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Abstract

We study linear regressions in a context where the outcome of inter-
est and some of the covariates are observed in two different datasets that
cannot be matched. Traditional approaches obtain point identification by
relying, often implicitly, on exclusion restrictions. We show that without
such restrictions, coefficients of interest can still be partially identified, with
the sharp bounds taking a simple form. We obtain tighter bounds when
variables observed in both datasets, but not included in the regression of
interest, are available, even if these variables are not subject to specific re-
strictions. We develop computationally simple and asymptotically normal
estimators of the bounds. Finally, we apply our methodology to estimate
racial disparities in patent approval rates and to evaluate the effect of pa-

tience and risk-taking on educational performance.
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1 Introduction

It is often impossible to run the ideal regressions one would like to consider. A
common reason for this is that the outcome Y and covariates X of interest are
not observed in the same dataset. For instance, in many intergenerational studies
(e.g., intergenerational income or wealth mobility), one cannot link parents’ and
children’s outcomes. Even if the outcome and covariates of interest do appear
in the same dataset, key control variables are often missing. For instance, when
measuring the wage returns to education, one may wish to control for a measure of
cognitive skills, but such measure may not be available in the main labor market

dataset, even though it appears in another source.

To better explain our contribution in this context, we first detail our setup. We
assume that X includes two sets of covariates: “outside” regressors X,, which only
appear in a separate dataset from that including the outcome Y, and “common”
regressors X., which appear in both datasets. We also consider auxiliary variables,
W.,, which researchers do not seek to include in the regression but that also appear
in both datasets. These types of auxiliary variables are often available to empirical
researchers. For instance, if a common variable is a proxy for a variable of interest
X,, or a so-called “bad control”, it seems preferable to focus on the regression
of Y on X,, without controlling for that variable. We denote the set of common
variables, included or not in the regression, by W, so that W = (X/, W/)".

In this context, empirical researchers have traditionally relied on imputation meth-
ods. The most common, which corresponds to two-sample two-stage least squares
(TSTSLS), consists in first predicting X, by W, in the “X, dataset”, and then
using this prediction in the “Y dataset”. One must recognize, however, that these
approaches implicitly rely on exclusion restrictions and can therefore be sensitive
to their violation. For instance, imputation based on TSTSLS requires the coef-
ficient of W, in the infeasible regression of Y on X and W, to be 0. The goal
of our paper is to study identification, estimation and inference on the regression

coeflicients without such exclusion restrictions.

In the absence of common variables, we obtain sharp bounds on each regres-
sion coefficient by applying the Frisch-Waugh-Lovell theorem together with the
Cambanis-Simons-Stout inequality. Our contribution here is to show that this
approach delivers sharp bounds, which is not obvious when X, is multivariate.

We then extend this result to account for common variables. Sharp bounds still



take a simple form in this case. Moreover, by leveraging the variation in W, one
may be able to identify the sign of regression coefficients, and even obtain point
identification in special cases. Importantly, we also show that it is possible to

reject the exclusion restriction underlying the imputation based on TSTSLS.

Based on the identification results, we next turn to the estimation of the sharp
bounds and inference on the regression coefficients. We propose simple plug-in
estimators and establish their asymptotic normality. To do so, we build on results
on L-statistics and on the statistical optimal transport literature. Our proof re-
lies in particular on a refinement of the convergence rates in Fournier and Guillin
(2015), which we obtain by extending a result of Boucheron and Thomas (2015).
We also provide simple confidence intervals for the regression coefficients and es-
tablish their asymptotic validity. Simulation results indicate that our inference
method performs well in finite samples, while being implementable at a modest

computational cost.

Finally, we apply our methodology to two different contexts of data combination.
In our first application, we revisit racial disparities in U.S. patent approval and
show that conclusions about such disparities hinge on the validity of the exclusion
restrictions underlying the TSTSLS estimation strategy. When relaxing these re-
strictions, our bounds are generally wide, pointing to the lack of robustness of the
conclusions one would reach using TSTSLS results. In our second application,
we evaluate the relationship between students’ patience and risk-taking and ed-
ucational performance across countries. In contrast to our first application, our
bounds are informative and, for some of the specifications, exclude the TSTSLS
estimates. Taken together, these applications highlight the limitations and, in
some cases, misleading nature of the TSTSLS estimates in data combination en-
vironments. The partial identification approach we propose in this paper provides
a transparent and tractable way to assess the sensitivity of empirical conclusions

to the exclusion restrictions underlying the TSTSLS estimates.

Related literature. To our knowledge, the first paper that considered our prob-
lem is Pacini (2019). We extend his work in three important dimensions. First,
we study the case where some of the common variables are not used as common
regressors (W # X.). We expect this to be prevalent in practice and we show
that it can drastically reduce the identified sets. Second, we show that his bounds

are not sharp when X, is multivariate, and that the difference with the sharp



bounds can be substantial. Finally and importantly, we consider estimation and
inference. Hwang (2025) also relates closely to our work. While she maintains
the restriction that W = X, she also considers the case where some regressors
are only available in the Y dataset, which we do not study here.! A third related
study is Fan et al. (2025). This paper complements ours by studying identification
in a more general setup. In particular, they derive sharper bounds than Hwang
(2025) in cases where some regressors are observed only in the Y dataset. Their
analysis, however, is limited to identification, whereas estimation, inference and

empirical applicability are central to our paper.

Our paper is also related to our own previous work (D’Haultfeeuille et al., 2025),
in which we consider a similar data combination environment. There are, how-
ever, important differences between the two. First, we did not consider previously
how auxiliary variables affect identification. Second, we imposed a partially linear
model, namely E[Y|X]| = X!, + f(X.). This leads to potentially tighter bounds,
but one may be reluctant to improve bounds using such restrictions. Third, for
estimation we had to focus on the case for which X, had finite support, whereas
no such assumption is necessary here. Finally, from a technical viewpoint, the re-
striction on the conditional expectation implies that we relied on entirely different

optimal transport results, both for identification and inference.

At a broader level, our paper belongs to a very active literature on data com-
bination problems in econometrics and statistics. See, in particular, Ridder and
Moffitt (2007) for a survey of this literature and contributions by Fan et al. (2014),
Fan et al. (2016), Buchinsky et al. (2022), Bontemps et al. (2025), Meango et al.
(2025) and, in the context of experimental data under a surrogacy assumption,
Athey et al. (2020), Athey et al. (2024), and Rambachan et al. (2024). Several
of these papers impose restrictions that entail point identification. Following the
seminal contribution of Cross and Manski (2002) and subsequent article by Moli-
nari and Peski (2006), our aim is to obtain bounds on parameters of interest under
weak restrictions. An important distinction between our work and these last two
papers is that we consider different parameters: the best linear parameter in our

case versus conditional expectation in theirs. Also, they do not consider the use

!There are still other data combination cases that we do not consider here. Kitawaga and
Sawada (2023) consider a setup where one observes (Y, X1, X.) in one dataset and (Y, Xo, X,) in
another. Yet another possibility, considered by Moon (2024) when X, Xo, X, has finite support,
is to observe (Y, X.), (X1, X.) and (X2, X.) separately.



of auxiliary variables (W,).

From a technical viewpoint, our first identification result can be seen as an ex-
tension of the Cambanis-Simons-Stout inequality, see Cambanis et al. (1976) and,
e.g., Fan et al. (2014, 2016) for an application to data combination problems. Our
asymptotic normality result relates to the asymptotic normality of the so-called
Wasserstein-2 distance of empirical measures, recently studied in the statistical
literature (see, e.g. Del Barrio et al., 2019; Berthet et al., 2020). Notably, up to a
mild strengthening of moment conditions (from order 4 to 4+ for some € > 0), our
result implies asymptotic normality of the Wasserstein-2 distance under weaker
conditions than those in Berthet et al. (2020).

Finally, our paper also speaks to a large and growing empirical literature that
deals with data combination problems similar to the one considered here. One
important example is voting: given the anonymity of ballots, researchers typically
regress average votes on average voter characteristics (e.g., income, hours watching
Fox News per week) at the county level (see, e.g., Martin and Yurukoglu, 2017).
This approach implicitly relies on a TSTSLS strategy, where counties play the
role of W,, thereby imposing an exclusion restriction. Another leading example
is intergenerational income mobility, which often faces the unavailability of linked
income data across generations and similarly relies on exclusion restrictions (see,
e.g., Santavirta and Stuhler, 2024, for a survey). Data combination issues are
also pervasive in consumption research, where income and consumption are often
measured in separate datasets (see in particular Crossley et al., 2022, who discuss
another imputation strategy than that based on TSTSLS). Similar data combina-
tion problems frequently arise in various other subfields, including the economics
of education and returns to skill estimation (Piatek and Pinger, 2016; Garcia et al.,
2020; Hanushek et al., 2022), health (Manski, 2018) and labor (Athey et al., 2020).
Finally, gaps in science and innovation by race or gender provide another relevant

example, as illustrated in our first application below.

The methods we devise in this paper are broadly applicable in these different
contexts, allowing empirical researchers to relax the exclusion restrictions that are
typically maintained to achieve point identification. By applying our method to
racial disparities in patent approval (Dossi, 2024) and the effect of preferences
on skill differences (Hanushek et al., 2022), our paper also adds to the empirical

literature on these questions.



Outline. Section 2 introduces the setup and discusses three broad cases for
which our analysis is relevant. Section 3 presents our identification results. Section
4 develops estimators of the sharp bounds, establishes their asymptotic normality
and develops inference on the regression coefficients. Section 5 examines the finite
sample properties of our estimators and confidence intervals through Monte Carlo
simulations. We provide in Section 6 two applications, to racial disparities in
patent approval and the effect of preferences on skill differences. Finally, Section
7 concludes. The appendix includes in particular a discussion of the sharpness of
the bounds of Pacini (2019) and gathers all the proofs of our identification results;
the proofs of our inference results appear in the online appendix. Finally, our

method can be implemented using our companion R package, RegCombinBLP.?

2 Set-up and motivation

2.1 Set-up

We seek to identify the best linear predictor FL(Y|X) of Y by X € RP, with
X = (X!, X!). To this end, we assume to have access to two separate datasets
that cannot be matched. The first one includes (Y, W’), whereas the second one
includes (X!, W'); here W = (W!, X!) € R%. We call X, the “outside regressors”,
X, the “common regressors”, W the “common variables” and W, the “auxiliary
variables”. The latter are variables that the researcher does not want to include in
the regression of interest, but that may still help for identification since they are
included in both datasets. Importantly, they should not be seen as instruments,

in the sense that we do not impose below any restrictions on them.

In order for the best linear prediction to be well-defined, we maintain the following

assumption hereafter:

Assumption 1 E(Y? + || X,||* + [|[W]]?) < oo and E(XX') and E(WW') are

nonsingular.

Let 0° = (0°!,...,0°?) € R? be such that EL(Y|X) = X'b°. Usually, researchers
are interested in specific components of b°, rather than in the whole vector 4°.

Therefore, in the following we seek to (partially) identify and estimate by := d'0°,

2This package is available on GitHub at https://github.com/cgaillac/RegCombinBLP with

a user-friendly guide on how to use it.


https://github.com/cgaillac/RegCombinBLP

for some d € RP. For instance, if we focus on b%2, the second component of b°, we
let d = (0,1,0,...,0).

2.2 DMotivation

Our setup includes at least three cases of broad interest.

Proxies for the covariate of interest. In this case, we are interested in the
relationship between a covariate of interest X, and Y. However, we do not observe
X, in the Y dataset, but only proxies W, of X,. These proxies are also observed
in the X, dataset. This type of situation arises very frequently in empirical mi-
croeconomics. A standard strategy in this case is to use two-sample two-stage
least squares (TSTSLS). Namely, one first regresses X, on W, in the X, dataset.
Then, we regress Y on the predicted X, in the Y dataset. Importantly though,

this strategy implicitly relies on the following exclusion restriction:
EL(Y|X,,Wa) = EL(Y]X,). (1)

This assumption is often restrictive. In our first application below, for instance,
Y corresponds to patent approval, X, is the vector of race dummies and W, is the
vector of applicants’ last names. Given that patent reviewers always observe last
names but typically do not observe race directly, (1) seems unlikely to hold. The
method we develop in this paper will allow us to (partially) identify EL(Y|X,)
without imposing (1).

Missing controls. In this case, we are interested in recovering the effect of X,
on Y using data from a first dataset. However, one or several key control variables
(X,) are missing from this dataset. Our setup applies to situations where the
control variables are observed in a second dataset, together with X.. In this sense,
our framework complements a growing literature that investigates how credible
unconfoundedness is, by allowing researchers to rely on unconfoundedness in a
broad range of data combination environments (see, e.g., Altonji et al., 2005;
Oster, 2019; Diegert et al., 2022).

As above, researchers in this context may also have access to auxiliary variables,
W,, which are not included as covariates in the main regression, e.g., because
they would be “bad controls”. As shown below, these variables may still carry

informational content regarding the regression coefficients of interest.
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Mediation analysis. In this case, we are interested in the effect of X, on a
given outcome Y. As above, we do not observe X, and Y in the same dataset. A
possible and frequent reason is that Y is a long-run outcome, which is not observed
in the data including X,. On the other hand, both datasets may include other

outcomes W,, such as short-run outcomes.

To identify in this environment the causal effect of X, on Y (which is 5° under
suitable randomization conditions on X,), a common strategy is to rely on a

surrogacy assumption (see, e.g., Prentice, 1989). In our setup, this corresponds to
EL(Y|Xo, Wa) = EL(Y|W,). (2)

In other words, one assumes that the effect of X, on Y is entirely mediated by
W,.> However, Condition (2) typically is a strong restriction. For instance, it is
reasonable to assume that long-run earnings (Y') depend on human capital, even
conditional on short-run earnings (W,). Then, if job training (X,) affects human
capital, (2) will fail to hold in general. Our results below imply that one can still

obtain simple, sharp bounds on 0°, without relying on (2).

3 Identification

Before presenting our identification results, we introduce additional notation. We
denote by By the identified set of by and let by and b, be their sharp upper and

lower bounds, namely
by =sup{db: be B}, by;=inf{db: be B},

where B is the identified set of b°. We focus in the following solely on by, which is

without loss of generality since b; = —b_yg.

For any random variables A and B, we let F4 denote the cumulative distribution
function (cdf) of A, fa its density, and Fup the cdf of A given B. We also
let Fi'(t) := inf{z : F4(z) > t} denote the quantile function of A; we denote
similarly by Fgﬁg the quantile function of A given B. We let Supp(A) (resp.
Supp(A|B)) denote the support of the probability distribution of A (resp., of A

given B). For any vector v, we let vy denote its k-th element and v_j the vector

30ne may also include additional covariates X, observed in both datasets, in which case (2)
becomes EL(Y|X,W,) = EL(Y|X., W,).



obtained by removing v, from v. We also let e, denote the k-th canonical vector
of R". For any set S, we let |S| denote its cardinality. Finally, we denote by
U0, 1] the uniform distribution over [0, 1] and by A (, X) the multivariate normal

distribution with mean p and covariance matrix .

3.1 No common variables

We first consider a case without nontrivial common variable (W = X, = 1), so
that X = (X/,1) € RP. Our main result shows that B is convex and compact,
and characterizes by for any d € RP\{0}. Below, we introduce the variable 7, as
follows. First, let (ds, ..., d,) be (p — 1) vectors in R? such that (d, ds, ..., d,) forms
a basis of RP. Let M denote the corresponding matrix and let 7= M ~1X. Then,
let

na =Ty — EL[T1|T_4].

