 12.56 0.22 5.30 0.01 2.41 0.01 1.08

λu
1,2 0.98 13.94 0.31 4.73 0.17 2.44 0.01 1.33 0.00 0.61

λu
2,1 0.04 8.32 0.03 5.14 0.04 1.95 0.01 1.00 0.00 0.48

λu
2,2 1.48 14.88 0.49 6.22 0.13 3.32 0.01 1.52 0.00 0.64

λu
3,1 0.45 9.91 0.09 5.00 0.06 2.19 0.03 0.97 0.02 0.47

λu
3,2 0.11 21.92 0.10 8.90 0.11 4.15 0.00 2.14 0.01 0.94

σ2(1) 0.45 2.48 0.09 1.24 0.03 0.67 0.01 0.30 0.00 0.14
σ2(2) 1.23 4.45 0.24 2.24 0.03 1.06 0.02 0.70 0.01 0.33
σ2

u 0.02 72.90 0.05 41.17 0.04 17.91 0.01 9.34 0.01 4.33

Table 2: Simulation results for the estimation of the finite dimensional parameters.
Note: ‘Bias2’ and ‘Var’ refer to the average empirical squared bias and variance scaled by 1,000,
respectively, computed over 200 simulations.

Next, we present results for the nonparametric estimator of the distribution of

known unobserved heterogeneity X∗
k , focusing on its quantiles qα[X∗

k ]. For each value
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of α ∈ [0, 1], we calculate the mean and the 5th and 95th percentile of the simulated

distribution of the estimator of qα[X∗
k ]. The results are presented in Figure 1 below.

The red line shows the quantile function of the true distribution of X∗
k , while the blue

lines that closely follow the red line are the mean of the simulated distribution of the

quantile estimators for each sample size. Darker blue lines represent larger sample

sizes. The blue lines above and below the quantile function are the 95th and 5th

percentiles of the simulated distribution of the quantile estimators.
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Figure 1: Quantiles of the estimator of qα[X∗
k ]. Note: The red line shows the true distribution

of X∗
k . The blue lines show the mean, and the 5th and 95th percentiles of the simulated distribution

of the estimator of qα[X∗
k ] for each sample size.

The results indicate that the bias of the quantile estimators becomes negligible

in moderate sample sizes. The estimator also broadly captures the shape of the true

distribution of X∗
k . Besides, even though the simulated distribution is still relatively
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disperse for the sample sizes we consider in these simulations, the estimator also

appears to converge toward the true distribution as the sample size grows.

Finally, we conclude this section by considering the plug-in estimator for one of

the functionals discussed in Section 2 and Appendix B.2. Namely, we focus on the

decomposition of the present value of a stream of outcomes into known and unknown

components at t = 1. Setting the discount rate equal to 0.95, the variance of the

unknown and known components corresponding to the two terms in Equation (12) in

Appendix B.2 are, for a given choice sequence d3,17

V u
d3 :=σ2

u

∑
1≤t1,t2≤3

(.95)t1+t2−2λu
t1,dt1

λu
t2,dt2

+
∑

1≤t≤3
(.95)2t−2σ2

dt
,

V k
d3 :=Var(X∗

k)
∑

1≤t1,t2≤3
(.95)t1+t2−2λk

t1,dt1
λk

t2,dt2
.

(7)

We estimate these functionals, which involve both the finite-dimensional param-

eters and FX∗
k
, using the plug-in estimator described in Section 4. The results are

presented in Table 3. For moderately small sample sizes starting with n = 500, the

squared bias is generally negligibly small relative to the variance. Besides, variance

(and MSE) decrease with the sample sizes, at a rate that appears to be consistent

with a
√

n-convergence rate.

17The sum of these two terms is the variance of
∑3

t=1(.95)1−tYt(dt), which is the present value of
(Y1(d1), Y2(d2), Y3(d3)) at period 1. This is a special case of the class of weighted sums of potential
outcomes considered in Appendix B.2, where the weights are ωt = (.95)1−t, and the choice sequence
is d3. The two terms correspond to the two terms of Equation (12) with ωt defined as above.
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Parameter n = 250 n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var

V k
(1,1,1) 0.01 0.99 0.00 0.45 0.00 0.21 0.00 0.14 0.00 0.07

V u
(1,1,1) 0.00 3.06 0.00 1.51 0.00 0.68 0.00 0.33 0.00 0.15

V k
(1,1,2) 0.00 1.46 0.01 0.70 0.00 0.38 0.00 0.23 0.00 0.09

V u
(1,1,2) 0.00 2.32 0.00 1.13 0.00 0.52 0.00 0.27 0.00 0.12

V k
(1,2,1) 0.32 1.77 0.13 0.93 0.04 0.53 0.00 0.28 0.00 0.11

V u
(1,2,1) 0.03 1.72 0.00 0.85 0.00 0.37 0.00 0.19 0.00 0.09

V k
(1,2,2) 0.21 3.13 0.16 1.53 0.05 0.88 0.00 0.41 0.00 0.15

V u
(1,2,2) 0.01 1.20 0.01 0.60 0.00 0.28 0.00 0.15 0.00 0.06

V k
(2,1,1) 0.24 1.49 0.07 0.82 0.02 0.36 0.00 0.22 0.00 0.10

V u
(2,1,1) 0.03 1.75 0.00 0.85 0.01 0.36 0.00 0.16 0.00 0.08

V k
(2,1,2) 0.15 2.43 0.08 1.13 0.03 0.56 0.00 0.32 0.00 0.14

V u
(2,1,2) 0.01 1.23 0.01 0.60 0.01 0.27 0.00 0.13 0.00 0.07

V k
(2,2,1) 1.00 3.04 0.30 1.56 0.07 0.73 0.00 0.38 0.00 0.17

V u
(2,2,1) 0.10 1.10 0.02 0.45 0.01 0.19 0.00 0.09 0.00 0.05

V k
(2,2,2) 0.45 5.84 0.21 2.77 0.04 1.56 0.00 0.76 0.00 0.33

V u
(2,2,2) 0.06 0.79 0.03 0.32 0.01 0.17 0.00 0.09 0.00 0.04

Table 3: Simulation results for estimation of V p
d3 for p = k, u as defined in Equation

(7). Note: ‘Bias2’ and ‘Var’ refer to the average empirical squared bias and variance respectively,
computed over 200 simulations.

6 Empirical illustration

In this section, we illustrate the empirical framework developed above with an ap-

plication to ability learning in the context of occupational choice, revisiting a ques-

tion that has attracted significant interest in labor economics (see, e.g., Miller, 1984;

Antonovics and Golan, 2012; James, 2012; Papageorgiou, 2014; Pastorino, 2015; Ar-

cidiacono et al., 2025).

6.1 Data and descriptive overview

We use data from the National Longitudinal Survey of Youth 1997 (NLSY97). This

is a nationally representative U.S. sample of individuals born between 1980 and 1984.

We restrict the sample to white men who worked full-time between the ages of 27 and
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32.18 With the demographic restrictions, we have a sample size of 2,031 individuals,

and after restricting to people who worked full time continuously between ages 27 to

32, we obtain a sample of 965 individuals.19,20

For our application, we use primarily data on labor market experience, labor

force status, hourly wages, and census occupation codes. Our measurement of wages

is an individual’s average log hourly wages over a two-year period. Occupations are

classified into high-skill or low-skill occupations based on the mean college completion

rate of individuals working in that occupation. High-skill occupations are defined as

those in which more than 50% of individuals employed in that occupation have a

college degree.21

Table 4 below shows the mean and standard deviation of various characteristics

conditional on the number of periods worked in a high-skill occupation. A couple of

comments are in order. There is a monotonic pattern across all variables in the num-

ber or periods worked in a high-skill occupation. Notably, there is a sharp increase

in the share of college graduates among people who work in a high-skill occupation

for at least one period, reflecting in part the effect of getting a college degree on the

likelihood of finding a high-skill job. The table also shows a more continuous increas-

ing relationship between the number of periods worked in a high-skill occupation and

the education level of the individual’s mother, family income, and the Armed Forces

Qualification Test (AFQT) score, which may all be considered as correlates of the

individual’s underlying ability. As expected, log wages, including within each occu-

pation, increase with the number of periods worked in the high-skill occupation. For

example, the average log wage for people who work all three periods in the high-skill

occupation is 0.36 log points higher than the average log wage for individuals who
18With this sample restriction, we use data from the 2007-2015 waves of the NLSY97.
19The sample sizes under these restrictions can be seen in Appendix Table 10.
20Full-time work status is calculated based on work history in October of each year, and requires

at least 35 hours per week and four weeks worked during that month.
21This classification follows the approach in Arcidiacono et al. (2025), and uses the current pop-

ulation survey (CPS) to calculate the mean college graduation rate within each 3-digit occupation.
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work all three periods in the low-skill occupation. Moreover, average wages in each

occupation increase with additional high-skill experience: average low-skill wages are

0.07 log points higher (from 0 to 1-2 periods in high-skill occupation), and average

high-skill wages are 0.16 log points higher (from 1-2 to 3 periods in high-skill occu-

pation).

Taken together, these descriptive patterns are consistent with various potential

mechanisms, including selection across occupations based on their ability. In particu-

lar, they are not directly informative about the role played by sorting on the portion

of ability that may be revealed over time, rather than initially known by the workers.

Our empirical framework allows us to identify, from the observed occupational choices

and realized wages, the role played by learning about one’s ability in this context.

Periods Worked in High-Skill Occupation
0 1-2 3

Mean S. D. Mean S. D. Mean S. D.

College graduate (%) 0.15 0.53 0.74
Mother college graduate (%) 0.21 0.41 0.55
Family income (,000s) 71.5 53.6 88.0 60.8 107.0 78.6
AFQT 0.12 0.90 0.56 0.68 1.01 0.54
Log Wage 2.48 0.46 2.62 0.49 2.84 0.54
Log Wage (low-skill) 2.48 0.46 2.55 0.59
Log Wage (high-skill) 2.68 0.52 2.84 0.54

Nb. Individuals 545 130 201

Table 4: Descriptive statistics of NLSY subsample of white men who worked full time
between ages 27 and 32. Note: Low-skill log wages are defined as the average of log hourly
wages in each period when an individual worked in the low-skill occupation. For individuals who
worked in the low-skill occupation each period, this coincides with the observed log wage; for those
who all periods in the high-skill occupations, this is not observed, and for those who worked in
both occupations, it is their average log wage only for these periods when they worked in a low-skill
occupation. High-skill log wages are defined analogously.
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6.2 Model set-up

We divide the early career into three periods, based on the individual’s age. The

periods are each two years long, spanning age 27 to 32. In each period t ∈ {1, 2, 3},

individuals work in the labor market in either the high- or low- skill occupation and

earn a wage.22 Their potential average log wage over each two-year period is denoted

by Yt(1) or Yt(0), for the high- and low-skill occupation, respectively. We assume that

potential log wages follow an interactive fixed effects model as in Equation (1), and

we maintain Assumptions KL3 and KL4 on the distributions of (X∗
k , X∗

u, ϵ). That is,

for d ∈ {0, 1}, potential log wages are given by

Yt(d) = βt,d + X∗
kλk

t,d + X∗
uλu

t,d + ϵt(d),

where X∗
u ∼ N(0, σ2

u) and ϵt,d ∼ N(0, σ2
t,d).23

Consistent with our choice framework introduced in Section 2 (see Eq.(3) in par-

ticular), the time-varying conditional occupational choice probabilities are allowed to

depend arbitrarily on X∗
k and past outcomes and choices. We denote these as:

ht((1, Dt−1), Y t−1, X∗
k) = P (Dt = 1 | Y t−1, Dt−1, X∗

k).