In words, 7, is the residual of the (population) regression of T} on T_;. Note that
na does not depend on which exact vectors (dy, ..., d,) are chosen. Also, if d = ey,
714 is simply the residual of the regression of X; on X ;. Finally, if p = 2 and
d = (di,0), ng = (Xo — E(X,))/d.

Theorem 1 Suppose that Assumption 1 holds and W = X, = 1. Then B is

convex, compact, and satisfies B C &, with
E={beR’: E[Y]|=FE[X"Y, V(Y)>V(X'D)}.

Also, letting U ~ U0, 1], we have, for any d € RP\{0}, By = [by, b, with

b =E [y xn-x (U (U)] (3)
Bl () ()]
~ B W

Finally, by > 0 as long as V(Y) > 0.

The first part of the theorem states that B is a convex, compact set included in
the ellipsoid £. Also, (0, ...,0, E[Y])" € B: in the absence of common variables, we
can always rationalize that Y and X are independent. Since the identified set B
is non-empty, closed, and convex, by is equal to the so-called support function of
B. As a result, the knowledge of b, for all d € RP\{0} characterizes B.



In the case of a single regressor (and the intercept) and d = (1,0)’, Equation (4)

reduces to
E [(FXX(U) — B(X,))Fy ' (U)]

V(X,) ' )
On the other hand, the true coefficient satisfies by = 0°! = F[(X,—E(X,))Y]/V(X,).
Thus, (5) indicates that the sharp upper bound on the unknown term E[X,Y] is
E[F(U)Fy ' (U)]. This is well-known, and corrresponds to the so-called Cambanis-
Simons-Stout inequality (see Cambanis et al., 1976). The logic is that (i) Fix (U)
and Fy 1 (U) are distributed as X, and Y, since U is uniformly distributed, and (ii)

by =

these two variables exhibit maximal positive dependence. The exact meaning of
(ii) is that the copula of Fi!(U) and Fy ' (U) corresponds to the Fréchet-Hoeffding
upper bound.

With multiple regressors, (4) cannot be directly deduced from the Cambanis-
Simons-Stout inequality. To get some intuition on (4), suppose that d = eq,.
Then, ny is the residual of the linear regression of X; on X_;. If we observed
(Y, X), the coefficient of X; in the best linear prediction of ¥ by X would be
E[nsY]/E(n3), by the Frisch-Waugh-Lovell theorem. Now, if we only know the
marginal distributions of 7, and Y, the numerator in (4) is simply the upper
bound of E[ngY]. That the sharp upper bound b, satisfies (4) is not obvious,
however, because we also know the distribution of X_; conditional on 74, in
addition to the marginal distribution of 7;. This could, in principle, lead to
by < E[F, Y(U)Fy'(U)]/E(nj). Theorem 1 shows that this is not the case: the
conditional distribution of X _; does not carry any additional information about
E[nsY]. Although this can be deduced from Lemma 3.3 in Delon et al. (2023), we

propose an alternative proof, which has the advantage of being constructive.

Pacini (2019) also obtains bounds on by, see his Theorem 1. However, it turns out
that when X is multivariate, his bound is only an outer bound rather than the
sharp bound by on by. In Appendix A, we detail why this is the case, and provide
an illustration showing that the sharp bounds given by Theorem 1 above can in

practice be substantially tighter than Pacini’s bounds.
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3.2 Common variables
3.2.1 Main result

Let us now turn to the situation where some covariates are observed in both
datasets. We define as above 14, with the sole difference that now X = (X, X!)".
Next, let §4 and vy be such that EL(ny|W) = W', and vy := ng—W'd4. Define oy
and vy similarly, with Y in place of 1. The following theorem is the counterpart

of Theorem 1 with common variables.

Theorem 2 Suppose that Assumption 1 holds. Then B is convez, compact, and
for any d € RP\{0}, By = [by, ba|, with
— 1
by = =<
E(n3)

where U|W ~ U[0,1]. Moreover, for any function g, by < b}, with

{8, E(WW)dy + E |F, Ly (UIW)E, }y (UW)] }, (6)

b
E(n3)

with equality if vy WL Wg(W) and vy 1L W|g(W).

by = {8 B(WW")oy + E[F, Lo (Ulg(W)F, i UlgW)I} (7)

Essentially, the first part of the theorem follows by first applying Theorem 1
conditional on W and then integrating over W. The second part exploits Theorem
1 but conditioning on g(W) instead of W. The sharp bound by has a simple
expression, but it involves the conditional quantile functions F W and F W
Thus, estimating this sharp bound involves estimating these two nonparametric
functions, which could be cumbersome in practice. On the other hand, when g(W)
has a finite support, the outer bound EZ is elementary to estimate and does not
suffer from any curse of dimensionality. Moreover, this bound is actually sharp
when vy Il W|g(W) and vq 1L Wg(W), as is the case for instance with g(W) = 1,

if Y and 7, follow a linear location model in .

How do common regressors affect identification? FEven without auxiliary
variables W,, the identified interval on the coefficients of X, may exclude 0 in
the presence of common regressors, implying that the sign of these coefficients
is identified. To see this, suppose that dim(X,) = 1, X, = fi(X,) + (, Y =
g1(Xe) + ¢y and (| X, ~ N(0,07), Cy|Xe ~ N(0,0%). Let also f(X.) == fi(Xe) —
EL(fi(X)|X.) and g(X.) := g1(X.) — EL(g1(X.)|X.). Using Equation (6), the

11



fact that by construction d; = 0, and the normality of (, and (y, we obtain that

the bounds on b%?! satisfy

where 1., = f(X.) + (. In particular, if |E [f(X.)g(X.)]| > 0,0y, 0 is excluded
from the identified set of b%!. This occurs when X, and Y strongly depend on
X, in a nonlinear way, so that E [f(X.)g(X.)] dominates the contribution from
independent terms (namely, o,0y). In the extreme case where X, and Y are

deterministic functions of X, so that o, = oy = 0, we obtain point identification.

That said, the identified interval on the coefficients of X, may widen when includ-
ing common covariates. Even if observing X, in both dataset does increase the
information on the joint distribution of (Y, X,), the parameter we consider also
changes. In particular, the denominator E[n3] in (6) may substantially decrease,
if the R? of the linear regression of X, on X, is large. To illustrate this, suppose
that (X,, X!) ~ N(0,%,) and (Y, X)) ~ N(0,Xy), with

1 1
So=" "] andsy = m (8)
Po 1 Py 1

Then, some algebra shows that without observing X., [b.,,b.,] = [-1,1]. With

‘eir
X,, on the other hand,

_ 1_,02 1_p2
[bepbel] - [_\l 1-— 12/’ J 1-— )2/ )
Po Po

Thus, the interval [b,, , b.,| shrinks if |py| > |p,| but widens otherwise.

Ye1»

Finally, we may also identify the sign of components of b., the regression coefficient
of X.. In fact, b. may even be point identified: if X, and X, are uncorrelated, b,

is simply the coefficient of the regression of Y on X..

The role of auxiliary variables. By observing auxiliary variables W, that are
not in the regression of interest, we increase the available information without
modifying the parameter of interest. Then, the interval [b,,,b.,] always shrinks

(at least weakly so). This may lead to excluding 0 from B even without common

variables X, a case that occurs whenever
SUE(WW')dy + E [F, hy (UIW)F, (U] < 0 (9)

12



for some d € RP. Intuitively, (9) requires enough dependence between Y and
W, and between X, and W,. For instance, if (W, X,) ~ N(0,%,) and (W,Y) ~
N(0,%y), with 3, and Xy as in (8), we obtain

ey Bed) = oy == Y= 32, popy +/ (L= )1 = 43

Then, 0 & [b,,, be,] if and only if p2p3 > (1 — p2)(1 — p3). This holds when W, is
sufficiently correlated with X, and Y. For instance, when p, = py, this occurs if

and only if W, explains more than half of the variance of X, (p2 > 1/2).

A leading case with auxiliary variables is the case of surrogates. Recall that in
this case, X, corresponds to the treatment variable, Y is a long-run outcome while
W, denotes short-run outcomes (surrogate variable). Then, Theorem 2 yields two
sets of bounds, sharp and outer, on the effect of X, on Y, without imposing a

surrogacy assumption.

Link with TSTSLS. Recall that the TSTSLS estimand identifies 8" if the co-
efficient of W, in the “long” regression of Y on (X, W,) is 0. Now, the discussion
above (“How do common regressors affect identification?”) shows that if one views
W, as a common regressor, 0 may not belong to the identified set of the regres-
sion coefficient of W,. This implies that the exclusion restriction underlying the
TSTSLS estimand can actually be rejected by the data. As a simple example,
suppose that X, and W, are not correlated. Then, the coefficient of W, in the
“long” regression is equal to the coefficient of W, in the “short” regression of Y on
W,, and this coefficient may not be 0. Beyond this particular case, the TSTSLS
estimand for the coefficient b* may not belong to the sharp identified set [be, + bey ]

something we illustrate in our second application below.

3.2.2 Testing and weakening the common population assumption

We have maintained thus far that the two samples at hand are drawn from the
same population. While this is a standard assumption in the data combination
literature, it is important to consider the extent to which this can be relaxed. To
this end, let us introduce the binary variable D, with D = 1 (resp. D = 0) if
we consider the Y dataset (resp. the X, dataset). Then, our setup implies that
we only observe the distributions of (W,Y)|D =1 and (W, X,)|D = 0, assuming
that D 1L (W, X,,Y’). With common variables, this condition can be tested, since

13



it implies Fyp—1 = Fw|p=o. If this implication is rejected, we can weaken the

independence assumption by assuming instead that
(X,,Y) L DIW, p:=P(D =1) is known. (10)

In words, the first condition imposes that conditional on W, the two datasets
are drawn from the same population, while the two populations corresponding
to D = 0 and D = 1 may differ in their marginal distributions of W. The
second condition in (10) implies that the joint distribution of (D, W), and thus
the “propensity score” p(W) := P(D = 1|W), can be retrieved from the knowledge
of the distributions of W|D = 0 and W|D = 1.

If (10) holds, the sharp upper bound by can be obtained by reasoning as in Theorem
2, using an inverse probability weighting scheme. Specifically, to identify dy =
EWW/'|"'E[WY] (and then vy), we cannot directly regress Y on W conditional

on D = 1. Yet, we can recover it by considering instead a weighted regression, as

ool o[

p(W) p(W)
We can identify 0, (and then v4) similarly, using the weights (1 — D)/(1 — p(W)).
Then, Equation (6) is replaced by:

- 1

b= ———~
(1-D)n?
K {l—p(W?]

{5&E(WW/)5Y +E {F;dh/V,D:O(U‘W>Fz/;1\W,D:1(U’W)}} :

Another point to note is that if the two populations differ, the parameter of interest
may correspond to one of the two populations only. For instance, one may consider,
instead of EL(Y|X), EL(Y|X,D = 1). In this case, dy is given by E[WW'|D =
1]7'E[WY|D = 1] and is thus obtained by an unweighted regression, whereas d4
(and then v4) is obtained by regressing n; on W with weights p(W)/(1 — p(W)).

The upper bound b,; becomes

E(D){§3E(WW'|D = 1)dy + E [F, ly, p_o(UIW)E, |y oy (UIW)|D = 1] }
E[(1 - D)ynzp(W)/(1 — p(W))] ‘

Finally, another practically relevant situation is one in which one sample is drawn

by =

from a subpopulation of the population from which the other sample is drawn.
Then, we identify instead (for instance) the distribution of (Y, W) given D = 1 and
the distribution of (X, W). In this case and if we focus as above on EL(Y|X, D =

1), we obtain a similar upper bound on by as above, with just a few differences.
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First, 4 (and then 1,) is obtained by regressing 1y on W with weights p(W).

Second, we now have

by = {5&E(WW/|D = 1)0y+E [F, y (UW)E, |y ooy (UW)|D = 1] }
(11)

Note that in this case and the one before, we do not require the joint independence
condition in (10) but only X, 1L D|WV.

E[p(W)n3]

3.2.3 Auxiliary, non-common variables

In practice, one may have access to auxiliary variables that appear in the dataset
of Y only, or in the dataset of X, only. For instance, suppose we identify the
distributions of (W)Y, Z) from one dataset and that of (W, X,) from the other.
The following proposition shows that, for identification purposes, knowing the
conditional distribution of Z|W,Y provides no additional information. Hereafter,
we let By denote the identified set of »° when observing some auxiliary non-

common variables Z.
Proposition 1 Suppose that Assumption 1 holds. Then By = B.

A similar result clearly holds if we consider instead a variable that appears only
in the dataset of X,. The bottom line is that, among variables not included in
the regression, only those that are common across the two datasets are relevant

for identification.

4 Estimation and inference

4.1 Estimation of by
4.1.1 No common variables

Consider first the simplest situation where we only observe two independent sam-
ples, &1 := (Y;)iz1,..n and So := (X;)j=1,.m- Let 7y denote j’s residual in the
sample regression of 7} on 711 (recall the definition of T" at the beginning of Sec-
tion 3.1). To ease notation, we let hereafter F' := Fy and G := F,,, and let
F, and G,, denote the empirical cdfs of (Y;);=1,.n and (74);=1,. m, respectively.
From Theorem 1, we have by = [y F~'(t)G~'(t)dt/E(n?). Then, we consider the
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plug-in estimator of by:

2 Jo B (DG (Dt
E (@)

where E(ﬁfl) denotes the empirical variance of (7g) =1

)

..... m- Remark that when

m = n, we simply have, denoting by Y;) the i-th order statistic of (Y;)i=1,..n
(similarly for 74.;):

[} G 0= S Y

Otherwise, we can still compute the numerator of Ed at low cost. To see this,
note that for any real-valued variables U, U, with finite second moments and cdfs
F17 F27

R —1 1 2 21 112

| ET 0 F (0dt = o [B[UF) + BIUF] - W (R, By (12)

where W, is the Wasserstein-2 distance, Wy (Fy, Fy) := ([(Fy '(t) — Fy ' (t))2dt) /2.
For variables with support size of n and m respectively, as is the case here, we
can then compute Ws(Fy, Fy) with algorithms of complexity O(m + n), see, e.g.,
Rubner et al. (2000).

4.1.2 Common variables

Let us now consider the case where common variables are observed. Specifi-
cally, we now assume to observe & := {(Yl,Wl(l)), iy (Y, WY and S, =
{(Xo1, Wl(Q)), ooy (Xom, WY where Wl-(l) and Wj(z) are both distributed as W.
We add the exponents (¢) to indicate that W € S,. Recall from Theorem 2 that
by involves the nonparametric functions F, ‘IW and F) 1‘W. To avoid their estima-
tion, we consider instead the outer bound b, for a function ¢ taking finitely many

values (g1, ..., gx ). Then,

- 1 K
bi= % {%E(WW’)(SY+Zka|k1<U)G;(U>},
E(n3) k=1
where py, := P(g(W) = gi), Flx == Foyjgow)(-lgr) and G := F,,1qw)(-|gx). Again,

we consider a plug-in estimator of b:

-~ 1 B
= g (B + 3 [ B0 .

where ﬁ"k (resp. @‘k) is the empirical cdf of 7y (resp. 74) on the subsample of S;

satisfying g(VVi(l)) = gi (resp., the subsample of S, satisfying g(I/Vj(Q)) = gx). The

16



estimators E (WW') and p are simply obtained by combining the two samples,
e.g.,

1 n m

S witwi S wEw (13)

~

EWW') =

m—+n

Choice of ¢g(.). If W is finitely supported, one can simply let g(W) = W. Yet,
if W takes many values, it is convenient to group some of these values together,
so that none of the (Pg)r=1.. x is too small and the asymptotic framework below
remains a good approximation. When W is not finitely supported, recall from
Theorem 2 that b} is sharp if vy 1L W|g(W) and vg 1L W|g(W). Hence, we can
expect tight bounds if g(1¥) captures most of the dependence between (vy,vy)
and W. Since vy and v, are already residuals, we seek to capture possible het-
eroskedasticity by regressing |vy| and |vy| linearly on W. This yields two indices,
W'y and W’'S;. The underlying idea is that if Y and 7, satisfy a linear location-
scale model, namely Y = W'dy + (W'sy )&y with & 1L W and similarly for 7,
then vy L W|g(W) and v, 1L W]g(W) hold with g(W) = (W'sy, W's,). How-
ever, this construction does not ensure that g is finitely supported. To address
this, we perform K-means clustering on (W'¢, W’S,;). This yields a function g

taking K values only. The choice of K is discussed in Section 5 below.