This choice model is very flexible, and accommodates several different factors that

have been shown in the literature to influence occupational choices. These include,

among others, the individuals’ beliefs (correct or biased) about their potential wages

in each occupation, their preferences over non-pecuniary aspects of occupations, and

search or informational frictions. The inclusion of the latent term X∗
k in the choice

model also accommodates the realistic scenario in which the researcher does not

directly observe all the factors, such as unobserved worker-specific productivity, that
22In an appendix, we consider an extended specification of this model that includes college grad-

uation as a covariate in the wage equation. Our main findings remain qualitatively similar for this
extended specification. We refer the reader to Section B.5.2 for further details.

23We impose the normalization β1,0 = 0 in accordance with Assumption KL3.
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jointly affect potential wages and occupational choices. Importantly, we also allow

for a portion of individual productivity, X∗
u, to be unknown to the workers and thus

excluded from individual choices.

6.3 Estimation

We estimate the model by implementing the sieve MLE estimator described in Section

4, using a flexible logit model for the CCP function ht and the sieve space for the

distribution of X∗
k , FX∗

k
, described in Section 5.1 with a grid of 56 equally spaced

support points. We implement the estimator using our companion Python package

spmlex.

Specifically, we estimate the CCPs using the functional form

ht((1, Dt−1), Y t−1, X∗
k) = Λ(ϕt(X∗

k , Y t−1, Dt−1)) where Λ(u) = (1 − e−u)−1 and,24

ϕt(X∗
k , Y t−1, Dt−1) =

∑
dt−1∈{0,1}t−1

1(Dt−1 = dt−1)
(

π0,t,dt−1 +
t−1∑
s=1

πs,t,dt−1Ys + πt,t,dt−1X∗
k

)
.

This specification nests a standard choice model in which individuals make a choice

which depends on the expectation of the potential outcome for each choice and a

preference shock with an extreme value type 1 distribution. However, it is flexible

enough to allow the relative weights on X∗
k or on past outcomes to be different from

the coefficients derived from a standard Bayesian updating rule. In particular, it

allows for biased beliefs, as well as for non-pecuniary preferences or search frictions

that might be correlated with the expected outcomes.

Finally, even though these are not needed for identification, we impose some addi-

tional restrictions on the parameters of the outcome model to improve the precision of

our estimator. Namely, for the sake of parsimony, we restrict the idiosyncratic error

variances to be time-invariant and also assume that the factor loadings associated

with the know and unknown heterogeneity component have a linear time trend. We
24We are using the convention here that

∑v
u=1 fu = 0 for v < u.
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then estimate the model by implementing the profile likelihood procedure described

in Section 5.1.25

6.4 Model fit

We begin by discussing the model fit before turning to the estimation results. We

focus on the outcomes and report in Table 5 below the mean and autocovariance of

log wages across all three periods. Each panel displays these moments conditional on

the number of periods individuals work in the high-skill occupation (zero, one or two,

and three for Panels A, B and C, respectively), comparing the raw sample moments

estimated from the data (“Data”) with the moments implied by the model at the

estimated parameter values (“Est.”).26

A key takeaway from this table is that the estimated model is generally able to

match these moments well. In Panel A, we see that all the moments implied by the

model are within 0.01 of the raw sample moments for workers employed in the low-

skill occupation only. As shown in Panels B and C, there are slightly more differences

between the raw and simulated moments conditional on having worked in a high-

skill occupation. At any rate, these results indicate that, despite its parsimony, the

estimated potential outcome model is able to satisfactorily capture the mean and

dispersion of the realized log wages, along with their dependence over time.
25In order to check for local optima, we re-initialize the optimization algorithm at 20 different

starting values. These 20 starting values are chosen as follows. First, we draw 5,000 parameter
values from a grid centered at the estimated parameter values. Then, we bin parameter vectors by
the decile of their Euclidean distance from the estimated parameter values, and choose those with
the highest and lowest likelihood within each bin.

26The latter are calculated by simulating the model 10,0000 times at the estimated parameter
values, computing the empirical means and covariances of the simulated data.
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Y1 Y2 Y3
Est. Data Est. Data Est. Data

A. No period in high-skill occupation

Mean
2.45 2.45 2.51 2.52 2.57 2.57

Covariance Matrix
Y1 0.18 0.17 0.15 0.14 0.14 0.13
Y2 — — 0.18 0.19 0.17 0.17
Y3 — — — — 0.22 0.21

B. Some periods in high-skill occupation

Mean
2.58 2.58 2.65 2.68 2.82 2.80

Covariance Matrix
Y1 0.18 0.21 0.12 0.14 0.13 0.12
Y2 — — 0.18 0.20 0.15 0.13
Y3 — — — — 0.22 0.19

C. All periods in high-skill occupation

Mean
2.78 2.76 2.91 2.91 3.01 3.00

Covariance Matrix
Y1 0.24 0.26 0.16 0.16 0.16 0.17
Y2 — — 0.23 0.21 0.16 0.19
Y3 — — — — 0.25 0.26

Table 5: Model Fit.

6.5 Estimation results

We first discuss the determinants of sorting across occupations, with a focus on the

role played by latent productivity. We then discuss the importance of heterogeneity

versus uncertainty and its evolution over the course of the early career.
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Selection across occupations Occupational choices are determined conditional

on the information set of individuals, which includes latent individual productivity

X∗
k along with past choices and outcomes. We focus in the following on how the

distribution of X∗
k varies across occupational choice sequences.

−0.4 −0.2 0.0 0.2 0.4
λk

1,1X∗
k

0.00

0.25

0.50

0.75

1.00

F
λ

k 1,
1
X

∗ k

Periods in
high-skill
occupation

0
1-2
3

Figure 2: Selection into high-skill occupation. Note: Each line represents the estimated CDF
of λk

1,1X∗
k , conditional on the number of periods an individual works in the high-skill occupation.

Figure 2 reports the estimated distribution of (λk
1,1X

∗
k) conditional on the number

of periods an individual works in the high-skill occupation.27 A key takeaway is that

the distribution of X∗
k among individuals who always work in the high-skill occupa-

tion stochastically dominates the corresponding distributions among individuals who

work in a low-skill occupation in at least one of the periods. This points to positive

selection, whereby high-productivity individuals are substantially more likely to work
27Since X∗

k is a latent variable, it does not have natural units. We choose the scale to be units of
outcome (log wages) in the high-skill occupation, in period 1.
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in a high-skill occupation. In particular, 94% of individuals who work in a low-skill

occupation for at least one period have a realization of X∗
k below the mean, compared

to 11% of those who always work in a high-skill occupation.

Another pattern of note related to these results is that selection has an asymmet-

ric impact on the dispersion of wages conditional on occupational choice. Namely,

because the unconditional distribution of X∗
k exhibits greater dispersion in the upper

tail than in the lower tail, the selected distribution of X∗
k conditional on working in

a low-skill occupation is less dispersed than the distribution of X∗
k conditional on

working in a high-skill occupation. This highlights how the specific shape of the

distribution of X∗
k interacts with sorting across occupations to produce nuanced im-

plications about the dispersion of realized wages. The flexibility of our framework in

these two dimensions allows us to capture such patterns.

Decomposition of variance: Heterogeneity vs. uncertainty We now use

our framework to decompose the variance of future wages into components that are

forecastable and unforecastable by the agents at the time of their decisions.

Specifically, we focus on the discounted value of log wages of the two later periods

of our analysis (t ∈ {2, 3}). We denote by Y (d2) the discounted value of potential

log wages associated with occupation d2, namely Y (d2) = ∑3
t=2(1 − ρ)t−2Yt(d2), for

d2 ∈ {0, 1}, where we set the discount factor ρ = 0.05. We consider two alternative

decompositions. The first one is given by:

Var(Y (d2)) = Var(E(Y (d2)|X∗
k)) + E(Var(Y (d2)|X∗

k)). (8)

Equation (8) decomposes the variance of Y (d2) into a term that corresponds to

the component of Y (d2) that is forecastable by the agents before making their oc-

cupational choice (which we refer to as period 0), E(Y (d2) | X∗
k), and a term

that corresponds to the portion of Y (d2) that is unforecastable by the agents,

Y (d2) − E(Y (d2) | X∗
k). Using the terminology introduced earlier in the paper,
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the first and second terms of Equation (8) capture the heterogeneity and uncertainty

components of the variance decomposition, respectively.

The second decomposition we consider is given by:

Var(Y (d2)|D1 = d1) = Var(E(Y (d2)|X∗
k , Y1, D1 = d1)|D1 = d1)

+ E(Var(Y (d2)|X∗
k , Y1, D1 = d1)|D1 = d1). (9)

Equation (9) is a period 1 analogue of the period 0 decomposition (Eq. (8)). For

each period 1 choice (i.e., D1 = 0 and D1 = 1), it decomposes the variance of Y (d2)

into a term that is forecastable at the end of period 1, E(Y (d2)|X∗
k , Y1, D1), and a

part that is not.

Table 6 presents estimates of these variance decompositions for each stream of

potential wages (i.e., Y (1) and Y (0)). For each decomposition, we present estimates

of the total variance and the share of the total variance that is forecastable to the

agent. For example, for the period 0 decomposition (Eq. (8)), the total variance is

Var(Y (d2)) and the share forecastable is Var(E(Y (d2)|X∗
k ))

Var(Y (d2)) . Results are presented with

95% bootstrap confidence intervals.28

Three key results emerge from Table 6. First, a significantly larger share of vari-

ance in future earnings is initially unforecastable in the high-skill occupation com-

pared to the low-skill occupation. In the first row of Table 6, we see that only 12%

of the variance in potential future wages in the high-skill occupation is forecastable

compared to 43% in the low-skill occupation. In that sense, uncertainty appears

to play a particularly important role in accounting for the dispersion of discounted

future wages in high-skill occupations.

Second, much of this uncertainty is revealed as individuals accumulate work expe-

rience. This supports the idea that workers learn about their own productivity from
28In Monte Carlo experiments, bootstrap confidence intervals for the components of the variance

decompositions in a DGP with this sample size exhibited close to nominal coverage (see Section B.5.3
in the appendix). A formal investigation of bootstrap validity is left for future research.
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Y (1) Y (0)
Decomposition Total Variance Share Forecastable Total Variance Share Forecastable
Equation (8) 0.66 0.12 1.07 0.43

(0.52, 0.77) (0.07, 0.23) (0.73, 3.93) (0.20, 0.85)
Equation (9), d1 = 0 0.57 0.65 0.64 0.80

(0.44, 0.69) (0.59, 0.74) (0.56, 0.75) (0.76, 0.85)
Equation (9), d1 = 1 0.70 0.53 1.27 0.76

(0.57, 0.81) (0.41, 0.69) (0.80, 5.40) (0.64, 0.96)

Table 6: Forecastability of Discounted Future Earnings. Note: Each row reports the total
variance of discounted future potential log wages in high and low-skill occupations and the share
that is predictable at time t conditional on a sequence of prior choices. The first row is the variance
decomposition at period 0 before the first choices are made (i.e., equation (8)). The second and
third rows are the variance decomposition conditional on the first occupational choice (i.e., equation
(9) for d1 = 0 and d1 = 1, respectively). The total variance is the variance of Y (d2), conditional
having made the choice Dt, which can therefore be a selected sample. The share forecastable is the
ratio of the forecastable variance (including both the variance coming from X∗

k and the posterior
mean of X∗

u after observing Dt) to the total variance. Bootstrap 95% confidence intervals are given
in parentheses.

their wages. This finding is consistent with earlier evidence that points to the impor-

tance of ability learning in the workforce (Miller, 1984; Antonovics and Golan, 2012;

Pastorino, 2024). Also evident from Table 6 is that individuals appear to learn quite

quickly about their future potential wages. Namely, after one (two-year) period of

work in a high-skill occupation, the forecastable share of variance of future potential

earnings in high-skill occupations increases sharply from 12% to 53% (Rows 1 and 3 in

Table 6). Similarly, the forecastable share of variance of future potential wages in the

low-skill occupation increases from 43% to 80%, after one period of work in low-skill

occupations. Interestingly, there is a similarly large increase in the forecastable share

of variance of future potential wages after a period of work in the other occupation.

For example, after a period of work in high-skill occupations, the forecastable share

of variance in future potential wages in low-skill occupations increases from 43% to

76%.29

Finally, while the two key results highlighted above point to the importance of
29In Appendix B.5.2 we calculate these variance decompositions in an extended model that includes

college graduation as a covariate, and obtain qualitatively similar results.
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uncertainty and learning in this context, initially known latent productivity (X∗
k)

plays an important role as well. Beyond the fact that, initially, more than 40% of the

variance of future wages in low-skill occupations is driven by the known portion of

unobserved heterogeneity, this component is also central to understanding the over-

all dispersion of wages. In particular, in low-skill occupations, the total variance of

future potential wages decreases from 1.07 to 0.64 after the first period of work. Key

to this decrease in dispersion is selection based on the initially known heterogeneity

component X∗
k . As illustrated in Figure 2, the distribution of X∗

k conditional on work-

ing in a low-skill occupation has much less variance than the distribution conditional

on working in a high-skill occupation. Taken together, these findings highlight the

importance of flexibly accounting for initially known unobserved heterogeneity.

7 Conclusion

We provide new identification results for a general class of learning models that en-

compasses many of the set-ups that have been considered in the literature. We focus

on a context where the researcher has access to a short panel of choices and realized

outcomes only. As such, our approach is widely applicable, including in frequent

environments where one does not have access to elicited beliefs data or auxiliary

selection-free measurements. We show that the model is point-identified under two

alternative sets of conditions. Our first set of conditions apply to a set-up with both

known and unknown unobserved heterogeneity. We show that the model is identified

under the assumption that the idiosyncratic shocks from the outcome equations and

the unknown heterogeneity components are normally distributed, a very frequent re-

striction in empirical Bayesian learning models. We also show that normality can

be relaxed in the case of a pure learning model without known heterogeneity, while

preserving point-identification for this class of models.

We then derive a sieve maximum likelihood estimator for the model parameters
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and a particular class of functionals. The latter includes as special cases the pre-

dictable and unpredictable outcome variances, which can in turn be used to evaluate

the relative importance of uncertainty versus heterogeneity in life-cycle earnings vari-

ability (Cunha et al., 2005). Under appropriate regularity conditions, the resulting

estimators are consistent and asymptotically normal. Importantly, for practical pur-

poses, we devise a profile likelihood-based procedure that allows us to implement our

estimator at a modest computational cost.

We illustrate our approach with an application to the role of uncertainty and

learning in occupational choice, using data from the National Longitudinal Survey of

Youth 1997. Our results indicate that uncertainty plays a particularly important role

in accounting for the dispersion of future wages in high-skill occupations. Much of

the uncertainty is revealed as individuals accumulate more work experience, pointing

to the fact that ability learning plays an important role in this context.
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A Proofs for identification section

In this section, we let ϕ denote the standard normal p.d.f.

A.1 Proof of Lemma 1

Proof. We proceed inductively. First, by Assumption KL2 and the definition of

(µ1, Σ1), X∗
u | (X1, X∗

k) = (x1, x∗
k) ∼ N(µ1, Σ1). Second, for t ≥ 1 suppose

X∗
u | (Y t−1, Dt−1, X t, X∗

k) = (yt−1, dt−1, xt, x∗
k) ∼ N(µt, Σt). Then

fX∗
u|Y t,Dt,Xt+1,X∗

k
(x∗

u; yt, dt, xt+1, x∗
k)

∝(1) fX∗
u|Y t−1,Dt−1,Xt,X∗

k
(x∗

u; yt−1, dt−1, xt, x∗
k)

× fYt,Dt,Xt+1|Y t−1,Dt−1,Xt,X∗(yt, dt, xt+1; yt−1, dt−1, xt, x∗)

∝(2) fX∗
u|Y t−1,Dt−1,Xt,X∗

k
(x∗

u; yt−1, dt−1, xt, x∗
k)fYt(dt)|Xt,X∗(yt; xt, x∗)

∝(3) exp
(

−1
2(x∗

u − µt)⊺Σ−1
t (x∗

u − µt)
)

ϕ

(
yt − x⊺

t βt,dt − x∗
kλk

t,dt
− (x∗

u)⊺λu
t,dt

σt,dt

)

∝ exp
(

−1
2(x∗

u − µt)⊺Σ−1
t (x∗

u − µt)
)

× exp
(

−1
2

(
x∗

u − λu
t,dt

(
(λu

t,dt
)⊺λu

t,dt

)−1
(yt − x⊺

t βt,dt − x∗
kλk

t,dt
)
)⊺

×
λu

t,dt
(λu

t,dt
)⊺

σ2
t,dt

(
x∗

u − λu
t,dt

(
(λu

t,dt
)⊺λu

t,dt

)−1
(yt − x⊺

t βt,dt − x∗
kλk

t,dt
)
))

=(4) exp
(

−1
2(x∗

u − µt+1)⊺Σ−1
t+1(x∗

u − µt+1)
)

.

Display (1) follows from Bayes’ theorem. Display (2) holds since Assumption

KL1 has the following three implications: first Xt+1 ⊥⊥ X∗ | (Y t, Dt, X t); second

ϵt(dt) ⊥⊥ (Y t−1, Dt, X t, X∗) =⇒ ϵt(dt) ⊥⊥ (Y t−1, Dt, X t−1) | (Xt, X∗) =⇒ Yt(dt) ⊥⊥

(Y t−1, Dt, X t−1) | (Xt, X∗); third Dt ⊥⊥ X∗
u | (Y t−1, Dt−1, X t, X∗

k). Display (3) holds

from the induction assumption and Assumptions KL1 and KL2. Display (4) follows

from the definitions in Lemma 1.
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A.2 Proof of Theorem 1

The proof of Theorem 1 uses the following lemmas.

Lemma 2. Let Assumptions KL1 and KL2 hold. Then Yt conditional on

(Y t−1, Dt, X t, X∗
k) = (yt−1, dt, xt, x∗

k) is distributed

N
(
x⊺

t βt,dt + x∗
kλk

t,dt
+ µ⊺

t λu
t,dt

, (λu
t,dt

)⊺Σtλ
u
t,dt

+ σ2
t,dt

)
.

Proof. For t > 1,

fYt|Y t−1,Dt,Xt,X∗
k
(yt; yt−1, dt, xt, x∗

k)

=
∫

fYt(dt)|Y t−1,Dt,Xt,X∗(yt; yt−1, dt, xt, x∗)fX∗
u|Y t−1,Dt,Xt,X∗

k
(x∗

u; yt−1, dt, xt, x∗
k)dx∗

u

=(1)

∫
fYt(dt)|Xt,X∗(yt; xt, x∗)fX∗

u|Y t−1,Dt−1,Xt,X∗
k
(x∗

u; yt−1, dt−1, xt, x∗
k)dx∗

u

∝(2)

∫
ϕ

(
yt − x⊺

t βt,dt − x∗
kλk

t,dt
− (x∗

u)⊺λu
t,dt

σt,dt

)
exp

(
(x∗

u − µt)⊺Σ−1
t (x∗

u − µt)
)

dx∗
u

= ϕ

yt − x⊺
t βt,dt − x∗

kλk
t,dt

− µ⊺
t λu

t,dt√
(λu

t,dt
)⊺Σtλu

t,dt
+ σ2

t,dt



Display (1) holds because Assumption KL1 implies Yt(dt) ⊥⊥ (Y t−1, Dt, X t−1) |

(Xt, X∗) and Dt ⊥⊥ X∗
u | (Y t−1, Dt−1, X t, X∗

k). Display (2) holds because Assump-

tion KL1 and KL2 imply Lemma 1 and ϵt(d) | (Xt, X∗) ∼ N(0, σ2
t,d). A similar

argument applies for t = 1.

For the following results, it is useful to note that, for t ≥ 1,

Σt+1 =
(

Σ−1
u (x1) +

t∑
s=1

σ−2
s,ds

λu
s,ds

(λu
s,ds

)⊺
)−1

,

µt+1 =Σt+1

(
t∑

s=1
λu

s,ds

ys − x⊺
sβs,ds − x∗

kλk
s,ds

σ2
s,ds

)
.

Lemma 3. Let Assumptions KL1, KL2, KL4 (A,B,C) and KL5 (C) hold. Then, for

each (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)) there exists an affine function π such that, for

51



all yt ∈ S(Yt), FY t,Dt,Xt,X∗
k
(yt, dt, xt, π(x∗

k)) is identified.

Proof. Fix (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)). Since fYt|Y t−1,Dt,Xt(yt; yt−1, dt, xt) =

∫
fYt|Y t−1,Dt,Xt,X∗

k
(yt; yt−1, dt, xt, x∗

k)dFX∗
k

|Y t−1,Dt,Xt(x∗
k; yt−1, dt, xt),

Lemma 2 implies fYt|Y t−1,Dt,Xt(yt; yt−1, dt, xt) is a mixture of normal random variables.

To identify the component and mixture distributions, we apply Bruni and Koch (1985,

Theorem 3). First, for any t and (yt−1, dt, xt) ∈ S ((Y t−1, Dt, X t)), define Λ :=

{
x∗

k 7→
(
x⊺

t βt,dt + x∗
k(λk

t,dt
+ (µk

t )⊺λu
t,dt

) + (µu
t )⊺λu

t,dt
, (λu

t,dt
)⊺Σtλ

u
t,dt

+ σ2
t,dt

)
: θt ∈ Θt

}
,

where θt :=
{
{βs,ds , λk

s,ds
, λu

s,ds
, σ2

s,ds
: s = 1, . . . , t}, Σu(x1)

}
, Θt is the corresponding

subset of Θ, and µt = µk
t x∗

k + µu
t for all x∗

k. I.e., µk
1 = µu

1 = 0 and for t > 1,

µk
t := −Σt

t−1∑
s=1

λu
s,ds

λk
s,ds

σ2
s,ds

, µu
t := Σt

t−1∑
s=1

λu
s,ds

yis − x⊺
isβs,ds

σ2
s,ds

.

Under Assumptions KL4 (A,B,C) and KL5 (C), Λ ⊂ Λ4 where Λ4 is defined in Bruni

and Koch (1985, p. 1344). Thus Bruni and Koch (1985, Theorem 3) applies and

{
x⊺

t βt,dt + π(x∗
k)(λk

t,dt
+ (µk

t )⊺λu
t,dt

) + (µu
t )⊺λu

t,dt
, (λu

t,dt
)⊺Σtλ

u
t,dt

+ σ2
t,dt

}

and FX∗
k

|Y t−1,Dt,Xt(π(x∗
k); yt−1, dt, xt) are identified with π(x∗

k) = π0 + π1x
∗
k.

Lemma 4. Let Assumptions KL1, KL2, KL3 (A), KL4 and KL5 (C) hold. Then

S(X∗
k) is identified from FY1,D1,X1(y1, d1, x1).

Proof. In this proof, it will be useful to denote β1,d = (α1,d, γ⊺
1,d)⊺, where α1,d is the

coefficient on the constant term in X1.

For any x1 ∈ S(X1) and d ∈ S(D1), Lemma 3 implies

{
x⊺

1β1,d + (π0 + π1x
∗
k)λk

1,d, (λu
1,d)⊺Σ1(x1)λu

1,d + σ2
1,d, FX∗

k
|D1,X1(π0 + π1x

∗
k; d, x1)

}
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is identified. Set d ∈ S(D1) as in Assumption KL3 (A). We now show (π0, π1) =

(0, 1).30 By Assumption KL4 (D), ∃ x∗
k ̸= x̃∗

k such that dFX∗
k

|D1,X1(π0+π1x
∗
k; d, x1) > 0

and dFX∗
k

|D1,X1(π0 + π1x̃
∗
k; d, x1) > 0. Then by Assumption KL3 (A), 1 = λk

1,d =
(x⊺

1β1,d+(π0+π1x∗
k)λk

1,d)−(x⊺
1β1,d+(π0+π1x̃∗

k)λk
1,d)

x∗
k

−x̃∗
k

= π1. Thus x⊺
1β1,d+π0 is identified by (x⊺

1β1,d+

(π0 + x∗
k)) − x∗

k. If ∃ x1, x̃1 ∈ S(X1) such that their respective π0 differ, then S(X∗
k |

X1 = x1, D1 = d) ̸= S(X∗
k | X1 = x̃1, D1 = d), which contradicts Assumption KL4

(D). Therefore (α1,d + π0, γ⊺
1,d)⊺ = E[X1X

⊺
1 |D1 = d]−1E[X1 (X⊺

1 β1,d + π0) | D1 = d],

which exists by Assumption KL4 (E). Finally, by Assumption KL3 (A), 0 = α1,d =

(x⊺
1β1,d + π0) − x⊺

1(α1,d, γ⊺
1,d)⊺ = π0. To conclude, by Assumption KL4 (D), S(X∗

k) =

S(X∗
k | D1 = d1, X1 = x1).