4.2 Asymptotic normality of Ed and inference on by

We now turn to the asymptotic properties of by, and the construction of confidence
intervals on by. For conciseness, we focus on the case without common variables;
we briefly discuss the effect of these variables at the end of the section.

4.2.1 Asymptotic normality

We first establish the asymptotic normality of by, under the following assumptions.

Assumption 2 We observe (Y1,....Y,,) and (X, 1, ..., Xom), two independent sam-

ples of i.i.d. variables with the same distribution as'Y and X,, respectively.

Assumption 3 One of the following holds:

(i) E[|Y|*™] < oo for some ¢ > 0, |Supp(ng)| = |Supp(X)| < oo and Yh €
Supp(ng), F~1 is continuous at G(h).

(ii) E[||X]|*] < oo, |Supp(Y)| < oo, Supp(ng) is an interval and G is continuous.
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(iii) E(|Y |7 + || X||*¢) < oo for some e > 0, F~! and G are continuous and
for either Z =Y or Z = ny, the distribution of Z is continuous with respect
to the Lebesque measure and there exists Cy,Cy > 0 such that for all z in

the interior of Supp(Z),

fz(2) Cy
F) (- Fa(2) = " (1 )P

(14)

We consider in Assumption 3 three possibilities, depending on whether 7, and
Y are finitely supported or not. The first case corresponds to 7; being finitely
supported. In such a case, Y can be continuous or discrete, as long as, in the
latter case, there is no (h,y) such that F(y) = G(h) € (0,1). The second case
corresponds to Y being finitely supported and 7, continuous. The third case
corresponds to the two variables being, loosely speaking, continuous (actually,
case (iii) is compatible with Y having point masses, if we let Z = 7). Then,
we impose not only moment conditions but also (14). This condition holds on
Supp(Z) N [0, 00) for all distributions that have increasing hazard rates, such as
log-concave distributions (as their survival function is then log-concave). It also
holds for many distributions with decreasing hazard rates, such as Pareto and
Weibull distributions. More generally, we expect Condition (14) to be mild, since
for any continuous probability measure p with cdf F', density f and supremum of

support equal to T < oo, we have, for all A < T satisfying F'(A) > 0,

/ F 1 — da: > / F(z)])dx = .

On the other hand, for any Cy,Cs > 0,

T 02
d < 0.
f, e Zn(L+ 2z’ =%

Thus, one cannot have f(z)/[F(z)(1 — F(z))] < C; A Cy/(|z]In(1 + |z|)?) for all
x large enough; and similarly one cannot have f(z)/[F(z)(1 — F(x))] < C; A
Ca/(|z| In(1 + |z|)?) for all z small enough.

To define the asymptotic distribution, we introduce additional objects. First, let

h(z) = [} F7'G(27) +u(G(x) — G(x7))]du and

U = —ba(n — En3)),
¢2 = _E[h(nd)Til]E[TflTil]ilelndu

Uy i= = [ {na <1} = GOIF 0 Gty
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Wy = — / 1Y <t} — F(1)|G~ o F(b)dt.

These four variables correspond to the influence functions of respectively /m(E(72)—

B(13)), vim Jy F7HG =Gt m Jo F7HG! =Gt and Vi fg G7HF ! =
F~Y)dt, with G,, the empirical cdf of the (n4)j=1..m (note that G,, cannot be

computed in practice, since the (74);=1,..» are unobserved).

Theorem 3 Suppose that min(m,n) — oo, n/(m+n) — X € [0,1] and Assump-
tions 1-3 hold. Then,

mn

<gd _bd> ~L N0, V),

m-+n

where Vg := [NV (1 + g + 13) + (1 = NV (¥4)] /E(n7)?.

Remarks on the result. First, we comment on the assumptions underlying
Theorem 3. We allow not only for A € (0, 1), but also for A = 0 or A = 1, which cor-
responds to cases where one sample is much larger than the other. In these cases,
the asymptotic variance V; simplifies. Also, when min(|Supp(X)|, |[Supp(Y)|) <
00, we obtain weak convergence under minimal conditions; note that E[|| X]|*] < oo
is close to being necessary for the OLS estimator 74 of the regression of 77 on T,
to be y/m—consistent.

When min(|Supp(X)|, |Supp(Y)|) = oo, the conditions we impose are probably not
minimal, but note that a moment of order 4 for Y and 7,4 seems necessary in view of
(12) and the discussion of Theorem 1 in Del Barrio et al. (2019). Moreover, closely
related results in the literature on the asymptotic normality of W5 (F,,, G,,) impose
strong restrictions.? In particular, instead of Assumption 3-(iii), Proposition 2.3
in Del Barrio et al. (2019) imposes strong and high-level conditions (see (2-7)-
(2.9) in their paper), while Theorem 14 in Berthet et al. (2020) also imposes
strong regularity conditions. In particular, because their Assumption (FG) must
hold for both the left and right tails of the distributions, one can show that their
subconditions (FG1) and (FG3) already imply (up to letting ¢ = 0) Assumption
3-(iii) for both Z =Y and Z = n,.°

4By the proof of Point 2 of Theorem 3, we obtain, under Assumptions 1-3, the asymptotic

normality of (nm/(n +m))"/2(Wa(F,, Gp) — Wo(F, Q).
50On the other hand, both Berthet et al. (2020) and Del Barrio et al. (2019) also consider

more general Wasserstein distances than just Ws.
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Sketch of the proof. In a first step, we account for the fact that ng and E[n?]

are estimated. This requires in particular to show that

Vi [ F G~ Gt = — Bl TV —20) +op (1)

where 7y is the limit in probability of 4. This result is not obvious; our proof
relies in particular, again, on the Cambanis-Simons-Stout inequality. The second
step is to study the asymptotic behavior of (nm/(n + m))Y? [J[E1(8)G;H(t) —
F~1(t)G~1(t)]dt. Here, we use the decomposition

/01 FN (G (tdt = /01 FH(6)(G, (1) — GTH(t))dt
+ /01 GHOF, () = FH (1)) dt + rom,

where 7, 1= fo (F7H(t) — F~1(8))(G;H(t) — G~ (t))dt. We prove that the first two
terms T}, and T, are asymptotically linear by adapting results on L-statistics, see
in particular Theorem 1 in Chapter 19 of Shorack and Wellner (1986). That the
remainder term 7, ,, is negligible if Y (say) is finitely supported follows from the
continuity of G~! at the support points of Y. Note that if this continuity condition
does not hold, we lose asymptotic normality; see Del Barrio et al. (2024) for the
exact distribution in such cases. If Assumption 3-(iii) holds, we relate instead the
remainder term to bounds on the convergence rate of Wy(F,,, F') and Ws(G,,, G).
However, existing results on such rates, and in particular Theorem 1 in Fournier
and Guillin (2015), are not sufficient for our purpose. Here, we improve upon their
bound, which holds under weak restrictions, by leveraging in particular Condition
(14). We do this by linking W5(F,, F') to the variance of order statistics, and
relying on a lemma similar to Corollary 2.12 in Boucheron and Thomas (2015);

see Lemma 3 in Online Appendix E.3.

4.2.2 Confidence intervals

We construct confidence intervals on b, using the asymptotic normality of Ed and
a plug-in estimator of V. Specifically, let h(z) = [} F 1 Gm(z™) + u(Gp(z) —
Go(27))]du and

{b\li = —b (ndz an]) )
1 -
- (mzh(ﬁdj)T/U) ( ZT ;T 1]) TN,
j=1

7=1
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byi = — /[]l {Na <t} — Gm(t)]Fn_l o @m(t)dt,

Jui=— [V < 1} = F0]G,,! o Fu(t)d.

Then, define
A~ 1 n LSNP -~ ~ \2 m LN
Vi = 5 X > (wu + 125 + %J') +—— Z%] :
o) roem & e

Note that V, depends on d; in particular, V_g is the estimator of the asymptotic
variance of b_y = —b,;. We then consider the following confidence intervals on by

with nominal level 1 — o

CIl—a = [_/b\—d — Rl-a n m‘?—da :b\d + 21-a nt de
\/ nm V nm

where z;_, is the quantile of order 1 — « of a standard normal distribution. We

)

can replace the usual quantile 2;_,/2 by 21, since by Theorem 1, the identified

interval of b, is not reduced to a singleton (by > 0 > b,) as long as V(Y) > 0.

Theorem 4 Suppose that min(m,n) — oo, n/(m+n) — X € [0,1], Assumptions
1-8 hold and V(Y') > 0. Then,
inf limsup P (bg € Cli_,) =1— .
bde[bdvbd] n—oo
Once again, the proof of Theorem 4 is not straightforward. In particular, two
difficulties are (i) to prove convergence of (1/m) 3> 7., ()T 15 (ii) to handle
the terms including @Zg,i and @241‘- For (ii), we rely in particular on an extension of

Lemma A.1 in Del Barrio et al. (2019), see Lemma 4 in Online Appendix E.3.

4.2.3 Common variables

Given our focus on a finitely supported g(W), the analysis is very similar to
the case without common variables, so we mostly highlight the differences here,
without providing a formal result for the sake of conciseness. First, the asymptotic
variance of id includes additional terms due in particular to (i) the estimation of
S E[WW']éy; (ii) the estimation of the residual vy. The exact expression of the
asymptotic variance, which includes eleven terms instead of four as above, is given

in Online Appendix B.
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Then, the construction of the confidence interval is similar to that described above,
with one important difference, which is to allow for the possibility of point iden-
tification. To maintain size control, we rely on Stoye (2020) to construct the
confidence intervals. This method has the appealing features of not requiring
any tuning parameter, being simple to compute, and relying on mild conditions,
beyond the joint asymptotic normality of the lower and upper bounds. We imple-
ment this inference method in our Monte Carlo simulations (Section 5) and in the

applications (Section 6).

5 Simulations

We now study the finite sample performances of our estimators and inference
method. We consider a single DGP encompassing three cases of available data:
one in which only Y and X, are available, one in which X, is also observed jointly
and enters the main regression and one in which W, , in addition to X, is observed.

In the latter case, the parameters remain the same as in the second case. The DGP

is as follows. We let W, ~ U[0,1], X. ~ N(0,1) and

X, =Xca1 + Waas + (1 + Wody)n, n|W,, X. ~ N(0, 072,),
Y =X,by + Xoby + Wads + €, €| X, Wa,n ~ N(0,02).

We fix a; =1, a2 =10, dy =1, 0p =1, by =1, bp =1, dy = 0.25 and
0. = 4. The true bounds in the first two cases are obtained by simulations,
whereas there is a closed-form expression in the last case. We fix n = m and vary
it from 400 to 4,800. We construct g(W) as described in Subsection 4.1.2; with
K = max(2, |min(n,m)%?|), where |z| denotes the integer part of x; we discuss
alternative choices of K below. The results are displayed in Table 1. We report
the average of the estimated bounds (“Bounds”) and the average of the estimated
95% confidence intervals CI;_, (“95% CI”) for b%!. We also report the mean
difference between the length of the confidence sets and that of the identified set,
see column “Ex. length” in the table. Finally, the column “Covg” corresponds to
the minimum, over b; in the identified set of %!, of the estimated probability that

b1 belongs to the confidence interval.
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Bounds

95% CI

Ex. length Covg.

Panel 1: Without (X., W,)
Identified [-1.624,1.626]
400 [1.623,1.625] [-1.743,1.746]  0.239  0.940
800 [-1.622,1.624] [-1.707,1.709] 0.166 0.934
1,200 [-1.623,1.625] [-1.693,1.695] 0.138 0.933
2400  [-1.625,1.626] [-1.674,1.676]  0.100  0.949
4800  [1.625,1.627] [-1.66,1.662]  0.072  0.942
Panel 2: With X,
Identified [-1.583,1.585]
400 [-1.563,1.566] [-1.723,1.708]  0.264  0.941
800 [-1.573,1.575] [-1.687,1.677] 0.196 0.956
1,200 [-1.574,1.576] [-1.67,1.661] 0.163 0.954
2,400  [-1.578,1.581] [-1.647,1.641]  0.120  0.959
4,800 [-1.579,1.582] [-1.629,1.625] 0.086 0.966
Panel 3: With (X, W,)
Identified  [0.196,1.405]
400 [0.203,1.394] [0.037,1.6] 0.354 0.963
800 [0.203,1.404]  [0.087,1.555] 0.259 0.955
1,200 [0.201,1.402]  [0.107,1.528] 0.211 0.952
2,400 [0.199,1.404]  [0.133,1.495] 0.153 0.953
4,800 [0.198,1.403]  [0.151,1.47] 0.109 0.964

Notes: results obtained with 2,000 simulations for each row. 400, 800 etc. correspond to the sizes
of the two samples (n = m). Column “Bounds” reports either the identified set or the average
of the estimated bounds over simulations. Column “95% CI” reports the average of the 95%
confidence intervals over simulations. “Ex. Length” is the excess length, i.e. the average length
of the confidence region minus the length of the identified set. Column “Covg.” displays the
minimum, over b = (by,...,b,) € B, of the estimated probability that b € CI;_,(b%!). In Panel
1, the true coefficients of (X,, 1) are (1.103, —0.393), while in Panels 2-3, the true coefficients of
(X5, X¢, 1) are (1.019,0.981,0.026).

Table 1: Monte Carlo simulation results on the confidence intervals for %!

A couple of remarks are in order. First, as expected, the 95% confidence intervals

—-1/2

shrink with the sample sizes n, approximately at the n rate in the three cases
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we consider. This is reflected in the evolution of the excess length across sample
sizes. Second, the confidence intervals exhibit satisfactory coverage. In particular,
coverages for all panels are generally close to the nominal 95% level, even for small
sample sizes. Coverage rates are generally conservative, but still very close to the
nominal level for the specification reported in Panel 3. This is remarkable: one
would in principle need to use the continuous variable g(W) = 1+ W,d; to obtain
the sharp bounds, by Theorem 2, whereas we instead rely on a finitely supported
variable g(W) with few points of support (from 3 to 5 when n varies from 400
to 4,800). Third, and importantly, the identified set is much tighter in Panel 3
than in Panels 1 and 2. This illustrates the substantial identifying power of the
auxiliary variable W,. For this particular DGP, the identifying power - measured
by the reduction in the length of the identified set - of W, is in fact larger than

that of the common regressor X..

Table 2 reports the computational time needed to compute the estimated bounds
and associated confidence intervals. When W, is observed, this time also includes
the K-means clustering we perform to compute g(1¥'). The main takeaway is that
our procedure is very fast: it takes less than 1 second when observing (X., W,)

with n =m = 12,000, and less than 12 seconds with n = m as large as 120,000.

n(=m) Without (X,,W,) With X, With (X, W,)

1,200 0.004 0.101 0.108
12,000 0.02 0.85 0.89
120,000 0.45 10.91 11.76

Notes: these times are obtained on the same DGP as above, taking the average over 100 replica-
tions and using our companion R package RegCombinBLP. We parallelize the computation over
20 CPUs on an Intel Xeon Gold 6130 CPU 2.10GHz with 382Gb of RAM.