Lemma 5. Under the assumptions in Theorem 1, FY T ,DT ,XT ,X∗
k
(yT , dT , xT , x∗

k) is

identified on its support.

Proof. For any t and (yt−1, dt, xt) ∈ S((Y t−1, Dt, X t)), it follows from Lemma 3 that

dFX∗
k

|Y t−1,Dt,Xt(π(x∗
k); yt−1, dt, xt) is identified. Then since S(X∗

k) is known by Lemma

4, Assumption KL4 (D) implies S(X∗
k) =

dF −1
X∗

k
|Y t−1,Dt,Xt(·; yt−1, dt, xt)[R∗

+] = (dFX∗
k

|Y t−1,Dt,Xt(·; yt−1, dt, xt) ◦ π)−1[R∗
+],

where R∗
+ = {x ∈ R : x > 0}. Then, since π is bijective, π[S(X∗

k)] = S(X∗
k). The only

affine functions that satisfy this identity are π(x∗
k) = x∗

k and π(x∗
k) = sup S(X∗

k) +

inf S(X∗
k) − x∗

k. To conclude the proof, we need to rule out the second function.

To proceed, let µk
t and µu

t be defined as in the proof to Lemma 3, and, for any

1 ≤ s < t, let µ̃t,s(dt−1) := Σt
λu

s,ds

σ2
s,ds

. Now note that by Lemma 3 and Assumption KL4,

for any t and dt ∈ S(Dt), jct(dt) = λk
t,dt

+ (µk
t )⊺λu

t,dt
with j ∈ {−1, 1} unknown and

ct(dt) := (x⊺
t βt,dt

+π(x∗
k)λk

t,dt
+µ⊺

t λu
t,dt

)−(x⊺
t βt,dt

+π(x̃∗
k)λk

t,dt
+µ⊺

t λu
t,dt

)
x∗

k
−x̃∗

k
known. In addition, for any

1 ≤ s < t, ∂
∂ys

(x⊺
t βt,dt + π(x∗

k)λk
t,dt

+ µ⊺
t λu

t,dt
) = (λu

t,dt
)⊺µ̃t,s(dt−1).

30Recall from Lemma 3 that the affine function π may depend on the history (yt−1, dt, xt). In this
lemma we show that the affine function is the identity for one particular choice history.
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The argument is inductive. First consider t = 1. Applying the above argument

to the sequences {d̃1, (d1, d2), (d̃1, d2)} for d1 ∈ S(D1) as in Assumption KL3 (A),

d̃1 ∈ S(D1) \ {d1}, and d2 ∈ S(D2), yields identification of j1c1(d̃1), jd2c2((d1, d2))

(λu
2,d2)⊺µ̃2,1(d1), j̃d2c2((d̃1, d2)), and (λu

2,d2)⊺µ̃2,1(d̃1) with (j1, j̃d2 , jd2) ∈ {−1, 1}3 un-

known. Since λk
1,d1 = 1, j1c1(d̃1) = λk

1,d̃1
, jd2c2((d1, d2)) = λk

2,d2 − (λu
2,d2)⊺µ̃2,1(d1), and

j̃d2c2((d̃1, d2)) = (λk
2,d2 − (λu

2,d2)⊺µ̃2,1(d̃1)λk
1,d̃1

), it must be that

(λu
2,d2)⊺µ̃2,1(d1) + jd2c2((d1, d2)) = (λu

2,d2)⊺µ̃2,1(d̃1)j1c1(d̃1) + j̃d2c2((d̃1, d2)). (10)

We use this identity to show (j1, j̃d2 , jd2) = (1, 1, 1). Suppose jd2 = 1. It is straight-

forward to show that Equation (10) implies:

(j1, j̃d2) = (−1, −1) =⇒ λk
2,d2 = 0,

(j1, j̃d2) = (1, −1) =⇒ λk
2,d2 − (λu

2,d2)⊺µ̃2,1(d̃1)λk
1,d̃1

= 0,

(j1, j̃d2) = (−1, 1) =⇒ (λu
2,d2)⊺µ̃2,1(d̃1)λk

1,d̃1
= 0,

which contradict Assumptions KL5 (B), (C) and (D), respectively. Now suppose

jd2 = −1, then

(j1, j̃d2) = (1, 1) =⇒ λk
2,d2 − (λu

2,d2)⊺µ̃2,1(d1)λk
1,d1 = 0,

(j1, j̃d2) = (−1, −1) =⇒ (λu
2,d2)⊺µ̃2,1(d1)λk

1,d1 = 0,

(j1, j̃d2) = (1, −1) =⇒ (λu
2,d2)⊺µ̃2,1(d̃1)λk

1,d̃1
− (λu

2,d2)⊺µ̃2,1(d1)λk
1,d1 = 0,

(j1, j̃d2) = (−1, 1) =⇒ λk
2,d2 − (λu

2,d2)⊺µ̃2,1(d̃1)λk
1,d̃1

− (λu
2,d2)⊺µ̃2,1(d1)λk

1,d1 = 0.

The first three implications contradict Assumptions KL5 (C), (D) and (A), respec-

tively. To conclude, for each d ∈ {d2,i, d̃2,i ∈ S(D2) : i = 1, 2, . . . , p} of Assumption

KL5 (E), by considering the sequences {(d1, d), (d̃1, d)}, jdc2((d1, d)) and j̃dc2((d̃1, d))

are identified with (jd, j̃d) ∈ {(−1, 1), (1, 1)}. Since λk
1,d̃1

̸= 0 by Assumption KL5

(B), for the sign of λk
1,d̃1

to be constant across sequences, we can rule out all signs ex-
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cept
(
j1, (jd2,i

, j̃d2,i
, jd̃2,i

, j̃d̃2,i
: i = 1, . . . , p)

)
∈ {(1, (1, 1, 1, 1)p) , (−1, (−1, 1, −1, 1)p)}.

If
(
j1, (jd2,i

, j̃d2,i
, jd̃2,i

, j̃d̃2,i
: i = 1, . . . , p)

)
= (−1, (−1, 1, −1, 1)p), then

0 = vec
(
λk

2,d2,1 , . . . , λk
2,d2,p

)
−
(
λu

2,d2,1 · · · λu
2,d2,p

)⊺ (
µ̃2,1(d̃1)λk

1,d̃1
+ µ̃2,1(d1)λk

1,d1

)
= vec

(
λk

2,d̃2,1
, . . . , λk

2,d̃2,p

)
−
(
λu

2,d̃2,1
· · · λu

2,d̃2,p

)⊺ (
µ̃2,1(d̃1)λk

1,d̃1
+ µ̃2,1(d1)λk

1,d1

)
,

which contradicts Assumption KL5 (E).

For the induction step, suppose π is identity for each history (ys−1, ds, xs),

s = 1, . . . , t − 1, and let dt, d̃t ∈ S(Dt) satisfy dt = d̃t and dt−1 ̸= d̃t−1. By

the preceding arguments, j1ct(dt), j2ct(d̃t) with (j1, j2) ∈ {−1, 1}2, and, for each

s < t, (λu
t,dt

)⊺µ̃t,s(dt−1) and (λu
t,dt

)⊺µ̃t,s(d̃t−1) are identified. Since λk
s,d is identified

for any s < t and d ∈ S(Ds), j1ct(dt) = λk
t,dt

− (λu
t,dt

)⊺∑t−1
s=1 µ̃t,s(dt−1)λk

s,ds
and

j2ct(d̃t) = λk
t,dt

− (λu
t,dt

)⊺∑t−1
s=1 µ̃t,s(dt−1)λk

s,d̃s
, it must be that

j1ct(dt) + (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(dt−1)λk
s,ds

= j2ct(d̃t) + (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(d̃t−1)λk
s,d̃s

. (11)

We use this identity to show (j1, j2) = (1, 1). Consider

(j1, j2) = (1, −1) =⇒
(

λk
t,dt

− (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(d̃t−1)λk
s,d̃s

)
= 0,

(j1, j2) = (−1, 1) =⇒
(

λk
t,dt

− (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(dt−1)λk
s,ds

)
= 0,

(j1, j2) = (−1, −1) =⇒ (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(dt−1)λk
s,ds

− (λu
t,dt

)⊺
t−1∑
s=1

µ̃t,s(d̃t−1)λk
s,d̃s

= 0,

which contradict Assumptions KL5 (C), (C) and (A), respectively.
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Proof of Theorem 1. By Lemma 5, fY T ,DT ,XT ,X∗
k
, and thus ht, is identified. First,

fY T ,DT ,XT ,X∗
k

(
yT , dT , xT , x∗

k

)
=
∫

fY T (dT ),DT ,XT ,X∗

(
yT , dT , xT , x∗

)
dx∗

u

=
∫

fYT (dT )|XT ,X∗ (yT ; xT , x∗) fDT |Y T −1,DT −1,XT ,X∗
k
(dT ; yT −1, dT −1, xT , x∗

k)

× fXT |Y T −1,DT −1,XT −1(xT ; yT −1, dT −1, xT −1) . . . fY1(d1)|X1,X∗ (y1; x1, x∗)

× fD1|X1,X∗
k
(d1; x1, x∗

k)fX∗
u|X1,X∗

k
(x∗

u; x1, x∗
k)fX1,X∗

k
(x1, x∗

k)dx∗
u.

This implies that on the support of fY T ,DT ,XT ,X∗
k
,

fY T ,DT ,XT ,X∗
k

(
yT , dT , xT , x∗

k

)
fD1,X1,X∗

k
(d1, x1, x∗

k)∏T
t=2 fDt,Xt|Y t−1,Dt−1,Xt−1,X∗

k
(dt, xt; yt−1, dt−1, xt−1, x∗

k)

=
∫ T∏

t=1
fYt(dt)|Xt,X∗ (yt; xt, x∗) fX∗

u|X∗
k

,X1(x∗
u; x∗

k, x1)dx∗
u.

The function is equal to the probability density function of a jointly normal random

variable with mean (
x⊺

t βt,dt + x∗
kλk

t,dt

)T

t=1
,

and covariance matrix

(λu
d)⊺Σu(x1)λu

d + diag
(
σ2

t,dt
: t = 1, . . . , T

)
,

where λu
d =

(
λu

1,d1 · · · λu
T,dT

)
. By Assumptions KL4 (D) and (E), the components

of the mean function are identified. The components of the covariance matrix are

identified under Assumptions KL3 (B) and KL5 (F).

A.3 Proof of Theorem 2

In this section denote L = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫

|m(a)|da < ∞}

and LA = {m : Rk → R : supa∈Rk |m(a)| < ∞,
∫

|m(a)|fA(a)da < ∞} for a random
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variable A with p.d.f. fA.

Proof. Let x ∈ S(X) and dT ∈ S(DT ) whose first p elements satisfy Assumption L3,

and define W1 = (Y1, . . . , Yp), W2 = Yp+1 and W3 = (Yp+2, . . . , YT ). Let L123 : LW3 →

L and L13 : LW3 → L be defined as [L123m](w1) =

∫ fY,D,X(y, d, x)
fD1,X1(d1, x1)

∏T
t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)

m(w3)dw3,

and [L13m](w1) =
∫
[L123m](w1)dw2. In addition, define

L1X∗ : L → L [L1X∗m](w1) =
∫ p∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)m(x∗)dx∗,

LX∗3 : LW3 → L [LX∗3m](x∗) =
∫ T∏

t=p+2
fYt(dt)|Xt,X∗(yt; xt, x∗)fX∗|X1(x∗; x1)m(w1)dw1,

DX∗ : LX∗ → LX∗ [DX∗m](x∗) = fYp+1(dp+1)|Xp+1,X∗(yp+1; xp+1, x∗)m(x∗).