Table 2: Time (in s.) for computing the point estimates and confidence intervals.

Finally, we explore the effect of the tuning parameter K on coverage; see Table
3 below, where we consider two sample sizes (n = 1,200 and n = 6,000). As
expected, increasing K decreases the length of the Cls, but also reduces cov-
erage. This probably reflects the fact that the estimated bounds become bi-
ased for larger K. On the other hand, coverage remains above 95% for K =

max(2, [min(n,m)¢]), ¢ < 1/3, suggesting that our baseline choice of K with
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c = 0.2 works well in practice.

Number of points K Bounds 95% CI Ex. length Covg.
Panel 1: n =1,200
Identified  [0.196,1.405]

3 [0.200,1.405] [0.105,1.531] 0.217 0.955

5 [0.203,1.401] [0.109,1.526]  0.208  0.965

10 [0.210,1.394] [0.114,1.515]  0.192  0.949

15 [0.217,1.388] [0.120,1.508]  0.178  0.927

20 [0.221,1.381] [0.124,1.499]  0.166  0.910

50 [0.257,1.344] [0.158,1.459] 0.092 0.763

80 [0.277,1.327] [0.174,1.444]  0.060  0.644

100 [0.275,1.330] [0.172,1.447] 0.066 0.656
Panel 2: n = 6,000
Identified  [0.196,1.405]

3 [0.196,1.406] [0.155,1.466]  0.102  0.953

5 [0.196,1.404] [0.155,1.463]  0.099  0.954

10 [0.200,1.404] [0.159,1.463]  0.095  0.944

15 [0.200,1.401] [0.157,1.458]  0.092  0.952

20 [0.202,1.400] [0.160,1.457]  0.088  0.950

50 [0.209,1.390] [0.166,1.445] 0.070 0.899

80 [0.217,1.384] [0.174,1.438]  0.055  0.843

100 [0.222,1.379] [0.178,1.433]  0.045  0.785

Notes: same DGP as above, observing (X., W,). 3, 5, 10 etc. are the number of points K
taken by ¢(-). Column “Bounds” reports either the identified set or the average of the estimated
bounds over simulations. Column “95% CI” reports the average of the 95% confidence intervals
over simulations. “Ex. Length” is the excess length, i.e. the average length of the confidence

region minus the length of the identified set. Column “Covg.” displays the minimum, over

b= (b1,...,bp) € B, of the estimated probability that b; € CI;_,(b%!). The results are obtained

with 1,000 simulations for each sample size.

Table 3: Simulation results when varying the number of points K taken by g.

6 Applications

We now illustrate our approach with two applications. We first study the influence
of race on the probability of patent approval in the United States, revisiting recent

work on this question (Dossi, 2024). We then investigate the relationship between
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students’ risk and time preferences and educational achievement across countries
(Hanushek et al., 2022).

6.1 Race and patent approval

In our first application, we investigate the existence and magnitude of racial and
ethnicity gaps in science and innovation. This question has attracted much inter-
est in the recent empirical literature (see, e.g. Kerr, 2008; Antman et al., 2024;
Dossi, 2024). A key challenge is that datasets typically do not measure race and
ethnicity together with the outcome of interest. Using our notation, race/ethnicity
is an outside regressor (X, ), with successful patent application being the outcome
of interest (Y). Instead of X,, we may observe other characteristics, such as the
applicant’s name. Then, in other datasets, we may observe these characteris-
tics together with race and ethnicity. A commonly used strategy in this context
is to impute race and ethnicity using applicant characteristics observed in both
datasets. We take a different route and derive bounds that use both datasets

without relying on the exclusion restriction implicit in the imputation approach.

Following Dossi (2024), we rely on two datasets. The first is the publicly avail-
able dataset released by the United States Patent and Trademark Office (USPTO)
covering the universe of patent applications submitted in the United States. We
use the Patent Examination research dataset (PatEx), which contains detailed
information on all patent applications, including the full names of the applicants
(Graham et al., 2015). We restrict the sample to applications filed between Jan-
uary 2001 and December 2018 and focus on utility patents.® We further restrict the
sample to applicants based in the United States, and as in Dossi (2024), consider

only the first inventor listed on the application.

We combine the PatEx dataset with data from the US Census. Namely, we use
the information on the aggregate frequency of last names by race and ethnicity
from the 2010 Decennial Census Surname Table (Comenetz, 2016). 6.3 million
different last names were recorded for 295 million people.” Among them, we use
the publicly released frequency by race and ethnicity of the 162,254 last names

that occur more than 100 times, representing 90.1% of the overall population. We

6Utility patents, also referred to as “patents for invention”, constitute 90% of the patent

documents issued by the USPTO in recent years.
"In the following, we neglect the statistical uncertainty related to this sample.
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consider in our analysis five different categories of race and ethnicity, namely: (i)
Black or African American (11.99%), (ii) Asian and native Hawaiian and other
Pacific Islander (4.86%), (iii) Hispanic or Latino (16.29%), (iv) American Indian or
Alaska Native (1.76%), and (v) others, which includes White (64.40%) and those
declaring to belong to two or more races (0.69%), and is used as our reference

category.®

Estimation results are reported in Table 4, where the first column presents the
TSTSLS point estimates, the second the point estimates of our bounds, and the
last column reports the 95% confidence intervals computed from our asymptotic
normality results. We use applicant’s last name as an auxiliary variable (W,).
Our bounds correspond to BZ where, to reduce the size of the vector W, we define
g(W) as W, unless the names W, appear L = 5 times or less in the dataset of
inventors, in which case we set g(W) = 0 (Table 7 in Appendix C.1 show that
our results are robust to choosing L = 3 or L = 10 instead). Since inventors are
a subset of the whole population, our bounds are plug-in estimates of Equation
(11) above. In contrast to our bounds, the TSTSLS estimates rely on an exclusion
restriction. Namely, the applicant’s last names is assumed not to be predictive of
patent approval once conditioning on applicant’s race and ethnicity. While this
type of name-based exclusion restriction has frequently been used in applied work,
its validity is far from obvious in this particular context. In fact, it does not seem
unreasonable to think that, in contrast to the TSTSLS exclusion restriction, any
racial discrimination in the patent approval process would operate largely through
the applicant’s last name. This is consistent with the information available to
patent examiners, who always observe applicants’ last names but do not observe
race, and only infrequently interview them in person (see Cockburn et al., 2002,
and Avivi, 2024 for discussions of the USPTO selection process).”

Turning to the results, a key takeaway is that the TSTSLS results that are obtained
using last names as an exclusion restriction are fragile. Notably, while the TSTSLS

estimates point to Black inventors being significantly less likely to be granted a

8Estimation results are robust to splitting the “two or more races” category evenly across the

other racial categories.
90ne may argue that the TSTSLS identifies instead the effect of, e.g., having a Black- or

Asian-sounding name. It is unclear whether this interpretation is warranted either. First,
names could also predict other relevant characteristics. Second, this interpretation would require
another exclusion restriction, namely that the coefficients of race in the “long” regression are

zero, which is arguably strong as well.
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patent, the bounds obtained with our method for this coefficient are wide, with
a lower bound as large as —0.729 and an upper bound that is positive and large
as well (0.360). While a similar conclusion holds for Hispanics and American
natives, our bounds are somewhat more informative for the coefficient on Asians,
with a lower bound of —0.137 and an upper bound of 0.187. At any rate, these
results indicate that the conclusions one would reach from the TSTSLS estimates
of significant racial differences in the probability of being granted a patent crucially

hinge on the underlying exclusion restriction.

A final point is that, although the bounds reported in Table 4 tend to be wide,
using last names as W, does yield substantial improvements over the simple bounds
based solely on Y and X,. In particular, without W,, the sharp lower bound for
each of the four coefficients equals -1 and is therefore not informative.!® Hence,
even without exclusion restrictions, observing last names in both datasets delivers

meaningful informational gains.

Coefficient TSTSLS Sharp bounds 95% CI

Black -0.038  [-0.729, 0.360] [-0.772, 0.383]
(0.007)

Hispanic  -0.032  [-0.559, 0.279] [-0.572, 0.287]
(0.005)

Asian  0.041  [-0.137, 0.187] [-0.145, 0.195]
(0.002)

American native  -0.047  [-0.801, 0.364] [-0.831, 0.378§]
(0.005)

Notes: W, = last names and no X, 2,146,799 patent applications and 91,055 names. The CIs

and standard errors are obtained clustering at the last name level, following Dossi (2024).

Table 4: Estimation results for racial inequalities in patent approval

Next, we investigate why our bounds are more informative for some races/ethnicities

than others. To do so, we report in Figure 1 the distribution of the racial frequen-

10This occurs here because (i) P(Y = 0) is larger than P(race) for all other races than White
and multiracial applicants, and ii) P(Y = 1) is larger than P(White). The corresponding
upper sharp bound is equal to 0.432 for each of the four coefficients. Again, this is due to the
particular configurations of P(Y = 1) and P(race). In our setup, 0.432 simply corresponds to
P(Y = 0)/P(White).
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cies conditional on last name, focusing on the names that are the most predictive
of race and that together account for 10% of each sub-populations (here, Blacks
and Asians - groups for which the bounds are relatively wide and more informa-
tive, respectively).This figure shows that last names are highly predictive of being
Asian, much more so than for Blacks. This illustrates the connection between the
informativeness of our bounds and the extent to which W, (inventor’s last name)

is predictive of X, (race/ethnicity).

50

40

30
Race and Ethnicity
M Asian
Black
2 |
1

.0

Density

o

=y
o

0.6 0.7 0.8 0.9
Value

Notes: 10% of the associated population after sorting by predictability represents 6,669 names
for Blacks (dark orange), and 637 for Asians (dark green). We use 100 bins.

Figure 1: Distribution of racial frequencies for a given name for the most predictive

names, which cumulatively account for 10% of the associated population

We conclude this analysis by exploring further the effect on our bounds of using
more auxiliary information, as measured by the auxiliary variables W,. Since
the Census Surname table only contains racial characteristics associated with last
names at the aggregate level, we cannot use this data for this purpose. Instead,
we leverage the fact that voter registration data in North Carolina (Historical
Voter Registration Snapshots) records historical individual data about active and
inactive voters registered in North Carolina, with information about their full
names, city, race and ethnicity. Thus, restricting to the set of inventors residing in
North Carolina (62,112 applications associated with 23,689 unique inventors), we

are able to merge application data with individual data from the Historical Voter
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Registration Snapshots.!!

Table 5 provides a comparison of different point estimates for our bounds, using
different sets of W,. A couple of comments are in order. The first one relates to
the sample restrictions imposed by the common support requirements when using
more comprehensive sets of IW,. The underlying reduction in sample size increases
from around 3% when using last names only, to as much as 37% when using the
complete name and city. Second, we only obtain very informative bounds in the
latter case, in which we uniquely identify as much as 98% of the inventors. In
other words, (very) high predictive power is needed to obtain tight bounds on the

coeflicients of interest.

W, Last name Complete name First, Last name, city Complete name, city
Black [-0.593, 0.327]  [-0.245, 0.122] [-0.154, -0.004] [-0.068, -0.043]
Hispanic [-0.491, 0.329]  [-0.086, 0.115] [-0.050, 0.079] [0.021, 0.049]
Asian [-0.269, 0.300]  [-0.075, 0.087] [-0.056, 0.052] [-0.013, 0.009]
American natives [-0.676, 0.338]  [-0.270, 0.183] [-0.253, -0.074] [-0.106, -0.075]
Number applications 60,688 47,088 48,121 39,427
Number of inventors 22,904 16,164 16,710 12,418

Share of matched applic. 0.02 0.47 0.79 0.98

Notes: Complete name means first, last, and middle names. Total number of applications is
62,112 with 23,689 unique inventors in North Carolina. No X.. The estimates are computed
taking into account the share of matched applications, i.e. as a weighted average of the OLS
coefficients obtained on the merged dataset of uniquely identified individuals based on the in-

formation W, and the bounds obtained using the two datasets with unmatched observations.

Table 5: Bounds using different sets of W,,.

6.2 Preferences and educational achievement

Preference parameters, especially patience and risk taking, play an important role
in human capital investment decisions. However, to our knowledge, no single data
set jointly measures these preferences and test scores across countries. In the
following, we build on the cross-country analysis of Hanushek et al. (2022) and

combine data from the OECD’s Programme for International Student Assessment

"To be representative of the population in North Carolina over the period 2001-2018, we
actually use snapshots of 2006, 2013, and 2019, keeping only information about full names, city,
and recorded race and ethnicity of all the uniquely identified active and inactive voters over this

period. This data is openly available at www.ncsbe.gov/results-data/voter-history-data.
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(PISA) with the Global Preference Survey (GPS) to examine how students’ time

and risk preferences are associated with educational achievement.

PISA assesses achievement in mathematics, science and reading for random sam-
ples of 15-year-old students on a three-year cycle, providing repeated cross-sectional
data representative of each country-by-wave cell. In the following, we consider as
our main “Y dataset” the standardized math test scores over the seven waves of
PISA testing, covering the period 2000-2018. Over this period, a total of 86 coun-
tries participated at least once. We combine these test scores with data from the
Global Preference Survey (see, e.g., Falk et al., 2018). The GPS provides scientifi-
cally validated data on several preference parameters from representative samples,
of around 1,000 respondents in each country surveyed in 2012, measuring patience,
risk taking, positive and negative reciprocity, altruism, and trust (X,), for 49 dif-
ferent countries. The GPS also records gender for each respondent, which we use
as a common regressor X., together with the country. Restricting the analysis to

this subset of 49 countries yields test score data for a total of 1,992,276 students.!?

In Table 6, we compare our bounds on the coefficients of patience and risk taking
with the TSTSLS estimates considered by Hanushek et al. (2022), where both
variables are imputed using country dummies. We consider alternative specifica-
tions depending on whether only patience, only risk taking or both are included
in the regression. In Panel D, we also include other preference variables (positive
and negative reciprocity, altruism and trust) as controls in the regression. Hence,

in this last specification, X, is of dimension 6.

A couple of comments are in order. A first takeaway is that, in contrast to the pre-
vious application and despite the absence of any W, here, our bounds tend to be
informative. This holds for both the coefficients of patience and risk-taking, and
across all four specifications reported in the table. That the bounds remain infor-
mative is particularly noteworthy in Panel D, where we control for four additional
preference parameters all included in X,. One might indeed have expected that
increasing the dimension of X, would cause the bounds to widen substantially, yet

this is not the case here.

128ee Appendix C.2 for more details on the GPS dataset, especially on the measurements of
preference parameters. As the PISA and GPS datasets are representative of the same common
population after reweighting the observations by the corresponding survey weights, we use the

survey weights in our analysis.
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Panel A Panel B
TSTSLS  Sharp bnd. Clon b TSTSLS Sharp bnd. CIlon b*!