The following derivation shows that L123 = L1X∗DX∗LX∗3. First,

fY,D,X(y, d, x) =
∫

fY,D,X,X∗(y, d, x, x∗)dx∗

=
∫

fYT (dT )|XT ,X∗(yT ; xT , x∗)fDT ,XT |Y T −1,DT −1,XT −1(dT , xT ; yT −1, dT −1, xT −1)

× fYT −1(dT −1)|XT −1,X∗(yT −1; xt−1, x∗) . . . fD1,X1(d1, x1)fX∗|X1(x∗; x1)dx∗.

Then, by Assumption L4 (A),

fY,D,X(y, d, x)
fD1,X1(d1, x1)

∏T
t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)

=
∫ T∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)fX∗|X1(x∗; x1)dx∗,
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and therefore it follows that

[L123m](w1) =
∫ (∫ T∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)fX∗|Xt(x∗; xt)dx∗

)
m(w3)dw3

=
∫ p+1∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)

∫ T∏
t=p+2

fYt(dt)|Xt,X∗(yt; xt, x∗)fX∗|Xt(x∗)m(w3)dw3

 dx∗

=
∫ p∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)

(
fYp+1(dp+1)|Xp+1,X∗(yp+1; xp+1, x∗)[LX∗3m](x∗)

)
dx∗

=
∫ ∫ p∏

t=1
fYt(dt)|Xt,X∗(yt; xt, x∗)[DX∗LX∗3m](x∗)dx∗

=[L1X∗DX∗LX∗3m](w1),

and L123 = L1X∗DX∗LX∗3. Similarly, L13 = L1X∗LX∗3.

From here, Assumptions L1, L2, L3, L4 (B), and L5 imply the arguments of The-

orem 1 Freyberger (2018) apply, so that λt,dt , fYt(dt)|Xt,X∗(·; xt, ·) and fX∗|X1(·; x1) are

identified for each t for the given (dt, x).31 Given identification of fYt(dt)|Xt,X∗(·; xt, ·)

for each xt ∈ S(Xt) and λt,dt , Assumption L4 (C) implies identification of βt,dt and

thus fϵt(dt).

Next, given an arbitrary t and dt, define d̃ by replacing the t-th element of d with

dt. Then consider a permutation (1, 2, . . . , T ) 7→ (t1, t2, . . . , tT ) such that t 7→ t1 and

define W̃1 = (Yt1 , Yt2 , . . . , Ytp), W̃2 = (Ytp+1 , Ytp+1 , . . . , YtT
),

L̃2X∗ : L → L [L̃2X∗m](w̃2) =
∫ T∏

i=p+1
fYti (dti )|Xti ,X∗(yti

; xti
, x∗)fX∗|X1(x∗; x1)m(x∗)dx∗,

L̃X∗1 : LW̃1
→ L [L̃X∗1m](x∗) =

∫ p∏
i=1

fYti (dti )|Xti ,X∗(yti
; xti

, x∗)m(w̃1)dw̃1,

31The listed assumptions imply the assumptions of Freyberger (2018, Theorem 1) with the primary
exception of Assumption L1 that differs from Assumption N5 in Freyberger (2018) by allowing period
t variables to impact the evolution of period t′ covariates for t′ > t. However, since Assumption
L1 implies fYt(dt)|Xt,X∗(y; x, x∗) = fϵt(dt)(y − x⊺βt,dt

− (x∗)⊺λt), Freyberger (2018, Lemma 1) and
D’Haultfoeuille (2011) can be applied with minor modifications.
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and L̃21 : LW̃1
→ L as

[L̃21m](w̃2) =
∫ fY,D,X(y, d, x)

fD1,X1(d1, x1)
∏T

t=2 fDt,Xt|Y t−1,Dt−1,Xt−1(dt, xt; yt−1, dt−1, xt−1)
m(w̃1)dw̃1.

As before, L̃21 = L̃2X∗L̃X∗1. Since L̃2X∗ and L̃21 are identified and injective, L̃X∗1 is

identified by L̃−1
2X∗L̃21 = L̃X∗1 and thus βt,dt , λt,dt , fϵ(dt).

59



B Online Appendix

B.1 Proof of Corollary 1

In this proof, we denote βt,d = (αt,d, γ⊺
t,d)⊺, where αt,d is the coefficient on the constant

term in Xt. Fix dp as in the statement and define λu =
(
λu

1,d1 · · · λu
p,dp

)
, X̃∗

u =

λ⊺
u (X∗

u − µu), ϵ̃t(d) = ϵt(d) − ct,d, X̃∗
k = b + λk

1,d1X∗
k where b = α1,d1 + µ⊺

uλu
1,d1 + c1,d1 .

Finally, define λ̃k
t,dt

= (λk
1,d1)−1λk

t,dt
, λ̃u

t,dt
= λ−1

u λu
t,dt

, and α̃t,dt = αt,dt −λ̃k
t,dt

b+µ⊺
uλu

t,dt
+

ct,dt . We then have that

Yt(dt) = X⊺
t

(
α̃t,dt , γ⊺

t,dt

)⊺
+ (X̃∗

u)⊺λ̃u
t,dt

+ X̃∗
k λ̃k

t,dt
+ ϵ̃t(dt),

E[ϵ̃t(dt)] = 0 and E[X̃∗
u | X1 = x, X∗

k = x∗
k] = 0 so that the reparameterized model

satisfies Assumption KL2 (with Σ̃u(x1) = λ⊺
uΣu(x1)λu). Also, λ̃k

1,d1 = 1, α̃1,d1 = 0 and(
λ̃u

1,d1 · · · λ̃u
p,dp

)
= Ip×p so the reparameterized model satisfies Assumption KL3. By

Theorem 1, θ̃ =
{
{α̃t,dt , γt,dt , λ̃k

t,dt
, λ̃u

t,dt
, σ2

t,dt
, gt, h̃t}T

t=1, Σ̃u, FX̃∗
k

X1

}
is identified, where

h̃t and FX̃∗
k

X1
are the CCPs and distribution of (X̃∗

k , X1), respectively. This, in turn,

implies the identification of the distribution of Cj
t,dt

for j = k, u. Finally,

x⊺
(
α̃t,dt , γ⊺

t,dt

)⊺
+ Qα[C̃k

t,dt
+ C̃u

t,dt
+ ϵ̃t(dt)]

=x⊺βt,dt − λ̃k
t,dt

b + µ⊺
uλu

t,dt
+ ct,dt + Qα[C̃k

t,dt
+ C̃u

t,dt
+ ϵ̃t(dt)]

=x⊺βt,dt − λ̃k
t,dt

b + µ⊺
uλu

t,dt
+ ct,dt + Qα[Ck

t,dt
+ λ̃k

t,dt
b + Cu

t,dt
− µ⊺

uλu
t,dt

+ ϵt(dt) − ct,dt ]

=x⊺βt,dt + Qα[Ck
t,dt

+ Cu
t,dt

+ ϵt(dt)].

B.2 Variance decompositions

As discussed in Section 2, an important class of parameters in learning models are

terms that decompose the variance of potential outcomes into components that are

predictable and unpredictable given the agents’ information. These parameters can

be expressed as functionals of the finite- and infinite-dimensional components of the
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model parameters. Section 4 provides general inference results, which can be applied

to a plug-in sieve MLE estimator of these parameters. In this section, we define these

parameters and discuss their relevance to quantifying the importance of uncertainty

and learning.

To define this class of parameters, consider a weighted sum of potential outcomes,

Y (ωT , dT ) = ∑
t ωtYt(dt) for a sequence of choices dT and weights, ωT . Cunha and

Heckman (2016) consider a special case of this parameter in the context of an educa-

tional choice model. In particular, they consider the present value of lifetime earnings,

which is defined as Y (ωT , dT ), with ωt = 1(t ≥ t0)(1 − ρ)t0−t, for some discount rate

0 ≤ ρ < 1.

Next, define the agent’s information set as It = {Y t−1, Dt−1, X t, X∗
k} for t > 1

and I1 = {X1, X∗
k}. Restricting attention to weighted sums where ωs = 0 for s < t,

the variance of Y (ωT , dT ) conditional on It can be understood as the variance that is

due to the agent’s uncertainty over Y (ωT , dT ) given their information up to period t.

We refer to this as the posterior variance, because this is derived from the posterior

distribution of X∗
u after performing a Bayesian update with the information in It.

In its full generality, the model allows for endogeneity in Xt as the transition

probabilities depend on past choices and outcomes. Therefore, the posterior variance

of Y (ωT , dT ) includes terms that reflects uncertainty about the future realizations of

Xt conditional on X∗
k . In order to focus on uncertainty over X∗, we abstract from

this by assuming that the covariates are not time varying, which we denote as X.32

In particular, with this restriction on the covariates, Lemma 1 implies that the

posterior variance, which we denote as V u
t (X, Dt−1; ωT , dT ) := Var

(
Y (ωT , dT ) | It

)
,

32When the covariates are time varying and transitions depend on (Dt−t, Y t−1), the posterior
variance will include the covariances between future realizations of Xt and between Xt and X∗

u

conditional on the information set. These terms reflect another channel through which unobserved
heterogeneity is related to the agents’ uncertainty. In this case, the plug-in estimator of the posterior
variance will involve other infinite dimension parameters of the model (e.g., fDt|Xt,Y t−1,Dt−1,X∗

k
).
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has the form

V u
t (X, Dt−1; ωT , dT ) :=

∑
t1,t2≥t

ωt1ωt2(λu
t1,dt1

)⊺Σtλ
u
t2,dt2

+
∑
t1≥t

ω2
t1σ2

t1,dt1

for t > 1 where Σt is the posterior variance of X∗
u as written in Lemma 1.33 When

t = 1, Dt−1 is empty so we write V u
1 (X; ωT , dT ) := Var

(
Y (ωT , dT ) | I1

)
.

At t = 1, the following variance decomposition provides a natural way to quantify

the relative importance of uncertainty in potential outcomes,

Var(Y (ωT , dT ) | X) = V u
1 (X; ωT , dT ) +

∑
t1,t2≥1

ωt1ωt2λk
t1,dt1

λk
t2,dt2

Var(X∗
k | X) (12)

This corresponds to the decomposition in Cunha and Heckman (2016) and in that

context, has the simple interpretation that the first term is the portion of variance in

the lifetime earnings that is due to uncertainty and the second part is due to privately

known heterogeneity.
For t > 1, the analysis is more complicated. For any t > 1, V u

t (X, Dt−1; ωT , dT ) <

V u
1 (X; ωT , dT ), because the realized outcomes are informative about X∗

u. Agents
also select dt−1 based on their private information (X∗

k), which induces a selected
distribution of X∗

k (i.e., conditional on (X, Y t−1, Dt−1) = (x, yt−1, dt−1)). Given these
contributions of learning and selection to variance of Y (ωT , dT ), there are several
possible ways to quantify the relative importance of uncertainty. The following are
three alternative decompositions that express total variance (conditional on some
subset of observables) as the sum of a term that reflects uncertainty and another

33Note that Σt depends on certain components of It.
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reflecting variance induced by private information (X∗
k),

Var(Y (ωT , dT ) | Dt−1 = dt−1, X = x)

= V u
t (dt−1, x; ωT , dT )

+ Var(E(Y (ωT , dT ) | It) | Dt−1 = dt−1, X = x), (13)

Var(Y (ωT , dT ) | X = x)

= E(V u
t (Dt−1, x; ωT , dT )) + Var(E(Y (ωT , dT ) | It) | X = x), (14)

Var(Y (ωT , dT ) | X = x)

= V u
t (dt−1, x; ωT , dT ) + Ṽar(Ẽ(Y (ωT , dT ) | It) | X = x). (15)

Decomposition (13) compares the variance of uncertainty to the total variance con-

ditional on choosing the sequence dt. These are natural parameters to consider, but

the ratio, V u
t (dt, x; ωT , dT )/Var(Y (ωT , dT ) | Dt = dt, X = x) reflects both the effect

of learning in the numerator and selection in the denominator.