Patience 0.898  [-0.844,0.943] [-1.035,1.187] - - -
(0.045) - - -
Risk-taking - - - -0.596  [-1.018,0.858] [-1.188,1.021]
- - - (0.128)
Panel C Panel D
TSTSLS  Sharp bnd. Clon b®' TSTSLS Sharp bnd. CIon B!
Patience 1.172 [-0.842,0.986] [-1.105,1.223] 1.122 [-0.853,0.977] [-1.083,1.236]
(0.046) (0.050)
Risk-taking -1.311  [-1.067,0.877] [-1.259,1.051]  -1.345  [-1.094,0.918] [-1.301,1.036]
(0.108) (0.128)
Additional controls X X X
Tests equality Stat. p.value Stat. p-value
U. bnd. Patience 1.114 0.132 0.801 0.211
L. bnd. Risk-taking  1.530 0.063 1.419 0.077

Notes: X, includes countries and gender dummies, no W, here. Dependent variable: PISA math
test score in all PISA waves 2000-2018. Respectively 1,992,276 and 49,689 observations for the
PISA and GPS datasets. Least squares regression weighted by students’ sampling probability.
Additional preference controls are positive and negative reciprocity, altruism and trust. The
standard errors of the TSTSLS estimators, our confidence intervals and the tests of equality
between our lower or upper bounds and the TSTSLS estimators take into account the clustering

at the country level.

Table 6: Preferences and Student Math Achievement across Countries

Related to this, for Panels C and D, the TSTSLS estimates of the coefficients
associated with patience and risk-taking both lie outside of the estimated sharp
bounds, and, for the risk-taking coefficient, outside of the 95% confidence intervals
as well. One-sided tests of equality between the lower bound of our identified set
on the coeflicient of risk-taking and the TSTSLS point estimate in Panels C and D
leads us to reject this hypothesis at the 10% level, consistent with a violation of the
underlying exclusion restrictions. Recall that the TSTSLS estimator relies on the
arguably strong assumption that countries do not affect test scores beyond their
effects through risk aversion and patience. In terms of magnitudes, focusing on
Panel D where we include additional preference controls, our bounds indicate that
a 1 standard deviation (SD) increase in patience is at most associated with 0.977
SD increase in math test scores, against 1.122 SD using TSTSLS. Similarly, it
follows from our bounds that a 1 SD increase in risk-taking is, at most, associated

with a decline of 1.094 SD in student achievement, against a larger decline of
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-1.345 using TSTSLS.

Finally and importantly for practice, our inference method can be implemented at
a low computational cost. Even though the datasets used in this analysis contain a
very large number of observations (1,992,276 and 49,689), it takes 5 minutes only
to reproduce the results of Panels A and B, 9 minutes for Panel C, and 21.5 minutes

for Panel D (where X, is of dimension 6), using our R package RegCombinBLP.!3

7 Conclusion

We study regression coefficients in a context where the outcome of interest and
some of the covariates are observed in two different datasets that cannot be
matched. This type of data combination environment arises very frequently in
various empirical setups. The usual approach, which consists in imputing the
outcome Y or the outside regressors X, using auxiliary variables W,, hinges on
exclusion restrictions that may not hold in practice. We take a different route
and derive sharp bounds on the regression coefficients using only the observed
distributions. As they take a simple form, these bounds can be estimated at a
low computational cost; we also derive simple and easy-to-compute confidence

intervals.

We illustrate our method with two applications. The first studies racial dispari-
ties in patent approval, the second the effects of patience and risk-taking on test
scores. The first application highlights that in some cases, results based on an
imputation approach crucially rely on the underlying exclusion restriction; with-
out it, uncertainty on the true coefficients of interet remains large. The second
application shows that our bounds can be informative on the magnitude of the

effects, and can also lead to reject the imputation-based approach.

I3We parallelize the computation over 15 CPUs on an Intel Xeon Gold 6130 CPU 2.10GHz
with 382Gb of RAM.
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A Comparison with Pacini (2019)

A.1 Sharpness

Pacini (2019) gives the expression of by, also allowing for common regressors (de-
noted by z in his paper) but not for additional variables W,. His bounds coincide
with ours when X, is univariate, but not otherwise. In the multidimensional case,
his expression of by is an upper bound of the true bound. This is so because the

equality in Lemma 5 of Pacini (2019) should be replaced by an inequality.

To see this, first remark that F there is the set of cdfs (Fiy, ..., Fu,,) that are
compatible with the distributions of (z, z) and (y, z), with Fj, denoting the joint
cdf of (zy,y). Hence, in the third equality “Fy, € F” is not well-defined. A
natural fix is then to replace it by “Fj, € F,”, where Fj, denotes the set of cdfs
Fy, compatible with the laws of (z, z) and (y, z). But then, the third equality in
the proof of Lemma 5 does not hold, because F is not a cartesian product of Fy

in general: it is instead a (strict in general) subset of the cartesian product.

A.2 Numerical comparison

We illustrate in the following that the bounds provided in Pacini (2019) can in

practice be substantially larger than the sharp bounds. To this end, we consider
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the following class of DGPs, indexed by p: log(Y) ~ N(0,2) and X = (X1, X5) ~
N(0,%) with ¥ defined as in (8) (note that ¥ depends on p). To compare the two

types of bounds, we consider the following ratio

R::?;_QZ7
bd—bd

where d = (1,0) and (&),b,) denote Pacini’s bounds. Figure 2 reports R as a
function of p. When X; and X, are independent, the two intervals coincide, but
the sharp bounds become tighter as the correlation between X; and X, increases.
With p > 0.88, the sharp identification interval is more than four times shorter

than the one obtained with Pacini’s bounds.

N

w

Ratio of interval lengths

0.00 0.25 0.50 0.75 1.00
Correlation between the two components of X

Notes: results obtained by approximating the true bounds using a sample of size 10°. The ratio
of interval lengths is the ratio of the intervals obtained using Pacini (2019) bounds and the sharp

bounds.

Figure 2: Comparison between Pacini (2019) bounds and the sharp bounds

B Asymptotic variance with common variables

With common variables, the asymptotic variance takes the form

A
Vi =—= V@] + 93, + ] + o + o + o)

Eng]
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] = — <Z 1 { W(Q) = gk} E [F@l o G|k(Vd)W(2)/|g(W(2)) = gk} )E[W(2)W(2)/]1
x W@y, — EWOT | E[T T )7 T 1) ,

{ (W) = g} / (1 v < t} — Gu(t)] i o Gi(t)dt,

i MN WMN

{ W(l) _ gk} E [G‘fkl o ﬂk(yy)W(l)']g(W(l)) = gk} )
E[W<1>W T W Wy,

N Z o) —gk}/[n{uygt}—ﬂk(t)]a‘;;oﬂk(t)dt,
v =Y {gW®) =g} - p / Fi (w) G (u)du,

k:_

f: { — Dk / F|k |k Y(u)du.

C Additional elements on the applications

C.1 Additional results on the first application

Limit L =3 Limit L = 5 (baseline) Limit L =10
Coefficient  Sharp bounds 95% CI Sharp bounds 95% CI Sharp bounds 95% CI
Black [-0.718, 0.357] [-0.762, 0.379] [-0.729, 0.360] [-0.772, 0.383] [-0.751, 0.368] [-0.793, 0.390]
Hispanic [-0.529, 0.269] [-0.541, 0.276] [-0.559, 0.279]  [-0.572, 0.287] [-0.615, 0.299] [-0.623, 0.301]
Asian  [-0.129, 0.184] [-0.138,0.192]  [-0.137, 0.187] [-0.145, 0.195]  [-0.154, 0.194] [-0.163, 0.202]
American native [-0.791, 0.361] [-0.822, 0.375] [-0.801, 0.364] [-0.831, 0.378] [-0.821, 0.371] [-0.851, 0.385]

Notes: W, = last names and no X, 2,146,799 patent applications and 91,055 names. The CIs
and standard errors are obtained clustering at the last name level, following Dossi (2024). We
define g(W) as W, unless the name W, appears L times or less in the dataset of inventors, in
which case g(W) = 0. We report results for L = 3, L = 5 (baseline), and L = 10.

Table 7: Robustness of estimation results for the racial inequalities on access to

patents according to the definition of g(W).
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C.2 Additional details on the second application

The GPS survey (see Falk et al., 2018) covers the following countries: Argentina,
Australia, Austria, Bosnia and Herzegovina, Brazil, Canada, Switzerland, Chile,
Colombia, Costa Rica, Czech Republic, Germany, Algeria, Spain, Estonia, Fin-
land, France, United Kingdom, Georgia, Greece, Croatia, Hungary, Indonesia, Is-
rael, Italy, Jordan, Japan, Kazakhstan, South Korea, Lithuania, Morocco, Moldova,
Mexico, Netherlands, Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi
Arabia, Serbia, Sweden, Thailand, Turkey, Ukraine, United States, Vietnam,
United Arab Emirates. The preference measures therein are based on 12 sur-
vey items, which are summarized in Table I in Falk et al. (2018). We gather them

below with their respective weights for completeness:

1. Patience: Intertemporal choice sequence using staircase method (0.712);
Self-assessment: willingness to wait (0.288).

2. Risk taking: Lottery choice sequence using staircase method (0.473); Self-
assessment: willingness to take risks in general (0.527).

3. Positive reciprocity: Gift in exchange for help (0.515); Self-assessment: will-
ingness to return a favor (0.485).

4. Negative reciprocity: Self-assessment: willingness to take revenge (0.374);
Self-assessment: willingness to punish unfair behavior toward self (0.313);

Self-assessment: willingness to punish unfair behavior toward others (0.313).

5. Altruism: Donation decision (0.635); Self-assessment: willingness to give to
good causes (0.365).

6. Trust: Self-assessment: people have only the best intentions (1).

The weights endogenously emerged from a preliminary experimental validation
procedure (see Falk et al., 2023). Each preference measure is standardized at the

individual level.

D Proofs of the identification results

D.1 Theorem 1

First, if b € B, then there exists r.v. (?,j(v) with Fiy = Fx, Fy = Fy and such
that EL(Y|X) = X'b. Thus, & := Y — X'b satisfies E(£) = 0 and Cov(X, &) = 0.
Hence, E[Y] = E[X'b] and

V(Y)=V(X'b)+ V(&) > V(X'D).
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As a result, E(Y) = E(X'b), V(Y) > V(X'b) and B C £. This also implies that
B is bounded.

Now, let us prove that B is closed. This, in turn, will imply that B is compact. Let
b, € Bforalln > 1 with b, — b and let us prove that b € B. Let ()N(n, }7”) such that
Fg =Fx, F; =Fy and b, = B(X,X})'E(X,Y,). Since E(X, X},) = E(XX'),
it suffices to prove that there exists (X,Y), with F'y = Fix, Fy = Fy, such that
E[XY] = c¢:= E(XX")b. First, note that for all M,

> o E (X, V)2

P (X, Yol = M) < | e |

< BUXPT+ B
< VE

Hence, (5(/”, ffn) is uniformly tight. Then, by Prokhorov’s theorem, there exists a
subsequence (ynj,f/nj) that converges in distribution, to ()7 ,Y) say. Moreover,
Fy = Fx and Fy; = Fy. Now, remark that for all (z,y) € R*? and all M > 0, we
have

oyl {zy > M} < 2*1 {a: > M1/2} + %1 {y > MI/Q}.

As a result, for all n > 1 and all M > 0,

E ([0, Yo, 11 {[[ X0, Vo, | > M ]
<B[IIXy, 7L {1 X, || > M} + B[T21{ [T, | > M/2}]
=B [IX|PL{|X]| > MY2}] + E [y {|v] > M"2}] .

As a result, by the dominated convergence theorem, )A(/n].f/nj is asymptotically
uniformly integrable. This implies (see, e.g. van der Vaart, 2000, Theorem 2.20)
that

E[X, Y, | = EXY].
Because we also have F P(vn] 17%} — ¢, we finally obtain F [j(v }7] = c. This proves
that B is closed.

Next, we prove that B is convex. Let (by,by) € B? and fix p € [0,1]. Then, there
exists (X7,Y1) and (X,, Ys) rationalizing respectively by and by. Let D following a
Bernoulli distribution with probability p, D ~Be(p), independent of these random
variables and let (Y, X) = (Y1, X,) if D =1, (Y, X) = (Y2, X,) otherwise. Then,
Fy = Fx, F; = Fy and

E[XY| =pE [X\Yi] + (1 - p)E [XoY2]

42



:E(XX/)(pb1 + (1 —p)bQ).

Hence, EL(Y|X) = X'(pby + (1 — p)by), which implies that B is convex.

Now, we prove by = E[Fd_,é[XX,],lx(U)Fgl(U)]. We have

- , .
ba = HeMn(lg)}f,Fy)/ [d EIXX] I} ydll(z,y), (15)

where M(F, G) denotes the set of probability measures with marginal cdfs equal to
F and G. Remark that for any ¢ = (cy, ..., ¢,) and any (X,Y) ~ Il € M(Fx, Fy),

(cX,Y) ~ 1l € M(F.x, Fy).

Therefore, letting X, := d'E[X X']7' X, we obtain

b, < / dTl(w. ).
d_HeMr?g:’Fy) uydIl(u,y)

Moreover, by the Cambanis-Simons-Stout inequality (see Cambanis et al., 1976),

max / wydlI(u, y) = E[F5 (U)Fy (D), (16)

HEM(FXd,Fy)
Hence, by < E[Fx(U)Fy ' (U)).

Now, for any U ~ U([0,1]), let Y = F,*(U). Let also C' denote a copula of
M'E[XX']7'X (recall the construction of M at the beginning of Section 3.1) and
let (Us, ..., Up) be uniform random variables such that (U, Uy, ..., U,) has cdf equal
to C. Let us define

Sa = (F)?;(U% Fd_’Q}E[XX/]*X(UQ)ﬂ ) Fogle[XX’]—lX(UP))/'

By construction, Sy ~ M'E[XX']"'X. Then, let X = (M'E[XX']"1)~1S,, so that
X ~ X. Let IT* denote the distribution of (X,Y). We have ITI* € M(Fx, Fy).
Moreover,

dEXX'|'X =dM' 'S, = Fx!(U),
where the last equality follows since e}, x M’ = d'. Thus, by definition of ba,
by > E[Fx(U)Fy'(U)]. Equation (3) follows.

Next, we prove (4). It suffices to show that Xy = n4/F(n3). Remark that

dE(XX')'X = ¢, ,M'E(XX')"'"M(M~'X) = ¢, ,E(TT)"'T.
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Moreover, ng = ~'T, with v := [1, —E(T\T_,) E(T_,T",)"']". Thus,
E(ng) =+'BE(TT")y = B(TY) = E(T\T-) E(TT7) " E(TVT-y).
As a result, E(TT") x v/E(n3) = e1,. The result follows since then,

Xg =€, ,E(TT)'T =~'T/E(n;) = na/ E(n}).

Finally, if V(Y) > 0, Fy,'(U) is not constant. By Assumption 1, we also have
V(na) > 0 and thus F, '(U) is not constant either. Then, by Theorem 1.1 and 1.2
of Jakubowski (2021) and using F, '(U) ~ 1q and E[ng] = 0, we obtain

E[F,U)Fy (U)] > BE[F, (U) E[Fy(U)] = 0.

Nd

The last point of the theorem follows.

D.2 Theorem 2

Since i’ = F(XX')"'E(XY), the exact same reasoning as in the proof of Theorem
1 shows that the identified set B(w) of F(XX')'E(XY|W = w) is convex. By

integrating over w, B is thus convex. It is also bounded as a subset of £.

Let’s now prove that By = [by, bg], with by satisfying (6); this will also imply that
B is compact. By the same reasoning as in the proof of Theorem 1, we also have
that the identified set By(w) of t'd for b € B(w) is the identified set of E[ngY |W =
w]/E(n?) and that By(w) = [by(w), bg(w)], with bg(w) := sup{¥/d : b € B(w)}. Let
U be such that U|W is uniformly distributed on [0,1]. Then, by(w) satisfies

_ 1 _
ba(w) :7>E [Fw'dd+ud|w<U|W) W’5y+uy|W(U‘W)’W = w]

=5y 2 (Wt Efu (UIW)) (W'ay 4 B (UIW)) W = w].

Next, we have by = E[nyY]/E(n3) by construction and E[ngY] = E[E[nY|W]] <
E[bs(W)]E(n3). Moreover, the bound is reached by considering

(ﬁday) (FW}6d+yd|W(U’W) W/5Y+VY\W(U|W>)~

Thus, by = E[bg(W)]. Since (W, Fy_i‘lw(U|W)) (with ¢ € {d,Y}) has the same
distribution as (W, 1), we obtain

by = {838 [WW) oy + B [F [y (UIW)W'oy | + E [,y (UIW)W'5,] }

E(ng)
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+E(17)§)E[ yd\W(U|W) VY|W<U|W):|
:E(lnd) [8,B [WW')by + E [ L (UIW) L (UIW)] )

To prove that by < BZ, remark that

EngY] =E [(W'q + va) (W'dy + vy )]
=04E [WW'] 6y + Elvavy]
—6,E [WW') 6y + E[Elvavy |g(W))]
<0aE [WW') by + E [F, i (Ulg(W)) E, oy (U g(W)]

where the last inequality follows by the Cambanis-Simons-Stout inequality. If
vg 1L W|g(W) and vy 1L W|g(W), the last expression is equal to by. The third

point of the proposition follows.

D.3 Proposition 1

Let us denote by Bz(w) the identified set of E[X;Y|W = w] when observing
Z, whereas B(w) still denotes the identified set of E[X;Y|W = w]| without the
knowledge of Z. Again, the same reasoning as in the proof of Theorem 1 shows
that the identified set Bz(w) of E[X,Y|W = w] is non-empty, closed and convex.
Thus, it is characterized by its so-called support function op, ) (d) := sup{t'd
be Bz(w)}. Asin (15), we have

T8, (w)(d) = max / [ AEXX) (), 2l) | ydl(w, 20y, 2),

HeM(Fw,x,,Fw,v,z)

where w = (2, w/)’. By Lemma 3.3 of Delon et al. (2023),

osy(d) = max [ @EXX) @), o) | ydll(w,z,,y)

e M(Fw,x,,Fw,y)

=0pw)(d),

the support function of B(w) evaluated at d. Hence, by integrating over w, we

obtain op, = og. The result follows since these functions characterize Bz and B.
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Online Appendix

E Proofs of the statistical results

E.1 Theorem 3

We prove the results in three main steps. The first step obtains linear approxima-
tions of terms related to the estimation of 7y and E(n3). The second step obtains
a linear approximation of two other terms. The third step shows that a remainder

term is negligible and concludes.

1. Linear approximation of the first terms

We first show that

nm 1 nm 1
b —b): J / Flg-l_
n—i—m(d I E(ng)[ n+m o< o

i 7v/}lz + ¢2z ]

First, remark that
= _ 1 1 . IO
bu—ba= = | [ (F71G} = FGde BB - EGR)| . (19)
E(n3) Lo
Moreover, since 74 — nai = —1"1;,(7 — Y0),

- 1 m 9 m
E(nﬁ)—E(nﬁ)Z*Znﬁi— 3] —EZ%T’MV Y0)
3 =1
+ (7 — ) ( Z ) 3 — )
7zndz nd +op ( 1/2)‘

The last equality follows since E[|| X||*] < oo implies both §—~y = Op(m~1/2) and
(L/m) > naT -1 L5 0. Combined with (18), n/(n+m) — X and the definition
of 11, this yields

nm B . [ nm —-1A-1 F1la-1 \/X S )
n+m<bd bd = [ n+m / G G )dt+m1/2iz::1wlz

+ OP 1 (19)



Let us now prove that

\/m/o1 F, NG = Gohdt = —Eh(na) TL)Vm(F — 7o) +op (1) (20)

When combined with (19), the standard result that
- a1 &
V(3 =) = BT T s 3 Taenas + 0p (1),
i=1

and the definition of 19, this will entail (17).

Remark that if n; ~ G and U|X ~ U[0, 1], then
G(ng) + U(G(na) — G(ng)) ~ U0, 1].

As a result, if we let (U, ..., Uy,) be i.i.d., uniform variables, the Y; := F~'[G (n;)+
Ui(G(na;)—G(ny))] are i.i.d. with cdf F. Let oy denote a permutation on {1, ...,m}
such that 75,1y < ... < 7o m) and }701(1) < ... < ?Ul(m). Let also oy denote
a permutation on {1,...,m} such that 7,,q) < ... < Toym); if 01 satisfies these
inequalities, let oo := o7. Finally, let [-] denote the ceiling function. Then,
define @ (t) = Ndoy(fme)) and Qm(t) := Tdo (fmt])- By the Cambanis-Simons-Stout

inequality,
1 N 1 . 1 ~
| B Qu- i< [ RG! - Gha < [RNGL - Qudt.
0 0 0
Next, remark that

Qum(t) — G\ () = T 1o (rm)y (V= 0)
Gl (t) — Qul(t) = T4y (pme)y (7 = 0)-

Then, letting Q1,,(t) := T 16, (fme)) and Qom(t) == T_16y(fmt]), We obtain
1 1 ~
= F Qe G =) < [ NG - 6o
0 0
1
< | [ Fl@ud] G- e

.....

1/2

</01 [Fn—l ~ F,;lrdt) = Wy(Fy, Fy)
< Wo(Fy, F) + Wo(E,,, F)

2.0.



The inequality holds since W, is a distance. The convergence to 0 follows since
convergence of the Wasserstein-2 distance is equivalent to weak convergence and
convergence of the second moment (see, e.g., Theorem 6.9 in Villani, 2009), and
both (Y;)i=1 m are 1.i.d. with cdf F. Hence, we have, for k € {1, 2}

..... n and (Yz')z':l,...,

[ (Et = B Q]| < ([ [ = £ dt)m ([ unl at)

1/2

= op(1). (22)
Next, remark that
/1F‘1Q dt= 23V, 0T
b ™ 1mWt — m = o1(i)4 —1o1(4)
1 &~
= ZYZT—IZ
m iz

Moreover, by definition of h and Y,
E[YT.] = E|E[Y |na, T1]T-1] = E[h(na)T1].
Together with (22), this proves that

/0 CEQundt T Elh(na)T 1],

Using (22) again but with £ = 2 and (21), (20) follows provided that

[ B Qunit L BT ). £2

Let us now show that (23) hold under Assumption 3. First, consider the case
where Assumption 3-(i) holds. Because |Supp(n4)| = |Supp(X)|, we have, by (55)
in Lemma 2 and with probability approaching one (wpao), 74 > 74 that implies
nai > ng; for all 1 # j. Thus, because 14y, (i) < Ndoy (i+1), We have Ngo, iy < Doy (i+1)
for all « = 1,...,m — 1. By construction of oy, this implies that o, = 01, wpao.
Since [y F.'Qamdt = [y F'Q1,dt in this case, we obtain (23).

Next, assume that Assumption 3-(ii) holds. Let Supp(Y) = {v1,...,yx} with
—00 =Yg <Y < ..<yg. Then Y, = F~Y(G(na4;)). Moreover, F~! is constant on
I == (F(yk_1), F(y)] for all k € {1,..., K'}. By (55) and continuity of G, we have

P (3, k,0) € {1, ..om} x {1,... K}* : k # €, Gya) € I, G(flas) € 1) — 0.
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As a result, Y; = F~'(G(7iy)) for all i wpao. Under this event, oy = o, and as

above, we obtain (23).

Finally, suppose that Assumption 3-(iii) holds. Then, h(z) = F~'[G(z)] is con-
tinuous and Y; = h(ng) for all i. Let Y, = h(ng). For any M > 0, let
fu(z) = min(max(z, —M), M). Fix 6 > 0. By the dominated convergence theo-

rem
: 2
Jim Elh(1a)"1 {[na| > K3] =0

Then, let K > 0 be such that

)
Elh(na)*1{|nal > K}] < a7
6E[|[T-1[7]
Let also M = max(h(K), —h(—K)). Then,
1 I &Ko
/ F ' Qomdt = — > Yo ) T-1030)
m =1
1 m
:EZ[ fM< 01(1)}T1021)+ ZfM UQ’L)Tlo'Q(’L)
=1
1 m
+— Z[fM( ) fM( )]T loa(i)
m =1
= To+ T+ Ts.

Consider Ty. By Cauchy-Schwarz inequality,

1/2

1 m ~ - 2 1/2 1 m
Toll < Y — fuY; — T 412 . 24
iml < (=35 [f - at]') (53 0rr) 21
Since h is increasing, |ng| < K implies |Y;| < M. Then, Y; — fa(Y;) # 0 implies
|nai] > K. Remark also that |z — fy(x)| < |z|. Then,

Y; = fur (YD) < |h(na) 1L {|nas] > K}

As a result,

g il <

Zh Nai) ]1 {Inail > K} .

=1

By the law of large numbers (LLN) and definition of K, we obtain, with probability
approaching one (wpao),

IToll < (25)

O‘!\O')



Next, consider 7). We have

Tl - ;ZfM(ﬁz)T—lz
= 2 [P0 = )] T S FT sk S U (F) — I

=: Ty + Ty + Ths.

By the LLN, wpao,

O‘l\@)

1Th2 — E[h(na1)T-11]|| < (26)

By Cauchy-Schwarz inequality, we obtain for T)3 the same inequality as (24).

Thus, wpao,

4]
7l < 2. (27)
Turning to 711, we have, by Cauchy-Schwarz inequality,
1 Mm ~ 92 1/2 1 m 1/2
2
il < {3 [Py - o] b LS} e
i=1 i=1

~

Remark that min (|74, [n4|) > K implies m1n(|Y ,1Y;]) > M, and then fy(Y;) =
fur(¥:). Then,

ij&i)—fM(m <|V: = Vi| 1 {min([fial, |nal) < K3

= |h(fai) — h(na:)| 1 {min([Fal, [na:]) < K}

Because [ := [— K, K| is compact, there exists v > 0 such that for all (z,y) € I?,
|z — y| < v implies |h(z) — h(y)| < §/{6F[||T-1]]*]}. Given (55) in Lemma 2, (28)

and the LLN, we have, wpao

6
17| < (29)

Finally, consider T5. First, by Cauchy—Schwarz inequality,

1/2

T, < {; Em: [fM( 1@) — fM(ffzm(z‘))r}l/2 {;iHT—MHZ} . (30)

=1

By the rearrangement inequality, because fj; o h is increasing,

m ~

> FulToo) i Voso) 2 3 FulT ()

i=1

Thus, by what precedes, we have, wpao,

g:[fM (Youi fM( ]2§

1
m



(52
< ——.
~ OE[[T-]?]
When combined with (30) and the LLN, we have, wpao

J
T[] < 5 (31)
Finally, by combining (25)-(28) and (31), we obtain that wpao,

H z YTty — Elh(n)Toa]| < 6.

Because ¢ was arbitrary, (23), and in turn (20), follows.

2. Linear approximation of the other terms

Consider the following decomposition
1 1 1
/ F'Gldt :/ F G -G Hdt +/ G N F = Fhdt + 1y,
0 0 0

where 7, == [ (F7' — F7Y)(G;;} — G=')dt. We prove that the first two terms
Ti,, and T3, are asymptotically linear. We prove below that the last term is

asymptotically negligible.

First, consider Tb, = [y G~ (F7'—F~1)dt. We can always construct i.i.d. uniform
random variables & such that Y; = F71(¢;), see e.g. Eq. (55) p.57 in Shorack and
Wellner (1986, SW hereafter). Now, we apply Theorem 19.1 in SW, combined with
their Remark 2 p.667. Remark that their 7,, defined in their Eq. (56) corresponds
to our [ GT'F'dt, with their h being the identity function so that their g(G;')
is our F;! and their J is our G~!. Given that their (58) is the same as their (11),
with just ¥,, = U, we can replace in their Theorem 19.1-(i), provided that their
Assumptions 19.1 and 19.2 hold, T}, — p, by their T}, — p, which is our Tb,.

We first check that SW’s Assumption 19.1 holds. First, assume that Assumption
3-(i) holds. Then, by Remark 19.1 in SW, we have |F~1(¢)| < M;/[t(1 —t)]*/ 2+
for some M;. Moreover, |G71(t)] < max(Supp(ng)). Thus, (16) and (19) in
SW’s Assumption 19.1 holds, with their (b1, bs, dy, ds) satisfying by = by = 0 and
dy = dy = 1/(2+ ¢) and thus their a satisfying a < 1/2. If instead Assumption
3-(ii) holds, we reason similarly but instead use by = by = 1/4 and d; = dy = 0.
Finally, assume that Assumption 3-(iii) holds. Using again Remark 19.1 in SW,
(16) and (19) in their Assumption 19.1 holds, with their (by, ba, dy, ds) satisfying
by = ... =dy = 1/(4 + ¢) and thus their a satisfying again a < 1/2.
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Now, let us check that SW’s Assumption 19.2 holds. Since J, = J in T, their
assumption reduces in our context to the continuity of G~! except on a set of u-
measure 0, where p is the measure associated with F~!. If Assumption 3-(i) holds,
G~ is continuous except at G(h) for h € Supp(ny). But since F~! is continuous at
G(h), u({G(h)}) = 0. If, instead, Assumption 3-(ii) holds, the fact that Supp(n,)
is an interval implies that G~! is continuous. Finally, if Assumption 3-(iii) holds,
because G~! is monotone, its set of discontinuities Dg-1 is countable. Since F'~! is
continuous, u({zx}) = 0 for each € Dg-1. Hence, in all cases, SW’s Assumption
19.2 holds.

Then, by Theorem 19.1 in SW and their equation just above (13),
1 &t
Vil = ——5 Z/O [1{& <t} — G ($)AF(¢) + op(1).
i=1

Using m/(n 4+ m) — (1 — A), Lemma 1 below and the definition of 14, we obtain

nm

1 n
Ton = (1= )" 5 >t + op(1). (32)
i=1

n—+m
We reason similarly for 77,,. Note that Assumption 3 is not symmetric in F' and G
so care should be taken when checking Assumption 19.2 in SW (their Assumption
19.1 holds by just reverting the choices of (by,by) and (dy, ds) considered above).
Now, we must check the continuity of F~! except on a set of u-measure 0, where u
is the measure associated with G~1. If Assumption 3-(i) holds, note that the set of
discontinuity points Dp-1 of F~! is countable. Moreover, by assumption, Dp-1 N
G(Supp(ng)) = 0. Hence, u({x}) = 0 for each x € Dp-1, implying that u(Dp-1) =
0. If Assumption 3-(ii) holds, the same holds because G™! is continuous. Finally,
if Assumption 3-(iii) holds, F'~! is continuous so Assumption 19.2 in SW directly
holds. Hence, at the end of the day, we obtain
1] m

= \l/2 ,
T = N ;wgz +op(1). (33)

nm

3. Asymptotically negligible remainder term
We now show that R, ,,, := \/nm/(n + m)r,., = op(1l). Combined with (17), (32)
and (33), this implies

~ 1 PN V2 I
nm (bd B bd) _ = l??;/l; ;(W + o + U3i) + S ;Wi + op(1).

n+m ()
The result then follows by E[¢;] = 0, E(¢7) < oo for all j = 1,...,4 and the

central limit theorem.