Decomposition (14) compares the total variance Y (ωT , dT ) to the expected poste-

rior variance of Y (ωT , dT ) after t periods. The expectation of V u(Dt, x; ωT , dT ) can be

understood as the uncertainty that a randomly chosen person would have in period

t after observing their outcomes and endogenously choosing actions based on that

information and their private information.

Finally, decomposition (15) is based on a counterfactual distribution. Here, Ẽ and

Ṽar represent the expectation and variance in a counterfactual distribution where Dt

is assigned randomly. This decomposition compares the variance in Y (ωT , dT ) which

is due to uncertainty vs. known heterogeneity among people randomly assigned to

the choice sequence dt.
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B.3 Appendix to estimation section

B.3.1 Consistency of sieve MLE

In this section we introduce conditions for the sieve maximum likelihood estimator

defined in Equation (6) to be consistent for the true model parameter θ∗ ∈ Θ. We

begin by imposing smoothness restrictions on the unknown functions. To do so, given

γ > 0, ω ≥ 0 and X a subset of a Euclidean space, let Λγ(X ) denote a Hölder space

equipped with the Hölder norm ∥h∥Λγ (that is, for k the largest integer smaller than γ,

Λγ(X ) is a space of functions h : X → R having at least k continuous derivatives, the

kth of which is Hölder continuous with exponent γ−k). Then define a weighted Hölder

ball with radius c ∈ (0, ∞) as Λγ,ω
c (X ) = {h ∈ Λγ(X ) : ∥h(·)[1 + ∥ · ∥2

E]−ω∥Λγ ≤ c},

where ∥ · ∥E is the Euclidean norm.

Without loss of generality, suppose that the CCP function ht(dt, xt, yt−1, x∗
k) de-

pends on (dt, xt, yt−1) via some measurable vector-valued function (dt, xt, yt−1) 7→ jt

which is known up to
(
(βs, λs, σs)T

s=1, Σu(x1)
)
. This is without loss of generality

since the function may be identity. Other examples include rational learning where

jt ∈ Rp(p+3)/2+2 includes sufficient statistics for X∗
u (i.e, the mean and variance), and

a sort of myopia where jt ∈ R3+2 depends on the history only via the previous period

(dt−1, xt−1, yt−1). Write Jt = (J⊺
1,t, J⊺

2,t)⊺ and Xt = (X⊺
1,t, X⊺

2,t)⊺ where J1,t, X1,t are

continuous random variables and J2,t, X2,t are random variables with finite support

and, with some abuse of notation, redefine the CCP function as ht(j1,t, j2,t, x∗
k). Define

Ht = Λγ1,ω1
c (S(X∗

k) × S(J1,t)) ,

F = {f : S(X∗
k , X1,1) → R

∣∣∣F (·, x1) is càdlàg , F (x∗
k, ·) ∈ Λγ2,ω2

c (S(X1,1))}

Gt = Λγ3,ω3
c (S(X1,t+1) × S(Yt) × S(X1,t)) .

The use of a weighted Holder space enables us to allow the support of the con-

tinuous random variables to be unbounded. Although not required for consistency,

Assumption E6 places restrictions on (γ1, γ2, γ3), the parameters that govern the
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smoothness of the function classes. Next, to simplify notation we make the following

assumption which strengthens Assumption KL1:

Assumption E1. For any t, FXt+1|Y t,Dt,Xt = FXt+1|Yt,Dt,Xt, and FX∗
U |X1 = FX∗

U
.

Define k1,t = |S(J2,t)|, k2 = |S(X2,1)|, and k3,t = |S((X2,t+1, Dt, X2,t))|. Notice

that Θ = Θ1 × Hk1,1
1 × · · · × Hk1,T

T × Fk2 × Gk3,1
1 × · · · × Gk3,T −1

T −1 and we denote an

element of Θ as θ = (θ1, h1, . . . , hT , fX∗ , g1, . . . , gT −1). Define the norms on Hk1,t

t , Fk2

and Gk3,t

t as follows:

∥ht∥∞,ω1 = sup
j2∈S(J2,t)

∥ht(·, j2, ·)[1 + ∥ · ∥2
E]−ω1∥∞,

∥FX∗∥∞,ω2 = sup
x2∈S(X2,1)

∥FX∗ (·, (·, x2)) [1 + ∥ · ∥2
E]−ω2∥∞,

∥gt∥∞,ω3 = sup
(x′

2,d,x2)∈S(X2,t+1,Dt,X2,t)
∥gt ((·, x′

2); ·, d, (·, x2)) [1 + ∥ · ∥2
E]−ω3∥∞,

where ∥ · ∥∞ is the uniform norm. Finally, define a metric d on Θ as

d(θ, θ̃) = ∥θ1 − θ̃1∥E +
T∑

t=1
∥ht − h̃t∥∞,ω̃1 + ∥FX∗ − F̃X∗∥∞,ω̃2 +

T −1∑
t=1

∥gt − g̃t∥∞,ω̃3 ,

for scalars ω̃1, ω̃2, ω̃3. Now, let Hn,t, Fn and Gn,t be sieve spaces for Ht, F and Gt

respectively. Then Θn = Θ1 × Hk1,1
n,1 × . . . Hk1,T

n,T × Fk2
n × Gk3,1

n,1 × · · · × Gk3,T −1
n,T −1 and

1
n

n∑
i=1

ℓ(wi; θ̂) ≥ sup
θ∈Θn

1
n

n∑
i=1

ℓ(wi; θ) − op(1/n).

Assumption E2. θ∗ ∈ Θ and (Θ, d) is compact.

Assumption E3. For each n ≥ 1, Θn ⊆ Θn+1 ⊆ Θ and Θn is compact under d. As

n → ∞, minθ∈Θn d(θ, θ0) → 0.

Assumption E4. E[ℓ(W, θ)] is continuous at θ = θ∗

Assumption E5.
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(i) For each n, E[supθ∈Θn
|ℓ(W, θ)|] is finite.

(ii) There is a non-zero s < ∞ and integrable random variable g(W ) such that

∀ θ, θ̃ ∈ Θn, d(θ, θ̃) < δ =⇒ |ℓ(W, θ) − ℓ(W, θ̃)| ≤ δsg(W ).

(iii) For all δ > 0, log N(δ1/s, Θn, d) = o(n).

The identification assumptions imply θ∗ = arg maxθ∈Θ E[ℓ(W, θ)] and for all θ ∈

Θ \ {θ∗}, E[ℓ(W, θ∗)] ≥ E[ℓ(W, θ)]. By assuming compactness of Θ, we ensure that

θ∗ is a well-separated maximum of E[ℓ(W, θ)]. Assumption E3 requires the sieve

space Θn to be a good approximation to Θ. Assumption E4 requires the population

criterion to be continuous. Finally, Assumption E5 is similar to Condition 3.5M in

Chen (2007).

Theorem 3 follows from Remark 3.3 in Chen (2007), so its proof is omitted.

B.3.2 Plug-in sieve estimator

We first assume a linear sieve space and limit its complexity.

Assumption E6. (i) Hn,t, Fn and Gn,t are linear sieves of length

MHn,t, MF n and MGn,t respectively, where MHn,t = O(n
1

2γ1/(1+dim(J1,t))+1 ),

MF n = O(n
1

2γ2/(1+dim(X1,1))+1 ), and MGn,t = O(n
1

2γ3/(dim(X1,t+1)+1+dim(X1,t))+1 ). (ii)

min
{

γ1
1+dim(J1,t) ,

γ2
1+dim(X1,1) ,

γ3
dim(X1,t+1)+1+dim(X1,t)

}
> 1/2.

Assumption E6 controls the rate at which the number of sieve terms grow. To

achieve this, part (i) of Assumption E6 requires that the nonparametric functions

have adequate smoothness. In applied work, one may focus on discrete Xt and posit

a parametric model for ht, in which case the above restrictions are milder.

The next assumption strengthens E3 and ensures that the number of sieve terms

grows sufficiently quickly.

Assumption E7. minθ∈Θn d(θ, θ∗) = o(n−1/4).
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Assume ℓ is pathwise differentiable and define an inner product on Θ as

⟨θ1 − θ∗, θ2 − θ∗⟩ = − ∂2

∂τ1∂τ2
E [ℓ (W, θ∗ + τ1 (θ1 − θ∗) +τ2 (θ2 − θ∗))] |τ1=0,τ2=0 ,

(16)

for θ1, θ2 ∈ Θ. The corresponding norm for θ ∈ Θ is

∥θ − θ∗∥2 := − ∂2

∂τ 2 E [ℓ (W, θ∗ + τ (θ − θ∗))]
∣∣∣∣∣
τ=0

. (17)

Assumption E8. There is C1 > 0 such that for all small ε > 0

sup
{θ∈Θn:∥θ−θ∗∥⩽ε}

Var (ℓ (W, θ) − ℓ (W, θ∗)) ⩽ C1ε
2

Assumption E9. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{θ∈Θn:∥θ−θ∗∥⩽δ}

|ℓ (W, θ) − ℓ (W, θ∗)| ⩽ δsU (W )

with E ([U (W )]γ) ⩽ C2 for some γ ⩾ 2.

The following theorem is now a consequence of Theorem 3.2 in Chen (2007) or

Theorem 1 in Shen and Wong (1994).

Theorem 5. Let (Yi,t, Di,t, Xi,t : t = 1, . . . , T )n
i=1 be i.i.d. data where T ≥ 2p + 1 and

Assumptions KL1-KL5 and Assumptions E1-E9 hold. Then ∥θ̂ − θ∗∥ = op(n−1/4).

Given the preceding result, we focus on a a shrinking neighborhood of θ∗. Let

N0 :=
{
θ ∈ Θ: ∥θ − θ∗∥ = o(n−1/4), d(θ, θ∗) = o(1)

}
,

and Nn := N0 ∩Θn. Define θ∗
n = argminθ∈Nn

∥θ − θ∗∥. Let V denote the closed (under

∥ · ∥) linear span of N0 centered at θ∗, and define Vn as the analogous closure of Nn.

Then we define a linear approximation to ℓ(W, θ) − ℓ(W, θ∗) as the directional
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derivative of ℓ at (W, θ∗) in the direction (θ − θ∗):

∂ℓ (W, θ∗)
∂θ

[θ − θ∗] := ∂ℓ (W, θ∗ + τ(θ − θ∗))
∂τ

∣∣∣∣∣
τ=0

.

Likewise, let ∂f(θ∗)
∂θ

[v] = ∂f(θ∗+τv)
∂τ

∣∣∣
τ=0

for any v ∈ V .

Assumption E10. Let T be an epsilon ball about 0 ∈ R. (i) For all θ ∈ N0

and W , the derivative ∂ℓ (W, θ∗ + τ(θ − θ∗)) /∂τ exists for all τ ∈ T ; (ii) for all

θ ∈ N0, E [ℓ (W, θ∗ + τ (θ − θ∗))] is finite for each τ ∈ T ; (iii) for all θ ∈ N0,

E
[
supτ∈T

∣∣∣ ∂
∂τ

ℓ (W, θ∗ + τ [θ − θ∗])
∣∣∣] < ∞.

Assumption E10 provides sufficient conditions for the set V to be a Hilbert space

under ⟨·, ·⟩.34 Define v∗
n to be the Riesz representer of ∂f(θ∗)

∂θ
[·] on Vn, which exists

under Assumption E11.