Case 1: Assumption 3-(i) or (ii) holds. Let us assume that Assumption
3-(ii) holds. Then G~! is continuous on (0,1), and in particular on F(Supp(Y)).
Let Supp(Y) = {v1, ..., yx } and yo = —oo. Remark that for any function ¢,

;o= [ ZM {Flye) <t < Flyo)} a(t)dt
/01 P (#)g(t)dt = / Zykl {Fysr) <t < Flye)} qt)at.
Let I; := (F(y;), F(y;)] if Fy;) < F(y;), I; := (F(y;), F(y;)] otherwise. Then,
[0~ o)
:/Oléyk (sgn(ﬁ(yk) — Py {t € L} — sen(F(ye1) — Flys1))
x 1{te Ik_1}>q(t)dt

1 K-1

=} Xt = an)ssn(Flun) = Py {t € D} a()ar. (34)

Now, we have, for k =1,..., K — 1,

~

G™! (min(ﬁ’(yk); F(?Jk)))

e ) ‘/ﬂ{tefk}a (t)dt
<G™! (max(ﬁ@k),F(yk»).

By continuity of G=! at F(y,), G- (F(y)) — G~ (F(y)). Thus,
1
[ F'(yk) —

The same result holds replacing G! by G~!. Hence,

I /O1 1{t € I} G (t)dt = G (F(yp)).

o Fo /O1 1 {t € L} (G(t) — G- (t))dt = op(1).

Then, replacing ¢ by G—(t) — G™1(t) in (34), we obtain

1

E7H(t) = FTH )G () = GH(t))at

Nc\

- Z = e (Fly) — Flu)) [ 14 € 1} (G 0) - 67 @)

K-1

= > (yr — yrs1) (F(yr) — Flyr)) x op(1).

k=1



Then, because \/nm/(n+ m)(F(yx) — F(yx)) = Op(1), we obtain R, = op(1).

Now, if Assumption 3-(i) holds, the reasoning is the same as above, just reverting

the roles of F' and G, once we note that by assumption, F'~! is continuous at

G (Supp(7a)).

Case 2: Assumption 3-(iii) holds. We have, by Cauchy-Schwarz inequality,

R2

nm—

2(F, FYW2(G, Q).

Hence, by independence,

nm

E[R,] < E W3 (F,, F)| E[W3(Gm, G)] .

n—+m
Now, assume that Z = 7, in Assumption 3-(iii); the proof is the same if, instead,
Z =Y. Theorem 1 in Fournier and Guillin (2015) shows that

E W3 (F,, F)] $n 72,

where “<” means that the inequality holds up to a number independent of (n, m).

We now prove that
E W3 (G, G)] = o(m™7%), (35)

which implies that E[R}, ] = o(1) and concludes the proof by Markov inequality.
First, remark that by Theorem 4.3 of Bobkov and Ledoux (2019),

E [WQQ(Gm, G)} < ;iv(nd(i))7 (36)

where 74(1) < ... < Nam) denotes the order statistic of an i.i.d. sample (741, ..., Nam)
from G. Then, by COHdlthD (14) and Lemma 3, we have

i 1 1, Mgy (L + [nagiy )* ey
2N (m+1—i) \C? K> "Ta)

1

m

ZV(%( )) E

=1

5]

S (E[Z2] + E[Z5 (1 + Z,,)")) Z

<L | =

< EB[Z%#B)[1 + In(m)] (37)

where Z,,, = max;—1__n(|na|) and [z] denotes the integer part of x. Now,

77777

2+4+¢/3 2+e/3

m” e BZ ) < {mT B2 = o(1), (38)

where the inequality is due to Jensen’s inequality and the equality holds by,
e.g., Exercise 4 in Section 2.3 of van der Vaart and Wellner (2023) and because
E[|na1|**] < oo. Combining (36), (37) and (38), we obtain (35).

9



E.2 Theorem 4

Theorem 1 ensures that by > 0 > b_,;. Then, by Theorem 3, it suffices to prove
the following:

DS B forke (18), S0 DB (39)
j=1 i=1
S Guges > Blin] for koK € (1,3}, kK. (40)

I
=

J

Hereafter, we let, forany N C Rande >0, N*:={x e R:Jy e N : |z —y| < e}.
Eq. (39) holds for £ =1. We actually prove

1 m

% z:: wlj zﬁl]

The result then follows by the triangle inequality and the LLN applied to the
(w%j)jzl ,,,,, m. By definition of ﬁlj and 11; and convexity of z + 2,

m 2 -~ _
(b1 — rj)> <20 (ﬁﬁj — > 05—y + E[Uﬁ]) +2(ng — En3])*(ba — ba)?.
mia

The sample mean of the second term on the right-hand side converges to 0 in
probability by Theorem 3 and E[nj] < co. Recall that -- ™ 77 = L 3" 57 +
op(m™1/%). Also, by = Op(1). Then, using again convexity of ¥ — 2%, it suffices

to prove that

;i (77dj 77d]> — 0. (41)

Remark that (77 —13;)* = (g + 1¢;)* (g — naj)*. Then, (41) follows from (55) in
Lemma 2 and (1/m) 372, (g + 1g5)* = Op(1).
Eq. (39) holds for k = 2. Note that 1y; = N,, with §; = T_,7j4 and

-1
- (1 LS i
P (m 3 TUT’u) (m 2. h(ﬁdJ')T’u) '

This implies

10



It suffices to show convergence of X and the term in parentheses. Regarding the

latter, we have

1 & 1 & 2 2 R
- Z:: = ; (T_1;T" ;) (g — 1) + m;(TuT’u)ndj(ﬁdj — Tdj)
1 ,
+ %]:1 T le 1j nd]
Moreover,
! 5 N\ 21 m ,
m Z(Tfle—lj)(ndj - ”ldj) < max (g — Naj) m Z ”Tfle—le-
j=1 j=1

By Lemma 2, the left-hand side is an op(1). Similarly, (1/m) 300 (T-1;T" ;)4 (T —
n4j) = op(1). Then, by the LLN,

1 &~~~ p
m Z(sj ; ’ E[nﬁijuT’ 1j]'
j=1

Let us turn to A. It suffices to prove that
T P
— 2 (i) Ty — Blh(na)TZ,). (42)
j=1

Suppose first that [Supp(ns)| = [Supp(X)| < oo and let (uy, ..., ux) := Supp(nq).
Then, by (55), wpao, |{7a1, .., Jam }| = K and there exists a permutation o such

that both Nu,1) < ... < Naom) and Nge) < ..o < Nao(my- 1 S0,
1 m K _
— > h(g) Ty = Y (Glur) = Golur1))Y ATy,
mi3 k=1
with the convention that uy = —oo and where, letting my, = [{j : ng = ux}|,
Qe 1= fnG (uk—1)] — 1 and Bk = [nGp(ur)],
T—lk = Z T_ 175
Mk jingg=us
V= / F (Gt 1) + w(Gon () — Gty 1)) du

Bn,m,k

1 1 2
= /6 k — [0 k [ }/(Z) - (An,m,k}/(an,m,k"’_l) + )\n,m,k}/(ﬁn,m,k))
n,m, MGE | i=p k1

for some (A} A2 ) €[0,1]2 By the LLN, T_y;, = E[T_1|ns = uz]. Remark

nmk? n,m,k
that ay,mi/n il G(ug—1) and By mi/n il G(ug). Then, by e.g. (22) p.681 in
Shorack and Wellner (1986), we have

Br,m k
! > Yo DB € P oGlup ), F o Glug)]] = huy)

Bn,m,k Opmk j— S |

11



Moreover,

Bn,m,k — Qpomk o G(uk) - G(U/k_l) + Op(l)
and
|Y(an,m,k+1)| max; |Yz|/n 0
Bn,m,k — Qpomk o G(uk) - G(U/k_l) + Op(l)
Hence, Y — h(ug). As a result,
1 &~ K / ,
2 ()T, Z G(up—1))h(up) E[TZ |na = u] = E[h(na)TZ,].
j=1 k=1

Next, let us prove (42) when G is continuous. By the LLN and Cauchy-Schwarz
inequality, (42) holds if

1 & 2 p

- Z (R() = h(ng))” = 0. (43)
Fix 6 > 0. By Assumption 3 and the dominated convergence theorem, there
exists € > 0 and a compact set I C (0,1) such that (i) E[1{G(ns) € I}] < J; (ii)
I C IF C (0,1); (ili) I* N Dp-1 = (), with Dp-1 the set of discontinuity points
of F~1. Since F~! is continuous on I¢, it is also uniformly continuous on this
compact set. Then, there exists ¢ € (0,2) such that for all (z,y) € I?2, |z —y| < e
implies |F~1(z) — F~1(y)| < 6%/2. Moreover, because G(ng;) € I implies that 7,
belongs to a bounded set, by (56) and its variant in Lemma 2, wpao,

max max (|é(ﬁd]> — G(ng)|; |G(ﬁc;y) - G("dj)D =&

7:G(ng;)€l

Then, under this event,

7; i’? ( Naj) ﬁdj))Q 1{G(ng) € I} (44)
< max [ 1E (Glig) + wlGlig) - Gig)) — F~ o Glag) P

< & el _ 1 |2
. c%aui&tpn'F H(G(ig) + ulG i) = G(@g)))) = F~' o Glng)]

<2sup |F ' (z) - F (@) +2  sup  [F7H(t) = F(u)[*

xzel® (t,w)el2:|t—u|<e
<2 [sup |F N 2) — F Y (2)]* + (5] , (45)
rel®

where we have used Jensen’s inequality for the first inequality. Since F~! is con-

tinuous on /¢ C (0, 1), the first term on the right-hand side is smaller than § wpao.

12



Then, to prove (43), it suffices to show that wpao,
1 & 2
o 2 () = (1)) 1{Gng) & I} < (0)

m

for some ¢(-) continuous at 0 and such that ¢(0) = 0. By the Cauchy-Schwarz

inequality, we obtain

Zib: ( Tlaj) ndj))2 1{G(ny) & 1}

1
1 & i 1
< (m > 1{G) ¢ f}) (m

hence using that Y72, 1 {G(ng) € I} /m L BN {G(n4) & 1}] < 6, it suffices to
prove that

Ms

1/2
(h(g) — h(nd»)“)

7=1

m ~ 1 m
h(”dj)4 = OP(l), m Z h nd] = OP(l)-
j=1 Jj=1

The second result follows by the LLN, since h(ng;) < Y; and E[Y*] < co. For the
first, remark that by Jensen’s inequality and since G(74) — @(ﬁgj) >1/m,

t< [ FG6g) + u(Clig) - Gl

G(May)
<m/ e 4du

ﬂdj

Hence, by Fubini-Tonelli’s theorem,

/f\L </ F N u)*du = — ZYf:
izt

m
m =1

The result follows.

Eq. (39) holds for k = 3. Let a € (0,1) be a continuity point of G™' and F~!.
We have

s = - / [ < u} = Gw) F~ o Glu)du

(&a)
—/ Y du+/G o G(u)du

fd G-1(1)
— / : F~'o G(u)du + /G’(u)F‘1 o G(u)du — / w F~' o G(u)du,

G~ 1(a G 1(a
for some &; ~ L{[O 1]. As a result,
GT1(1)
))dsdt+ | G(u oG(u)du— F~1oG(u)du.
Bl = [ [ / (win— [ (u)

13



Since, by Fubini’s theorem, we also have E[¢3] = 0, we obtain

Vg = 3 — Es] = (&4, F, G), (46)
where
ot F.G) =olt, F.G) - | Co(u, F.G)du (47)
olt, F,G) = | O 1 Gs))ds
2\b, L7, . G*l(a) )

Moreover, using that G!(t) = N, for t € ((i —1)/m,i/m] and all i =1,...,m,
DU = | Bt Fu Gt (48)

By Lemma 4 below and the continuous mapping theorem, it suffices to show that
Wi(G, G) 25 0 and either Wy(F,,, F) 2 0 (if Assumption 3-(ii) or (iii) holds),
or Wy(F,,, F) - 0 (if Assumption 3-(i) holds). The condition on F,, holds by, e.g.,
Theorem 2.13 in Bobkov and Ledoux (2019). By the same theorem, W, (G,,, G)
converge to 0 a.s. Moreover,

1/4
P
< ,max M4 — Tai] — 0,

=1,..., m

1 4
m Z(ndi - Udz)

=1

W4<@m7 Gm) S

where the first inequality follows by definition of W, and the convergence holds
by Lemma 2. Then, W,(Gyn, G) 25 0 follows by the triangle inequality.

Eq. (39) holds for & = 4. The reasoning is the same as for k& = 3: we just
exchange the roles of F' and GG and note that Lemma 4 still applies then.

Eq. (40) holds for (k, k') = (1,2). We have
~ o~ = [ 5 1 ™ 9\~ R
V15995 = —bg ('fldj - — Z 77dk> AT 157)gj-
m =
The result follows by convergences of A and Ed, and Eq. (55) in Lemma 2.

Eq. (40) holds for (k, k") = (1,3). It suffices to prove that

1o
— > gbs; — Elnjus).
m

14



To this end, note that by (46)

773% = (Gil(fd))262<£da Fa G)

Hence by the same argument as (48),

m 1
Z 77Z}3] —/ Cg(t, FnaGm)dt7

1
m i3
where &(t, F, G) := &(t, F,G) — [ (G (u))” du J) ¢2(u, F, G)du and

_ 1k T

&t F.G) = (G7(1)) /G L TGN
We obtain the result using Lemma 4 below, the continuous mapping theorem, and
the fact as shown above, we have Wy (G, G) =25 0 and either Wy (F,, F) = 0 (if

Assumption 3-(ii) or (iii) holds), or Wy(F,,, F) == 0 (if Assumption 3-(i) holds).

Eq. (40) holds for (k,k') = (2,3). We have

1 & ~ 1 &, ~

= i = —— SONT 1 Frithas

m JZI 23w33 m ; 1;77dg¢33
1 -

= —— D> NTyjigs; + 0p(1),
m =
using the convergence of A. Then,
1 m . - 1 m
- S ONT_ ity = — — Z NT (g — Natbsg) — -y Z oj13;.
Jj=1 ] 1

Using the Cauchy-Schwarz inequality, we have

| m 1/2 L m 1/2
< (m Z(A/lef) (m > ( ndjlz?)j — 77dj¢3j)2)

j=1 7j=1

1 m
% 2:: —1j ndijJ - ndﬂ/}iﬁ)

The first term on the right hand side is bounded in probability by the LLN,
since B[||X||*] < co. By the LLN for the term = 37 4y;1b3; it suffices to show
that L Tzl(ﬁdjlz}\gj — Najs)? L5 0. We have, using ng; = ¢1(&a, F, G) with
&4 ~ U0, 1], that

1 & ~
E Z ndiw?n ndzw?n Z /z

~ _ 2
(@, Fn, Gm) — &1(8a, F, G)) " dt

1)/

i/m

(@t R G —alt F.G)) dt



+2Z/ (@(t, F,G) — &€, F.G)) dt
gz/ aLF@Qﬁ—aﬁjﬂﬁfﬁ
+2Z/ (a(t, F,G) — & (¢a F.G)) " dt.

. 2
By Lemma 4 and the continuous mapping theorem, [ (El (t, Fn, Gp) — C1(t, F, G)) dt 2

0. Next, let us prove that
A= Z/ (&(t, F,G) — &(éa, F.G)) dt L 0, (49)

Let Fg, denote the empirical cdf of the (£4,)i=1
and Wellner, 1986, Eq. (11) p.86)

m- We have (see, e.g. Shorack

,,,,,

ey )_’< sup [Foi(t) — 1] -2 0, (50)
t€0,1]

.....

Fix ¢ > 0 and M > 1. Because continuous functions are dense in L?([0, 1]), there

exists a continuous function ¢¢ such that
1

1
A ;:/0 (@t F,G) — &) dt < 6iM (51)
Moreover,
A < 3(A;+ Ay + Ag), (52)
where
ae=Y [ @) - ) d,
i— (i—1)/m
1o
Ay '_EZ(Cl(&M) &1(éas, F.G))*.

Since ¢ is uniformly continuous on [0, 1], there exists 6 > 0 such that for all
(z,y) € K?, |z —y| < 6 implies that |¢;(z) — & (y)| < [¢/(6M)]*/2. Combined with
(50), this implies that for all m > 2/9,

1

p (Az > GM) < (53)

Finally, by Markov’s inequality, for all ¢ > 0,

ElA)] A1
P (A < = — < —. o4
(Ba>ge) < 220 = 20 < (54)
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Using (51)-(54), we finally obtain

P(A>¢)<P(Ay >¢/(6M))+ P (A <e/(6M),Asz >e(1—1/(2M))/3)
<i + 1 — i + ;
M (1-1/2M)2M M  2M -1
Eq. (49) follows since € > 0 and M > 1 were arbitrary.

E.3 Additional lemmas

The proof of Theorem 3 relies on two lemmas, which we state and prove below.
Note that Lemma 3 is similar to Corollary 2.12 in Boucheron and Thomas (2015)
but handles variables taking negative values. Also, Lemma 4 is similar to Lemma
A.1 in Del Barrio et al. (2019) but holds under slightly weaker conditions.

Lemma 1 For any cdfs F,G,Y = F~Y(U) and U ~ U|0,1], we have

/01[]1 (U<t} — ]G (O)dF1(t) = /Z[n (Y <u) — F(w)]G™" o F(u)du.

Lemma 2 Suppose Assumptions 3 hold. Then, for allC' > 0 and x € R continuity
point of G,

—~ P
jemax |7aj — naj| — 0, (55)
_max |G(lg) — G(ngj)] = 0, (56)
Jing1<C
G(z) 2 G(x). (57)

Moreover, if G is continuous, (56) still holds if we replace G(7i4) by C:*(ﬁd_j)

Lemma 3 Suppose that T has a cdf F, survival function S and a positive density
f. Then, for alli e {1,...,n},

2
V(T) < - ’ ~ B
iN(n+1—1)

F(T.)S(Tin)\ >
2( (T)S( <z>)> £ T2

Lemma 4 For f € {¢y,¢1,¢}, the function (F,G) — f(-, F,G) is continuous in
L2[0,1] (L*[0,1] for f = ¢&) with respect to the metric
d(F,G), (Fla GI)] = W4(Flu F) + W4(G/7 G),

at any (Fo, Go) (and also at (Go, Fo) when f = ©y) satisfying the same restrictions
as (F, Q) in Assumption 3-(ii) or (iii). The same holds if in the metric d, we re-
place Wy(F', F) by Wy(F', F'), provided that (Fy, Go) satisfy the same restrictions
as (F, Q) in Assumption 3-(i).
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E.3.1 Proof of Lemma 1

Note that F is a generalized inverse of F~! (see, e.g., Shorack and Wellner, 1986,
p.7). Then, by, e.g., Eq. (1) in Falkner and Teschl (2012),

/01[]1 (U <t} — 4G OdF1(t) = /O;[n (U < F(u)} — Fu)]G™" o F(u)du.

The result follows by noting that U < F(u) if and only if Y < u (see, e.g., Lemma
21.1 in van der Vaart, 2000).

E.3.2 Proof of Lemma 2

First,
max A — nal = max |77, = 7))
i=1,....,m i=1,....m
< {_III&X ||T—1z‘||} 15 = ol
i=1,....m

= op(m!'?) x Op(m~1/?)

= 0p<1).
The second equality follows since E[||T_1;]|?] < oo, see e.g. Exercise 4 in Section
2.3 of van der Vaart and Wellner (2023).

Let us turn to (56). First, assume that (i) holds in Assumption 3. Given that
|Supp(nq)| < oo, it suffices to prove that for all u € Supp(ng),

1 & N N
max | — 3" 1 {7l = Ay} — Plna = u)| = 0. (58)
Jndg=w | =

Fix such a u € Supp(ng). Since |Supp(nq)| = [Supp(X)|, there exists z € Supp(X)
such that for all j, ng = u < X; = z. Also, because of (55), there exists w,y, Lsu

such that X; =z < 74 = u,,. Hence, for sufficiently large m,
S = ) = 31 e =)
— Nak = Ndjy = — Nak = dj s -
m = m =

The result follows from the law of large numbers.

Now, assume that (ii) or (iii) holds in Assumption 3. Fix § > 0. Since G is
continuous, there exists ¢ > 0 such that for all (z,y) € [-C — 2¢,C + 2¢]?,
|z — y| < 2¢ implies |G(y) — G(z)| < §. By (55), with probability approaching
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one, |7z — 1g| < e for all j. Under this event, G(z) € [Gp(z — €), Gm(z + €)] for
all x € R. Thus,

max_|G(7g) — G(ng)]

Jing;|<C

Sj.lfﬁal><<cmax{|Gm(7ldj +2¢) — G(gy)|, |G (ng — 2¢) — G(ng)[}

< sup [Gp(r) - G(z)] + sup |G(z) = G(y)]
z€[—C—2¢,C+2¢] (z,y)€[—C—2¢,C+2¢)?:|x—y|<2e

<sup |G (x) — G(x)] + 0.
zeR

By Glivenko-Cantelli theorem, sup,cg |Gm(x) — G(x)| < § with probability ap-
proaching one. Eq. (56) follows since § > 0 was arbitrary. To see that Eq. (56)

-----

such that G(7g) = @(ﬁ@) and |7 — 14| < /2. Then, the same proof as above
applies, once we remark that with probability approaching one, |74 — 14| < €/2

for all 7.

Finally, we prove (57). If (i) holds in Assumption 3, a continuity point x of
G is such that either # < min(Supp(n4)), * > max(Supp(ng)) or there exists
(u,v) € Supp(ng)? such that u < z < v (and G(z) = G(u)). In the first case,
wpao, = < min; 7; and thus G(z) = 0. The reasoning with z > max(Supp(n4)) is

the same. In the third case, wpao,
z:=max{ng : Ng =u} < <T:=min{fy : 74 = v}
and there is no j such that 74 € (z,7). Hence, under this event,
G (max{7y : 1y = u}) = G(a).
By (56), the left-hand side converges in probability to G(u). The result follows.

Now, assume that (ii) or (iii) holds in Assumption 3. Fix § > 0 and let € > 0 be
such that |y — z| < ¢ implies |G(y) — G(z)| < 8. We proved above that G(z) €
[Gr(z—¢), G(z+¢)] Wwpao. By the law of large numbers, G, (z—¢) — G(z —¢)
and Gy, (z+¢) —— G(x+¢). Hence, wpao, |G(z) — G(x)| < 26. The result follows

since 0 > 0 was arbitrary.
E.3.3 Proof of Lemma 3
First, note that
V(Tw) <2 V(T F(Tw)) + V(T S(Ti))] (59)
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Remark that T;) = F~'(1 — exp(—E;))), where (E\, ..., E,) are iid, Exponential
variables of parameter 1. Then, by Rényi’s representation of order statistics for

such variables,
V(T F(T) = V [F (1= ¢ Zimmrani B/ (1 = o D B/H)
Let us define
9(Tns1miy oo t) = F7 (1= " Dimraes /) (1 7 B o0/4)

Then, by Poincare’s inequality for exponential variables (see, e.g., Proposition 2.10

in Boucheron and Thomas, 2015), we have

99

k=n+1—1

V(T F(Tw)) <4E

Remark that for all j € {n +1—14,...,n},
1 — 6_ Z::n«l»lfi xk/k
h e} F_l (]_ — 6_ E::n«klfi xk/k)
+e” ZZ:n+17iwk/kF71 (1 — e Z::n+17imk/k):| )

9] 1
79(1'71+17i7 ceey xn) = ;

(91:]-

Thus,

n ag )
Z aixk(En—l—l—u 7En)

k=n+1—1
noo]
> 2]E
j=n+1—iJ
16 F(T(i>)5(T(i))>2 272
—— = +S(Tw)° TG
( (1) we

<—

n+1l-1
To deal with V (T(;)S(T(;))), we use T(;y = F~'(exp(—E(,+1-1))) and reason exactly
as above. This yields:

V(T F(Ty)) <4E

=4

(60)

16
?

2
V(T(i)S(T(i)>) < E > + F(T(i))2T(2i) . (61)

(F (T S(Tw)
f(T)

By combining (59), (60), (61) and 2 + (1 —x)?> < 1 for 0 < x < 1, we finally

obtain )
F(Ta)S (Tm)) )
( F(Ty) ®
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E.3.4 Proof of Lemma 4

We mostly focus on f = ¢, as the reasoning is the same when f € {¢i,c}. As
in (46), we assume without loss of generality that a is a continuity point of Gg*
and Fy'. Consider a sequence (F),,G,),>1 converging to (Fy, Go) satisfying As-
sumption 3-(ii) or (iii). We first show that cs(¢, F,,, G,,) — co(t, Fy, Go) for almost
every t € (0,1). Then, we prove that cs(+, Fy,, Gp) — c2(+, F,G) in Ly[0,1]. The
continuity result at (Fy, Go) follows. Then, we show how to adapt the reasoning
to prove continuity at (Go, Fp) instead of (Fp, G). Next, we prove the result with
the alternative metric when (Fy, Go) satisfy Assumption 3-(i). Finally, we show

how to adapt the argument when f € {¢;, ¢}

1. o(t, Fn,Gn) — caft, Fy, Gyp) for almost every ¢t € (0,1). Assume without
loss of generality that ¢ € (a, 1), and that it is a continuity point of G'. Suppose
also that s (a) is a continuity point of Gy; (b) is such that Gy(s) is a continuity
point of Fy'; (c) satisfies s € {Gg'(a), Gy'(t)}. Note that by, e.g., Theorem 6.9
of Villani (2009) and Lemma 21.2 in van der Vaart (2000), G,(s") — Go(s’) for all
continuity points s’ of Gy, and F;7 ' (u) — F, '(u) for all continuity points of Fy. Fix
§ > 0 and let £ > 0 be such that |u—Go(s)| < e implies |Fy *(u) — Fy 1 (Go(s))]| <6
and Go(s) — ¢ and Gy(s) + ¢ are continuity points of £, '. Such an ¢ exists since
the set of discontinuity points of F; ! is at most countable. Now, for all n large
enough, |G, (s) — Go(s)| < e, which implies by monotonicity that F,*(G,(s)) €
[F7H(Gols) — ), Fi, ' (Go(s) 4 €)]. Then, by construction,

F H(Go(s) =€) = Fy H(Go(s) — ) > FyH(Go(s)) — 6,

and similarly for F,;'(Go(s) +¢). Since § was arbitrary, we obtain F, (G, (s)) —
Fy 1 (Go(s)). In turn, because s € {Gy'(a), Gyl (1)},

FH(Gn()1{G, N 0) <5 < G ()} = Fy ' (Gols))1{G (@) <5 < Gl ()} (62)

n n

Now remark that under Assumption 3-(ii) or (iii), Conditions (a), (b) and (c)
above hold for almost every s. Hence, (62) holds for almost all s. Moreover,
for all n large enough, s — |F,;}(G,(s))|1{G, (a) < s < G, (t)} is bounded by
some K > 0. Then, by the dominated convergence theorem, cy(t, F,, G,) —

co(t, Fy, Go). Since almost all ¢ are continuity point of G5, Point 1 follows.
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2. o+, Fy,Gp) = o, F,G) in Ly[0,1]. Given Step 1, it suffices to prove, by
Lebesgue—Vitali theorem (see e.g., Theorem 4.5.4 in Bogachev, 2007), that

1
lim sup [ ex(t, F,, Gn)*1 {02(25, F,,G,)* > M} dt = 0. (63)

M—00 >1J0

First, remark that for all s < G'(t), G,,(s) < t. Hence, for such s, F;71(G,(s)) <
F71(t). Similarly, for s > G, '(a), F,; (Gu(s)) > F,'(a). As a result,

ealt, P, Go)| < |G M (1) = Gt (@) (|F )] + |t (a)])
<q(Gn.t) X q(Fy. 1), (64)

—

where ¢(F,t) := |F~1(¢)| + |F~*(a)| for any cdf F. Then,
1{ca(t, Fo, Go)? > M} < 1{q(Gp,t) > VM + 1 {q(F,, 1) > VM}.
As a result, by Cauchy-Schwarz inequality,
1
/ es(t, Fr, G {ea(t, o, G)* > M} dt
0
1 1 1/2
< [/ q(Fn,t)4dt/ ¢(Go, )1 {q(Gn,t) > VM} dt}
0 0

+ /01 q(Fo, 1)1 {q(F,t) > VM]} dt/ol q(Gn,t)‘ldt} "

We have G, '(a) — Gy'(a). Also, because Wy(G,,Gy) — 0, G, — G~!in
L,]0,1]. Then, we also have ¢(G,,-) — q(Go,-) in L4[0,1]. By Lebesgue—Vitali
theorem again, imas_eo SUp,s1 fy ¢(Gnst)*1{q(G,,t) > VM}dt = 0. The same
holds with F), instead of GG,,. Equation (63) follows.

3. Continuity at (Go, ). The reasoning is the same as above. Step 2 holds as
is. In Step 1, we just need to check that Condition (b) on s still holds for almost
every s when exchanging the roles of Fjy and Gy. This is true under Assumption
3-(ii), since G! is continuous on (0,1). This also holds under Assumption 3-(iii):
Fy is strictly increasing on its support (since F, ' is continuous), and the set of

discontinuity points of G is at most countable.

4. Continuity with respect to the alternative metric. The proof is very
similar as above. Step 1 is as above, once we note that Condition (b) still holds
for almost every s under Assumption 3-(i). Regarding Step 2, start from (64) and
use instead that q(G,,t) is bounded for ¢t € (0,1). Since q(F,,-)? is uniformly

integrable, ¢y (-, F},, G,,)? is uniformly integrable as well. The result follows.
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5. Adaptation to f € {¢1,¢}. The reasoning in Part 1 above is the same. For
Part 2, let us just consider f = ¢,; with f = ¢;, we simply have to adjust some
exponents and the use of Holder’s inequality below. The reasoning is the same
as above but we use instead the inequality |C(t, Fy,, G,,)| < q(Gp,t)® X q(F,,t).
Then,

1{G(t, F, Gn) > M} < 1{q(Gn,t) > MY*} 4+ 1 {q(F,, 1) > M}
As a result, by Hélder’s inequality with exponents 4/3 and 4,
1
/ &o(t, F, Co) 1 {Go(t, Fo, Gr) > MY dt
0
1 1 3/4
<| [ aFatyde [ oGty 1 {o(Gut) > MY at|
0 0
1 1 1/4
| [ aF ' alFt) > My dt [ q(Go et
0 0

We conclude as above.

23



	Introduction
	Set-up and motivation
	Set-up
	Motivation

	Identification
	No common variables
	Common variables
	Main result
	Testing and weakening the common population assumption
	Auxiliary, non-common variables


	Estimation and inference
	Estimation of bd
	No common variables
	Common variables

	Asymptotic normality of b"0362bd and inference on bd
	Asymptotic normality
	Confidence intervals
	Common variables


	Simulations
	Applications
	Race and patent approval
	Preferences and educational achievement

	Conclusion
	Comparison with pacini2019two
	Sharpness
	Numerical comparison

	Asymptotic variance with common variables
	Additional elements on the applications
	Additional results on the first application
	Additional details on the second application

	Proofs of the identification results
	Theorem 1
	Theorem 2
	Proposition 1

	Proofs of the statistical results
	Theorem 3
	Theorem 4
	Additional lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4