Assumption E11. (i) v 7→ ∂f(θ∗)
∂θ

[v] is a linear functional. (ii) If limn→∞ ∥v∗
n∥ is

finite then ∥v∗
n − v∗∥ × ∥θ∗

n − θ∗∥ = o(n−1/2) where v∗ is the limit of v∗
n. Otherwise∣∣∣∂f(θ∗)

∂θ
[θ∗

n − θ∗]
∣∣∣/∥v∗

n∥ = o(n−1/2). (iii) supθ∈N0

∣∣∣f(θ)−f(θ∗)− ∂f(θ∗)
∂θ

[θ−θ∗]
∣∣∣

∥v∗
n∥ = o(n−1/2).

Assumption E11 imposes some restrictions on the functional of interest θ 7→ f(θ).

Part (i) imposes that the directional derivative is a linear functional, a mild condition

that is satisfied by our examples in Section 4. Part (ii) is a restriction on the growth

rate of the dimension of the sieve space. Part (iii) restricts the linear approximation

error of f(·) in a neighborhood of θ∗, for which sufficient conditions could be stated

in terms of the smoothness of f(·) and the growth rate of the dimension of the sieve

space. See Chen et al. (2014) for further discussion.

Let u∗
n := v∗

n

∥v∗
n∥ , εn = o

(
n−1/2

)
and µn{g(W )} := n−1∑n

i=1 [g (Wi) − E[g (Wi)]]

denote the centered empirical process indexed by the function g.

34See Chen et al. (2014, p. 642).
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Assumption E12. µn{∂ℓ(W ,θ∗)
∂θ

[v]} is linear in v ∈ V.

sup
θ∈Nn

µn

{
ℓ (W , θ ± εnu∗

n) − ℓ(W , θ) − ∂ℓ (W , θ∗)
∂θ

[±εnu∗
n]
}

= Op

(
ε2

n

)
.

For some positive sequence ηn → 0,

sup
θ∈Nn

∣∣∣∣∣E [ℓ(W, θ) − ℓ (W, θ ± εnu∗
n)] − ∥θ ± εnu∗

n − θ∗∥2 − ∥θ − θ∗∥2

2 (1 + O (ηn))
∣∣∣∣∣ = O

(
ε2

n

)
.

Assumption E13.
√

nµn

{
∂ℓ(W ,θ∗)

∂θ
[u∗

n]
}

→d N(0, 1)

Theorem 4 is a direct application of Lemma 2.1 in Chen and Liao (2014) so its

proof is omitted.

B.4 Appendix to implementation and Monte Carlo simula-

tions section

B.4.1 Implicit differentiation

For implementing the estimator, it can be useful to input the gradient of the objective

function. In this section, we show how our profiling approach and choice of sieve space

simplify this task. Recall that in Section 5.1, the profile log likelihood function with

our proposed sieve space for FX∗
k

is

ℓp(θc) :=
n∑

i=1
log

qn∑
s=1

ωs(θc) ℓc(wi, x̄∗
n,s; θc),

where ω(θc) = arg maxω∈∆(qn)
∑n

i=1 log∑qn
s=1 ωs ℓc(wi, x̄∗

n,s; θc) is the solution to the

inner problem for a fixed θc. Given an analytical expression for ℓc(wi, x∗
k; θc)35, the

challenge of computing the gradient of ℓp(θc) reduces to finding the Jacobian of ω(θc)

(i.e., ∂
∂(θc)⊺ ω(θc)), which is defined implicitly by the Karush-Kuhn-Tucker (KKT)

35Given the analytical expression for ℓc, we use the software Google JAX to compute the derivative
via autodifferention.
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conditions of the inner optimization problem. In the following, we derive an analytical

expression for ∂
∂(θc)⊺ ω(θc) in terms of ℓc(wi, x∗

k; θc), ∂
∂θc ℓc(wi, x∗

k; θc), and ω(θc).

Proposition 3.3 in Kim et al. (2020) shows that ω(θc) can be equivalently expressed

as arg maxω≥0{
∑n

i=1 log∑qn
s=1 ωs ℓc(wi, x̄∗

n,s; θc)+∑qn
s=1 ωs}, where ω ≥ 0 means ωs ≥ 0

for all s = 1, . . . , qn. Letting λ ∈ Rqn be the dual parameter corresponding to the

constraint ω ≥ 0, and ℓc
i(θc) := (ℓc(wi, x̄∗

n,s; θc) : s = 1, . . . , qn), the equality constraints

in the KKT conditions of this problem are,

02qn×1 =

∑n
i=1

1
ω⊺ℓc

i (θc)ℓ
c
i(θc) + 1qn + λ

λ ◦ ω

 ,

where ◦ is the Hadamard product. By definition, these constraints are identically zero

for all θc, so under an implicit function theorem, d
d(θc)⊺ ω(θc) = −G1(θc)−1G2(θc),36

where

G1(θc) =

∑n
i=1

1
(ω(θc)⊺ℓc

i (θc))2 ℓc
i(θc)(ℓc

i(θc)⊺ Iqn×qn

diag(λ(θc)) diag(ω(θc))

 ,

and

G2(θc) =


∑n

i=1

(
∂

∂(θc)⊺ ℓc
i (θc)

ω(θc)⊺ℓc
i (θc) −

ℓc
i (θc)ω(θc)⊺ ∂

∂(θc)⊺ ℓc
i (θc)

(ω(θc)⊺ℓc
i (θc))2

)
0qn×dim(θc)



Finally, note that the KKT conditions imply that λ(θc) = −1qn −∑n
i=1

ℓc
i (θc)

ω(θc)⊺ℓc
i (θc) .

B.4.2 Details on DGP

This section gives further details on the DGP used for Monte Carlo simulations dis-

cussed in Section 5.2. The values of the finite parameters used in the DGP are given

in the table below.
36G1 and G2 are the partial derivatives of right hand side of the previous equation with respect

to (ω, λ) and θc respectively, evaluated at ω(θc) and λ(θc).
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α1,1 = 0 γ
(1)
1,1 = −0.5 γ

(2)
1,1 = −0.58 λu

1,1 = 1 λk
1,1 = 0.3

α2,1 = 0.1 γ
(1)
2,1 = −0.8 γ

(2)
2,1 = −0.83 λu

2,1 = 1.05 λk
2,1 = 0.35

α3,1 = 0.2 γ
(1)
3,1 = 0.12 γ

(2)
3,1 = −0.83 λu

3,1 = 1.01 λk
3,1 = 0.33

σ2
1 = 0.5

α1,2 = −0.1 γ
(1)
1,2 = 0.13 γ

(2)
1,2 = 0.71 λu

1,2 = 0.4 λk
1,2 = 1

α2,2 = −0.22 γ
(1)
2,2 = 0.89 γ

(2)
2,2 = −0.36 λu

2,2 = 0.36 λk
2,2 = 1.05

α3,2 = −0.33 γ
(1)
3,2 = 0.32 γ

(2)
3,2 = −0.36 λu

3,2 = 0.44 λk
3,2 = 1.02

σ2
2 = 0.7

σ2
u = 1.5 ρ = 2.0 κ = 0.5

Table 7: Finite parameter values

B.4.3 DGP with risk aversion

In this section, we present results from an alternative DGP in which agents maxi-

mize their expected utility in each period which incorporates risk aversion, through

constant relative risk aversion (CRRA) preferences, and subjective (possibly biased)

beliefs. The expected utility that individual i derives from choice d in period t is

given by:

vi,t(d) := Ei,t

(
Yi,t(d)1−χ

1 − χ

)
+ ηi,t(d)

where Ei,t denotes the expectation under individual i’s subjective beliefs over X∗
u,i,

given the information up to period t. ηi,t(d) are independent preference shocks, which

are supposed to follow an Extreme Value Type 1 distribution.

We assume that individuals’ subjective beliefs over X∗
u,i in time t are distributed

N(µi,t + δX∗
k,i, Σi,t) where µi,t, Σi,t are the correct posterior mean and variance of X∗

u,i

given the information up to period t − 1. This subjective belief process allows agents

to have biased beliefs that can be correlated with the known part of their unobserved

heterogeneity, X∗
k,i.
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Under this specification, the expected utility has the following analytical form,

vi,t(d) =
exp

(
µi,t(d)(1 − χ) + 1

2σi,t(d)(1 − χ)2
)

1 − χ
+ ηi,t(d) (18)

where µi,t(d) (σi,t(d)) denote the subjective mean (variance) of log(Yi,t(d)).

A naive approach to estimating vi,t(d) nonparametrically would be to use a tensor

product of polynomials (X∗
k , X, Y t−1, Dt−1) as the sieve space. That is, for a univariate

random variable X, let Pq(X) = sp({1, X, . . . , Xq}). Assume Dt is binary, and let

δt = 1(Dt = 1), then the sieve space is,

Pq(X∗
k) ⊗ Pq(X1) ⊗ · · · ⊗ Pq(Y1) ⊗ Pq(δ1) ⊗ · · · ⊗ Pq(Yt−1) ⊗ Pq(δt−1).

For an q-order polynomial, the number of terms would be (q +1)3 +(q +1)5 +(q +1)7,

which grows very quickly in practical terms.

The alternative approach we consider here is to use the following approximation

vi,t(d) = φ

 ∑
h∈Dt−1

1(Dt−1 = h)(πt,h,d,0 + π⊺
t,h,d,1X + πt,h,d,2X

∗
k + π⊺

t,h,d,3Y
t−1

i )


for some unknown function φ. Since the argument of φ is scalar-valued, this means

that the nonparametric estimation problem is greatly simplified to estimating a scalar-

valued function. For this we use the sieve space of polynomials, with the order growing

at the rate of n1/3 with 3 terms with n = 500 and 6 terms for n = 4,000. Our choice of

approximation is motivated by the fact that under Lemma 1 and Equation 18, there

is a set of π parameters such that this equality holds, with φ(·) = 1
1−χ

exp(·).

The finite parameters are the same as in our baseline simulations considered in

Section 5.2, with the added risk aversion parameter χ, which we set to 1.5. X∗ and X

are generated from the same distributions as in the DGP considered in Section 5.2.

With the additional π parameters to estimate, the θc has a total of 103 parameters.
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Given this large number of parameters to estimate, we expect n = 250 to be too small

a sample size to perform well, and begin the Monte Carlo simulations with a sample

size of n = 500. The large number of parameters to estimate in θc results in longer

but still manageable computational times, which are reported in Table 8.

n = 500 n = 1,000 n = 2,000 n = 4,000
Time (minutes) 3 7.5 19.5 56

Table 8: Time to compute the estimator: DGP with risk aversion. Computational
times were obtained using an Intel Core i9-12900K CPU, and are computed as the
average over 200 simulations.

The results of the Monte Carlo simulations are presented in Table 9 and Figure

3. Despite the increased complexity of the model, our estimation procedure exhibits

finite sample performances similar to the DGP considered in Section 5.2.
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Figure 3: Quantiles of Estimator of qα[X∗
k ] under DGP with risk aversion. Note: The

red line shows the true distribution of X∗
k . The blue lines show the mean, and the 5th and 95th

percentiles of the simulated distribution of the estimator of qα[X∗
k ] for each sample size.
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n = 500 n = 1,000 n = 2,000 n = 4,000
Bias2 Var Bias2 Var Bias2 Var Bias2 Var

α1,2 66.15 38.25 18.40 20.20 3.97 12.19 0.05 7.69
α2,1 0.17 28.07 0.05 12.99 0.08 5.50 0.05 2.10
α2,2 69.24 42.16 18.40 23.49 3.25 14.33 0.00 9.20
α3,1 1.29 24.63 0.07 9.98 0.00 4.73 0.00 1.83
α3,2 68.62 42.86 23.69 21.80 3.41 13.62 0.01 8.28
γ

(1)
1,1 0.08 6.61 0.05 3.30 0.01 1.72 0.02 0.95

γ
(1)
1,2 0.12 8.29 0.09 3.55 0.02 1.64 0.01 0.78

γ
(1)
2,1 0.03 7.69 0.08 3.81 0.04 2.11 0.02 1.08

γ
(1)
2,2 0.21 9.49 0.25 4.13 0.06 2.18 0.03 0.79

γ
(1)
3,1 0.14 5.52 0.03 2.52 0.01 1.38 0.02 0.72

γ
(1)
3,2 0.08 9.43 0.11 4.03 0.03 1.84 0.02 0.83

γ
(2)
1,1 1.65 35.50 0.00 12.36 0.22 5.58 0.01 2.75

γ
(2)
1,2 0.09 28.70 0.09 11.52 0.16 6.99 0.06 3.19

γ
(2)
2,1 1.47 31.77 0.00 12.37 0.06 5.50 0.03 2.79

γ
(2)
2,2 0.08 28.45 0.11 13.67 0.23 7.50 0.11 3.25

γ
(2)
3,1 0.73 25.40 0.02 11.07 0.13 4.71 0.01 2.65

γ
(2)
3,2 0.17 29.53 0.00 14.60 0.16 7.89 0.09 3.35

λk
1,1 0.34 20.38 1.18 6.84 0.02 4.11 0.01 1.71

λk
2,1 0.18 21.01 2.41 9.54 0.42 5.21 0.09 1.91

λk
2,2 0.18 9.49 0.00 3.31 0.01 1.60 0.01 0.80

λk
3,1 0.45 17.32 1.53 8.13 0.15 4.25 0.01 1.53

λk
3,2 0.03 10.43 0.21 3.97 0.01 2.22 0.01 1.10

λu
1,2 0.11 6.31 0.03 2.65 0.00 1.23 0.00 0.52

λu
2,1 0.05 3.54 0.04 1.41 0.01 0.78 0.01 0.43

λu
2,2 0.09 8.36 0.01 3.61 0.00 1.65 0.01 0.69

λu
3,1 0.06 3.89 0.02 1.44 0.01 0.60 0.00 0.33

λu
3,2 0.35 9.16 0.15 4.34 0.00 1.90 0.01 0.87

σ2(1) 0.15 0.68 0.01 0.36 0.01 0.17 0.00 0.07
σ2(2) 0.06 0.24 0.00 0.15 0.00 0.07 0.00 0.03
σ2

u 1.38 19.53 0.02 6.64 0.01 3.74 0.00 1.83

Table 9: Simulation results for estimation of finite dimensional parameters. Note:
‘Bias2’ and ‘Var’ refer to the average empirical squared bias and variance scaled by 1,000, respectively,
computed over 200 simulations.
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B.5 Appendix to the empirical illustration

B.5.1 Sample size after restrictions

Full Sample Full-time Workers
Observations Share Observations Share

Male
Blacks 891 0.10 273 0.10
Hispanics 806 0.09 352 0.13
Whites 2,031 0.23 965 0.37

Female
Blacks 949 0.11 229 0.09
Hispanics 731 0.08 224 0.09
Whites 1,786 0.20 571 0.22

Table 10: Sample sizes in subsamples defined by gender, race/ethnicity and work
status.

B.5.2 Specification with college graduation

In this section, we explore the robustness of the main findings of the application to

an extended specification that includes educational attainment as a covariate in the

potential wage equation.37 Education level enters the outcome equation additively,

and we allow the distribution of X∗
k , and the occupational assignment function ht to

depend arbitrarily on the educational level. While the estimation of this model has

the advantage of shedding some light on how college education affects assignment

probabilities to occupations and selection on the latent factor X∗
k , the main results of

our variance decomposition are robust to this alternative specification. We conclude

from this exercise that in our baseline model, the scalar latent variable X∗
k captures

the combined effect of college education and pre-college ability in a way that appears

to be flexible enough to account for the uncertainty individuals face over their future

earnings.
37Specifically, we include a binary variable for graduation from a four-year university.
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The extended model includes college graduation as a covariate, which is allowed to

depend arbitrarily on the known heterogeneity component X∗
k . The potential outcome

equation can then be written as:

Yt(d) = β′
t,dX + X∗

kλk
t,d + X∗

uλu
t,d + ϵt(d),

where X = (1, Xc) is a two-dimensional vector of a constant and a binary variable

for college graduation (Xc). Since we start modeling choices at age 27, we assume that

college graduation is realized before then, but is allowed to flexibly depend on X∗
k .

As a result, we estimate two conditional distributions for the known heterogeneity

component, FX∗
k

|Xc=0 and FX∗
k

|Xc=1.

Occupational choice probabilities can now also arbitrarily depend on college grad-

uation Xc, and are given by:

ht((1, Dt−1), Xc, Y t−1, X∗
k) := P (Dt = 1 | Xc, Y t−1, Dt−1, X∗

k).

In practice, we implement this specification using the same sieve space as in

our baseline specification for each of the conditional distributions of X∗
k . Specif-

ically, we estimate the CCPs using a similar functional form as before, with

ht((1, Dt−1), Xc, Y t−1, X∗
k) = Λ(ϕt(X∗

k , Xc, Y t−1, Dt−1)), and

ϕt(X∗
k , Xc, Y t−1, Dt−1) =

∑
dt−1∈{0,1}t−1

1(Dt−1 = dt−1)
(

π⊺
0,t,dt−1X +

t−1∑
s=1

πs,t,dt−1Ys + πt,t,dt−1X∗
k

)
.

Model fit Table 11 below reports the model fit based on the same moments as in

Table 5. Overall, the fit is nearly identical to the baseline specification. No estimated

moment varies by more than .01 from the baseline fit, and most are exactly the same.

While including college in the model reveals patterns of sorting by education level, it

actually does not appear to meaningfully affect the model fit.
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Y1 Y2 Y3
Est. Data Est. Data Est. Data

A. No period in high-skill occupation

Mean
2.45 2.45 2.50 2.52 2.56 2.57

Covariance Matrix
Y1 0.18 0.17 0.14 0.14 0.13 0.13
Y2 — — 0.18 0.19 0.17 0.17
Y3 — — — — 0.22 0.21

B. Some periods in high-skill occupation

Mean
2.57 2.58 2.67 2.68 2.83 2.80

Covariance Matrix
Y1 0.18 0.21 0.12 0.14 0.13 0.12
Y2 — — 0.18 0.20 0.15 0.13
Y3 — — — — 0.23 0.19

C. All periods in high-skill occupation

Mean
2.78 2.76 2.92 2.91 3.01 3.00

Covariance Matrix
Y1 0.23 0.26 0.16 0.16 0.16 0.17
Y2 — — 0.23 0.21 0.16 0.19
Y3 — — — — 0.25 0.26

Table 11: Extended Model: Model Fit
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Selection patterns In the baseline specification, we noted that there was a strong

pattern of selection into the high-skill occupation based on the known heterogeneity

component X∗
k . As shown in Figure 4 below, this pattern is closely replicated in this

model with college education as an additional variable.

−0.50 −0.25 0.00 0.25 0.50 0.75
λk

1,1X∗
k

0.00

0.25

0.50

0.75

1.00

F
λ

k 1,
1
X

∗ k

Periods in
high-skill
occupation

0
1-2
3

Figure 4: Extended Model: Selection into High-Skill Occupation

A portion of this selection is explained by selection into college graduation. On

that note, Figure 5 below reports the estimated conditional CDFs FX∗
k

|Xc=0 and

FX∗
k

|Xc=1. This figure shows that there is a mass point in both the college and non-

college graduate sub-populations at the low-skill level, but that approximately half

of the mass among college-graduates is at higher skill levels.

We can further examine the role of selection on college education by considering

the probabilities that an individual works in a high-skill occupation, conditional on

education and skill level. Table 12 shows the probability of working in a high-skill

occupation conditional on the percentile of X∗
k and the college graduation status.
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Figure 5: Extended Model: Selection into High Skill Occupation by Education level

From this table we see that the probability of working in a high-skill occupation

increases by 37 percentage points for low-skill workers who have a college degree,

and increases by 32 percentage points for high-skill individuals. This magnitude is

similar to the effect of going from low-skill to high-skill. For non-college graduates,

the probability of working in a high-skill occupation jumps 53 percentage points for

Share in High-Skill Occupation Share of Population
X∗

k Group Low High Low High
Non-College Graduate 0.12 0.65 0.58 0.09
College Graduate 0.49 0.97 0.17 0.16

Table 12: Extended Model: Conditional Choice Probabilities of Working in a High-
Skill Occupation. Note: X∗

k is divided into the a high and low skill group for ease of interpretation.
The “High” group corresponds to the 75th to the 100th percentile of X∗

k .
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high-skill individuals compared to low-skill individuals.38

Variance decomposition Finally, we return to the variance decomposition exer-

cise and reproduce in Table 13 below the analysis in Table 6 for the baseline model.

The qualitative patterns of the variance decomposition are quite similar. In particu-

lar, the forecastable share of variance is much smaller in high-skill occupations, and

the rate of learning is fast in both occupations. The patterns observed in the baseline

model are somewhat accentuated, with the estimate of the initial share of variance

forecastable in the high-skill occupation decreasing from 0.12 to 0.10, and increasing

in the low-skill occupation from 0.43 to 0.49. Given the similarity of these results,

we conclude that while college education does play an important role in determining

the occupation and wages of workers, the baseline model that absorbs college into X∗
k

actually appears to do a good job of capturing the selection and uncertainty faced by

individuals in their early career.

Y (1) Y (0)
Decomposition Total Variance Share Forecastable Total Variance Share Forecastable
Equation (8) 0.63 0.10 1.15 0.49
Equation (9), d1 = 0 0.57 0.66 0.62 0.80
Equation (9), d1 = 1 0.68 0.51 1.50 0.81

Table 13: Extended Model: Variance Decomposition

B.5.3 Bootstrap confidence intervals: Empirical coverage

In this section, we provide evidence, based on Monte Carlo simulations, that the

bootstrap confidence intervals used to quantify statistical uncertainty surrounding

the variance decomposition parameters yield near-nominal coverage in simulations

with the same sample size as in our application.

In order to explore this issue, we calculate the same variance decomposition pa-

rameters reported in Table 6 using the DGP specified for our Monte Carlo simulations
38Note, however, that the high-skill individuals without a college degree make up only 9% of the

population.
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in Section 5.2, and calculate 95% bootstrap confidence intervals. Table 14 below re-

ports the coverage rate for the 95% bootstrap confidence intervals. Empirical coverage

is quite close to the nominal rate for most parameters, with exact 95% coverage for

several of the parameters (7 out of 12). Empirical coverage remains generally close

to the nominal rate in the other cases, although we see some under-coverage (89%)

for one particular case (initial period, share forecastable in low-skill occupations).

Y (1) Y (0)
Decomposition Total Variance Share Forecastable Total Variance Share Forecastable
Equation (8) 0.99 0.95 0.95 0.89
Equation (9), d1 = 0 0.98 0.95 0.95 0.93
Equation (9), d1 = 1 0.95 0.95 0.95 0.93

Table 14: Variance Decomposition: Bootstrap Confidence Interval Coverage (Monte
Carlo Simulations). Note: Each entry shows the empirical coverage for a nominal coverage of
95%. Results were obtained estimating the model for 100 Monte Carlo simulations, calculating 100
bootstrap samples for each simulation. The sample size is 965.

82


	Introduction
	Set-up
	Identification
	Reweighting strategy
	Known and unknown heterogeneity
	Pure learning model

	Estimation
	Implementation and Monte Carlo simulations
	Implementation
	Monte Carlo simulations

	Empirical illustration
	Data and descriptive overview
	Model set-up
	Estimation
	Model fit
	Estimation results

	Conclusion
	Bibliography
	Proofs for identification section
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Online Appendix
	Proof of Corollary 1
	Variance decompositions
	Appendix to estimation section
	Consistency of sieve MLE
	Plug-in sieve estimator

	Appendix to implementation and Monte Carlo simulations section
	Implicit differentiation
	Details on DGP
	DGP with risk aversion

	Appendix to the empirical illustration
	Sample size after restrictions
	Specification with college graduation
	Bootstrap confidence intervals: Empirical coverage



